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Abstract: With the extensive application of robots, such as unmanned aerial vehicle (UAV) in
exploring unknown environments, visual odometry (VO) algorithms have played an increasingly
important role. The environments are diverse, not always textured, or low-textured with insufficient
features, making them challenging for mainstream VO. However, for low-texture environment, due
to the structural characteristics of man-made scene, the lines are usually abundant. In this paper, we
propose a virtual-real hybrid map based monocular visual odometry algorithm. The core idea is that
we reprocess line segment features to generate the virtual intersection matching points, which can
be used to build the virtual map. Introducing virtual map can improve the stability of the visual
odometry algorithm in low-texture environment. Specifically, we first combine unparallel matched
line segments to generate virtual intersection matching points, then, based on the virtual intersection
matching points, we triangulate to get a virtual map, combined with the real map built upon the
ordinary point features to form a virtual-real hybrid 3D map. Finally, using the hybrid map, the
continuous camera pose estimation can be solved. Extensive experimental results have demonstrated
the robustness and effectiveness of the proposed method in various low-texture scenes.

Keywords: visual odometry; simultaneous localization and mapping; low-texture environment;
line segments

1. Introduction

In recent years, intelligent robots have been widely developed and deployed. For
instance, as a kind of robot, unmanned aerial vehicle (UAV) has been widely used for
resource surveys [1,2], terrain modeling [3], disaster rescue [4] and other applications.
For robots, visual odometry (VO) and visual Simultaneous Localization and Mapping
(vSLAM) are the key technologies. With visual odometry, a robot can accurately estimate
its trajectory in an unknown environment, which endows it with the ability to explore
unknown environments on its own [5–8]. However, possible environments are highly
diverse, not always textured, and there are plenty of low-texture environments, such as
the streets in urban areas and artificial squares. In these environments, there are no rich
textures, but lines are much more abundant due to the structure of the man-made scene.
These low-texture environments create unique challenges for VO algorithms.

The VO algorithm is to estimate the motion of the robot using images, which is an
important part of vSLAM technology. VO and vSLAM methods are usually divided into
two categories: direct methods and feature-based methods.

The core of the direct method is to minimize the photometric errors. Since the direct
method only requires the image to have a sufficient image gradient, with no need for
feature points, the direct method can be applied to low-texture scenes. In order to avoid
the high computation requirement, the direct methods generally exploit only pixels with
strong gradients, such as LSD-SLAM [9], a semi-dense direct approach that minimizes the
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photometric error in image regions with high gradient. Engel et al. [10] proposed a novel
direct sparse visual odometry formulation (DSO), which builds a fully direct probabilistic
model minimizing the photometric error and implemented the joint optimization of all
model parameters, including inverse depth and camera motion. Gao et al. [11] presented
LDSO, which is an extension of DSO algorithm to a monocular visual SLAM algorithm
featuring loop closure detection and pose-graph optimization. Although these methods
can be used in low-texture environments, they worked well in indoor environments. This
is because direct methods are based on the grayscale invariant hypothesis, which is a
strong assumption that is difficult to guarantee in an outdoor environment. For example,
UAVs usually pass through differently lit areas during flight. In addition, direct methods
entirely rely on a gradient descent search. Thus, the direct method is valid only if the
interframe motion is small, in order to avoid strong nonconvexity of the image gradient.
Therefore, direct methods are not suitable for practical large-scale environments. whether
it is a low-texture environment or not.

The classic feature-based method is based on point features. The core of the feature-
based method is to minimize the reprojection error with feature points. In the development
of feature point methods, Parallel Tracking and Mapping (PTAM) [12], Stereo Parallel
Tracking and Mapping (S-PTAM) [13], and ORB-SLAM2 [14] are the representative works.
PTAM is the first representative system for feature-based methods in the keyframe-based
SLAM field, which is divided into two separate threads: track and map threads. In track
part, a four-level image pyramid is constructed for each frame, and the corner detector is
run on each pyramid level. PTAM established the classic framework, followed by S-PTAM
and ORB-SLAM2. S-PTAM is a stereo SLAM algorithm with the same framework as
PTAM, which used the Binary Robust Invariant Scalable Keypoints (BRISK) extractor [15]
to describe features. In contrast to PTAM and S-PTAM, ORB-SLAM2 added a loop closing
thread, which made it more complete. ORB-SLAM2 used the Oriented FAST and Rotated
BRIEF (ORB) keypoints [16] as point features, and the latest version had been updated to
ORB-SLAM3 [17]. However, the performance of the point feature-based methods are closely
related to the richness of explicit corner features in the image. Therefore, the performance
of the above mentioned methods usually decreases in low-texture environments [18]. In
addition, feature matching in low-texture environments is not reliable. Therefore, methods
based on point features cannot perform well in low-texture environments.

Despite the lack of reliable feature points, low-texture environments may still contain
a number of lines which can be used. Therefore, some researchers have focused on the
research based on line features. Eade et al. [19] considered line features can provide useful
geometric information in structured environments and introduced a concept of edgelet,
which consists of a three-dimensional point x corresponding with the center of the edgelet,
and a three-dimensional unit vector d̂ describing the direction of the edgelet. Based
on these edgelets, a particle filter framework SLAM was implemented. Zhou et al. [20]
proposed the structure line concept, which is represented by a point on a parameter plane
and the related dominant direction. Based on the structure line, an extended Kalman filter
(EKF) framework SLAM was implemented. In addition, some researchers have utilized
both point and line features together in the algorithm. Building upon the ORB-SLAM
framework, Pumarola et al. [18] proposed PL-SLAM, a monocular solution which can
simultaneously leverage point and line information. In PL-SLAM, lines were parameterized
by their endpoints, as suggested by [21], according to the line reprojection error which was
defined as the sum of point-to-line distances between the projected line segment endpoints
and the detected line in the image plane, the line projection model was constructed. In
PL-SLAM, point features and line features were used to construct point and line maps,
respectively. Both point and line maps participated in pose optimization. Gomez-Ojeda
et al. [22] proposed STVO-PL, a stereo VO approach that combines both points and line
segments. The camera motion was also recovered through nonlinear minimization of
the projection errors of both point and line segment features. Building upon STVO-PL,
Gomez-Ojeda et al. [23] proposed stereo PL-SLAM, a stereo visual SLAM algorithm. For
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stereo PL-SLAM, a novel bag-of-words approach was proposed, which employs points
and line segments to enhance the loop closure process. These methods analyze the lines
purely, consider how to parameterize 3D lines and build an error model between 3D lines
and observations. Therefore, these methods do not consider the line information utilization
from the perspective of feature combination. Furthermore, a significant drawback of using
lines directly is that lines are often incompletely detected or partially occluded, leading
to instability of the related algorithms. In this paper, by exploring the properties of line
segments, we deal with the line segment information from the perspective of combining
line segments, that is a novel way to deal with line segments. In this way, many benefits
for VO algorithms can be obtained, as elaborated later in the paper.

Although some methods aiming at low-texture environments have been proposed,
these methods are mainly for indoor environments. Yang et al. [24] used a single
image pop-up plane model [25] to generate plane landmark measurements. Based on the
plane landmarks, a plane SLAM algorithm incorporating scene layout understanding was
proposed. This approach was designed specifically for corridor scenes and, thus, is limited
in scope. In addition, some methods use RGBD camera as sensor. Fu et al. [26] presented a
RGBD SLAM algorithm using points and lines for indoor mobile robot pose estimation and
3D map generation. Fabian et al. [27] considered that depth maps can increase the stability
in poorly textured environments and that edges are more stable than the raw intensity
under different illumination conditions and, thus presented a RGBD VO algorithm that
uses a combination of edge images and depth maps to jointly minimize the edge distance
and point-to-plane error. Due to the use of a RGBD camera, these methods can only be
used in indoor environments.

For outdoor low-texture environments, only use point features for VO algorithm
maybe not sufficient, a feasible solution is to use extra features such as line segment for
a complement. Therefore, how to use the line segment information effectively and to
propose the corresponding VO algorithm is the goal of this paper. In this paper, we utilize
line information from the perspective of combining line segments and define a concept of
virtual intersection matching points, based on line segments. By exploring the properties
of the virtual intersection matching points, we propose a virtual-real hybrid map based
monocular VO algorithm combined with points and line segments. Our main contributions
are as follows:

• First, we reprocess line segment features by combining line segments and introduce
the concept of virtual intersection matching points.

• Second, we propose the concept of a virtual map using the line segment-based virtual
intersection matching points and demonstrate that the virtual map can play the same
role as the real map constructed by ordinary point features to participate in camera
pose estimation.

• Third, we propose a monocular VO algorithm based on the virtual-real hybrid map, as
shown in Figure 1b, which is built on virtual intersection matching points, endpoints
of line segments, and ordinary point features.

The remainder of the paper is organized as follows: We describe the proposed concepts
of virtual intersection matching points and virtual maps in Section 2. Section 3 describes the
proposed virtual-real integrated VO algorithm. In Section 4, we describe the experimental
results. In Section 5, we discuss the proposed method. Finally, we conclude the paper in
Section 6.

2. LSVI Matching Points

We reprocess line segments, from the perspective of combination, in order to generate
a new kind of matching points, which we call virtual intersection matching points. As
they are based on line segments, we abbreviate them as LSVI matching points. As shown
in Figure 1a, in contrast to ordinary point features, the LSVI matching points can be
distributed in textureless regions.
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LSVI matching points
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Real map point
(b)

Ordinary point features

LSVI matching points

Line segments

Extended lines

Figure 1. (a) The distribution of the LSVI matching points and ordinary point features. The solid
lines represent the line segments, the dashed lines represent the corresponding extended lines. The
blue and green dots denote ordinary point features and LSVI matching points, respectively. (b) The
composition of the hybrid map built on the LSVI matching points and ordinary point features. The
blue and green triangles represent real and virtual 3D map points, respectively.

We first give the definition of LSVI matching points. Then, we explain how the virtual
map generated by the LSVI matching points participates in the estimation of camera poses.
Then, we geometrically prove that a pair of LSVI matching points is a correspondence pair,
and that there is a corresponding 3D point in space. Finally, we describe the significance of
introducing LSVI matching points.

2.1. Definition

As shown in Figure 2, for the current frame image and a reference keyframe image,
given two arbitrary pairs of unparallel matched line segments, the matched line segments
can produce a virtual point on each of the two images, which is the intersection of the
extending lines of the matched line segments. If both virtual points are in the image range,
after selection (including epipolar constraint verification and quantitative limitation), a
pair of LSVI matching points may be generated. Epipolar constraint [28] is a term in
multiview geometry that describes the constraint relationship of a pair of correspondence
in two images.

Correspondence

Line segments

Extended Lines

Current frameReference keyframe

Figure 2. Illustration of the LSVI matching points. The line segments and the corresponding
extended lines (shown in the same color) represent the matched line segments and the corresponding
extended lines. km(m = 1, 2, 3, 4) and bn(n = 1, 2, 3, 4) represent the slope and intercept of the line
lm(m = 1, 2, 3, 4), respectively. x and x′ represent a pair of correspondences.
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2.2. Virtual Map

We explain the virtual map and discuss the role of the virtual map in camera pose
estimation.

As shown in Figure 3, two unrelated lines La, Lb in space are projected onto the
reference image through the camera to produce two lines la1, lb1. From the knowledge of
multiview geometry [28], we can know when a line on an image is back-projected into
space, a plane determined by the camera center and the line on the image is obtained.
There exists a special line on the plane obtained from the back-projection of line la1; the
special meaning is that it also lies exactly on the plane obtained from the back-projection
of line lb1. In other words, it is an intersection line of the two planes, which is a virtual
line that does not exist in real space. Similarly, these two lines La, Lb in space can also be
used to obtain a virtual line through the process of projection onto the current image and
the back-projection into space. The two virtual lines intersect in space to obtain the virtual
3D point X. The whole process can be summarized as two unrelated lines in space being
used to produce a virtual 3D point through participation of the camera. The projections
of the virtual 3D point on two images is a pair of LSVI matching points. A large number
of virtual 3D points constitute a virtual map. The structure of virtual maps may be quite
different from that of the real world, because they are regenerated from line information,
which do not exist in the real world.

Reference image Current image

Reference image
Current image

Reference image Current image

Virtual map

Reference image Current image

(a)

(b)

(c)

(d)

Figure 3. Illustration of the relationship between the matched line segments and the virtual map.
The process of generating a virtual map consists of four stages. (a) Lines in space are projected onto
reference image and current image to get matched line segments. (b) Matched lines on image are back
projected into space to get two virtual intersection lines. (c) Two virtual intersection lines intersect in
space to get a virtual 3D point. (d) A large number of virtual 3D points constitute a virtual map.
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The essence of estimating the robot self-motion is to estimate the epipolar geometry
(the internal projective relationship between two views) between adjacent images continu-
ously. According to the knowledge in multiview geometry [28], the epipolar geometry is
irrelevant to the structure of the scene; it is determined by the motion of the camera itself.
We just use the scene structure to estimate the camera trajectory, whether the scene is a
mountain or a city street. From this perspective, we can also estimate the camera trajectory
with the help of the virtual map as the scene structure.

2.3. Demonstration

We give a short proof that, given two pairs of matched line segments on two images,
after epipolar constraint verification, a correspondence pair and a corresponding 3D point
in space can be determined.

Obviously, the intersection points of two pairs of matched lines can be regarded as
a correspondence pair, as the matching of line segments is unique and two (nonparallel)
lines on a plane must meet at one point. We mainly prove that there exists a 3D point
corresponding to them. We express the problem in mathematical form. First, each line
segment is extended into a straight line on the image plane, since the back projection of a
line on an image into space is a plane. In this way, the problem is transformed into whether
four planes—determined by four matching lines in two images—intersect in space, as
shown in Figure 4. If four planes intersect in space, we prove that there exists a unique 3D
point in space.

Figure 4. Illustration of the geometrical property of LSVI matching points. There are two pairs of
matched line segments on two images (represented by different colors) and four planes determined
by these four line segments in space (represented by different colors). X represents the 3D point
intersected by these four planes.

It should be pointed out that, in this proof, tensor notation is used, where the conven-
tion is consistent with that of [28]. We assume that a line on the image is represented by
a covariant vector li, and the condition that a image point x is on this line is lixi = 0. In
addition, its corresponding 3D point X j is projected onto the image, such that we can obtain
xi = ai

jX
j, where ai

j represents the camera projection matrix. Therefore, the condition that a

3D point X j is projected onto the image on the line li is

liai
jX

j = 0. (1)

Therefore, liai
j represents the plane consisting of all spatial points which can project onto

the image on the line li. In order to simplify the description, the four lines are expressed
as lp, l′q, l′′r , and l′′′s . Therefore, the corresponding four planes can be represented as lpap,
l′qaq, l′′r br and l′′′s bs, where p, q, r, and s respectively represent the row index, and the ith
row of the projection matrix is denoted as ai(i = p, q) and bi(i = r, s). In general, planes in
space do not intersect at the same point; the necessary and sufficient condition for them
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to intersect is that the determinant of the equation is zero. The corresponding equation is
as follows: 

lpap

l′qaq

l′′r br

l′′′s bs

X = 0. (2)

As the determinant is linear with respect to each row, the determinant A of the matrix in
the left of Equation (2) can be expressed as:

A = lpl′ql′′r l′′′s det


ap

aq

br

bs

. (3)

Then, we use B to denote the result of multiplying the determinant A times (εipqεipq)(ε jrsεirs).
As εipqεipq is a scalar value, we recombine it as:

B = (lpl′qεipq)(l′′r l′′′s ε jrs)ε
ipqεirsdet


ap

aq

br

bs

. (4)

As the expression (lpl′qεipq) is the cross product of the two lines lp and l′q–it is their inter-
section xi [28]—in the same way, the expression (l′′r l′′′s εjrs) is equal to the intersection x′j.
Therefore, Equation (4) can be expressed as:

B = xix′jεipqεirsdet


ap

aq

br

bs

. (5)

As the epipolar constraint is satisfied, the properties of the fundamental matrix can be used.
By means of a result about the fundamental matrix presented in [28], the determinant Fji of
the fundamental matrix can be represented as:

Fji = (1/4)εipqεirsdet


ap

aq

br

bs

. (6)

When Equation (6) is substituted into Equation (5), we obtain

B = 4xix′jFji. (7)

As one of the basic properties of the fundamental matrix is that its determinant is zero,
from the above derivation, we have

A = lpl′ql′′r l′′′s det


ap

aq

br

bs

 de f
= xix′jFji = 0. (8)

As the determinant A is zero, that the four planes determined by the four matching lines
on the two images intersect in space is proved. Therefore, given two pairs of matched line
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segments on two images, a 3D point can be determined in space. For the details of the
proof and tensor notation, refer to [28].

2.4. Significance of Introducing LSVI Matching Points

First, LSVI matching points cannot be affected by inconsistent line segment lengths.
In the process of line segment matching, two wrong line segments with different lengths
may be matched. The case is due to the occlusion or incomplete detection of a line segment,
as shown in Figure 5, although line segments in orange box are in the correct direction,
due to the incomplete detection of the line segments, the endpoint matching of these line
segments is wrong. However, the LSVI matching points are not affected by the inconsistent
line segment lengths, as the construction of LSVI matching points is determined by the
position and direction of the line, not by the length of the line segment.

Figure 5. Illustration of the incomplete detection of line segments. The short lines with cyan and red
color represent line segments in the two images.

Second, the generation of the LSVI matching points essentially involves the reprocess-
ing of line segment information, such that the processing result significantly increases the
number of features and makes the distribution of feature points more uniform. Figure 6a
shows the matched line segments in two images, and the LSVI matching points generated
from matched line segments are shown in Figure 6b. As shown in yellow rectangles in
Figure 6b, the LSVI matching points can be distributed in places where there would not
have been ordinary feature points, such as on lakes and asphalt pavement. We know that
Perspective-n-Point (PnP) [29] is a key step in vSLAM or VO algorithms, which is used
to solve the initial camera pose of the current frame. The accuracy of PnP depends on
the number of observations and their distribution in the image [29]. A large number of
2D–3D correspondences provide redundancy for estimation, while a uniform distribution
of points avoids bad-conditioned configuration [30]. For this reason, ref. [30] proposed
a score strategy, which aims to select those images with uniform distribution and more
observations to participate in the reconstruction. In ORB-SLAM2, in order to make the
extracted features more dispersed, the image is divided into root grids, in which features
are extracted. Then, using quadtree, each grid is divided into four parts each time; once
the node has only one key point or the number of key points has met the requirements,
the segmentation is stopped. Finally, the point with maximum Harris response in each
node is stored. Compared with using only the endpoints of line segments, the use of LSVI
matching points increases the number of features and makes the distribution of features
more uniform, which is beneficial for the PnP algorithm, such that a more accurate initial
camera pose estimate can be obtained.

Third, in vSLAM or VO algorithms, in order to obtain a more accurate camera pose
estimate, local optimization through bundle adjustment (BA) [31] is necessary. Obviously,
with the use of the virtual map, the amount of data is increased, which can lead to better
optimization results.
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Figure 6. Illustration of the distribution of the LSVI matching points. (a) Matched line segments. The
matched line segments are connected by red lines, and the matched line segments are represented by
yellow and cyan short lines, respectively. (b) LSVI matching points. The LSVI matching points are
represented by blue dots.

3. Virtual-Real Integrated VO Algorithm

The proposed virtual-real hybrid map based monocular VO algorithm is illustrated
in Figure 7. When processing a new frame, the point and line segment features are first
extracted and matched. According to the matched line segments, the LSVI matching points
are constructed. Then, according to the processed data, the initial motion estimation for
current frame pose and the decision of whether to insert a keyframe are performed. Once a
keyframe is inserted, the local mapping thread creates the hybrid map and performs local
optimization to obtain a better estimate. The VO algorithm follows the classic keyframe-
based vSLAM framework, including two threads, tracking and local mapping; however,
it does not include a loop closing thread. The key parts of the algorithm, including the
construction of the LSVI matching points and the management of frames and maps, are
described in detail as follows.

New Frame

LSVI matching Points 

Construction

Line Feature 

Extraction

Line Feature 

Matching
Triangulation

Local 

Optimization

Initial Motion 

Estimation

Insert Keyframe

Local hybrid map

Keyframe Database

Last Keyframe

Keyframe in window

Hybrid map

LSVI matching Points

Endpoints of the line segment

Ordinary point features

Point Feature Extraction 

and Matching Ordinary 

point features

LSVI matching 

points

Endpoints of the 

line segment Hybrid features

Figure 7. Framework of the proposed virtual-real hybrid map based monocular VO algorithm. The algorithm includes two threads:
tracking and local mapping. The black arrows denote the connection of steps and the gray dashed lines denote the data transfer in
different steps.
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3.1. LSVI Matching Points Construction

The construction of the LSVI matching points is based on the processing of line
segments. The main steps are shown in Figure 8. To extract line segments, the Line
Segment Detector (LSD) [32] was employed, which is fast and provides high precision.
Before feature matching, we use the Line Band Descriptor (LBD) method [33] as the binary
descriptor to augment line segments. Then, we match the line segment features detected in
two images. After line segment matching, geometric filtering is required, in order to get
rid of mismatches. As a line segment has two endpoints, we perform double geometric
filtering. For matched line segments, the two endpoints of a line segment are respectively
stored in two independent endpoint sets. Then, we perform geometric validation by
constructing a fundamental matrix for the two endpoint sets. For each pair of matched line
segments in the two images, if both endpoints pass their respective geometric verification,
this pair of matched line segments is retained.

Initial construction

Quantitative limitation

Geometry filtering

LSVI matching points construction

Matched Line segments LSVI matching points

Figure 8. A flowchart of constructing LSVI matching points. The input of the algorithm module is
the matched line segments, and the output is the LSVI matching points.

The construction of the LSVI matching points includes two steps: initial construc-
tion and subsequent selection. In the initial construction, line segments in the reference
keyframe are divided into Ng groups (e.g., 36 groups), according to their directions. Line
segments are assigned by direction, some groups may have multiple line segments, while
other groups may not have any line segments. We randomly take two nonparallel line
segments from different groups and extend them into straight lines according to the im-
age coordinates of their endpoints. Lines are expressed in slope–intercept form, and an
intersection point is calculated by solving the equations of the two lines jointly, as shown
in Figure 2. If the coordinate of the intersection point is in the image range, it is valid and
will be retained. In the same way, using two line segments of corresponding index in the
current frame, the coordinate of an intersection point are calculated. If it is valid, a pair
of initial LSVI matching points is obtained. The initial construction of the LSVI matching
points is completed after traversing line segments in all groups.

The selection step includes two parts: In the first part, we limit the number of matching
points. In the second part, we perform geometric verification using the fundamental matrix.
Given N line segments, in the extreme case, at most N ∗ (N − 1)/2 LSVI matching points
will be generated. In fact, the number of LSVI matching points cannot be as large as
N ∗ (N − 1)/2, as line segments from the same group cannot produce LSVI matching
points, and a pair of LSVI matching points is regarded as valid only if both of them are
located in the image area of two frames, respectively. However, sometimes, the number
of LSVI matching points may still be large. A larger number of map points is beneficial
to the robustness of the algorithm, but the construction of a large number of map points
will restrict the efficiency of the algorithm. Our purpose is to introduce virtual map points
to enhance the stability of the algorithm; however, on the other hand, the algorithm
efficiency should not be reduced significantly due to constructing too many map points.
Therefore, to limit the number of LSVI matching points, we need to select from the initial
sets. Inspired by ORB-SLAM2, we divide the reference image into M grids and allocate
the LSVI matching points into corresponding grids, according to their coordinates. If the
number of points in a grid is less than Ngrid, the LSVI matching points in this grid are all
preserved. If there are more than Ngrid points in a grid, the points are sorted according to
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the response values of line segments constituting these LSVI matching points. At most,
4 ∗ Ngrid points with larger response values are reserved. In the second part of the selection,
a fundamental matrix is first constructed between reference keyframe and current frame
using the endpoints of the matched line segments and ordinary point features. Then,
geometric verification is performed to select the LSVI matching points conforming to the
epipolar constraint.

3.2. Hybrid Map

Three types of points are used: LSVI matching points, endpoints of line segments,
and ordinary point features. We use SiftGPU [34], a Graphics Processing Unit (GPU)
implementation of the Scale-invariant Feature Transform (SIFT) as the ordinary point
feature. We use the Direct Linear Transformation (DLT) algorithm [28] for triangulation, to
build the virtual-real integrated hybrid map.

In order to obtain an accurate estimate, local BA is used to optimize the poses in
a local window of covisible keyframes and points in the hybrid map. The optimization
problem is solved as:

min
Ri ,ti ,X

j
(.)

∑
i∈κ

∑
j∈χ

ρ ‖ xij
(.) − π(RiX

j
(.) + ti) ‖, (9)

where κ represents a group of keyframes; χ represents the local hybrid map; xij
(.) represents

the observation, either an LSVI matching point, an endpoint of the line segment, or an
ordinary feature point; Xj

(.) represents a corresponding hybrid 3D map point, either a real
map point or a virtual map point; Ri and ti are the rotation matrix and translation vector
of the ith frame, respectively; ρ is the robust Huber cost function; and π is the projection
function, defined as follows:

π

X
Y
Z

 =

 fx
X
Z + cx

fy
Y
Z + cy

, (10)

where fx, fy are focal lengths and (cx, cy) is the principal point, all of which are known

from calibration. In optimization, the hybrid 3D map point Xj
(.), rotation matrix Ri and

translation vector ti are the variables to be optimized. To solve the optimization defined in
Equation (9), we use the Levenberg–Marquardt algorithm [35], implemented in g2o [36], as
the solver.

3.3. Frame Management

Up to Nk f keyframes are kept in a window. Each new frame is initially tracked with
respect to a reference keyframe. According to two criteria, the current frame is either
discarded or used to create a new keyframe. First, a new keyframe needs to be created
when the field of view has changed significantly. We measure the shift of the endpoints of
matched line segments by

dist =
1
n
(

n

∑
i=1
‖ p− p′) ‖2)

1
2 , (11)

where n represents the number of endpoints of matched line segments. If dist is more than
0.2× h pixels (h is the height of the image), a new keyframe is created. Second, another key
factor is the number of matched points. If the number of matched ordinary feature points
or LSVI matching points is less than threshold (e.g., 500) a new keyframe is created.
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4. Results

To evaluate the performance of the proposed virtual-real integrated monocular VO
algorithm, we conducted extensive experiments, including qualitative and quantitative
experiments. First, we performed a qualitative evaluation to verify the robustness of the
proposed method in various low-texture environments using aerial data collected by a
DJI Phantom 4. Then, quantitative experiments were carried out to further evaluate the
performance of the proposed method using image sequences of simulated environments.
The evaluations were carried out on a PC with an Intel Core i7 CPU with 2.8 GHz, 8 GB of
RAM and a NVIDIA GeForce GTX 1060 GPU with 6 GB of VRAM.

4.1. Qualitative Evaluation

We conducted qualitative experiments to validate the robustness of the proposed
algorithm in different real low-texture outdoor scenes. Although we cannot get the ground
truth of the UAV flight, since we manually controlled the drone to follow a preset flight
path, we can know the approximate trajectory of the drone and how long the trajectory
is. By analyzing the integrity of the estimated trajectory, the robustness of the different
algorithms can be compared. We compared our method against DSO [10] and ORB-
SLAM3 [17], which is the representative of direct and feature-based methods, respectively.
We used a DJI Phantom 4 to capture aerial videos inside and outside the campus. Before
the experiments, we calibrate the camera intrinsic parameters using a calibration tool,
Toolbox_calib of Matlab, and then distortion correction is performed according to the
distortion parameters calibrated in advance. The scenes included a stone corridor, a
campus garden, a campus square, and two suburban roads in different seasons. In the
first column of Figure 9, we show a panorama of each scene. A representative aerial video
frame is shown at the bottom right of each panorama, and the approximate location where
image was captured is marked on the panorama. Due to the influence of manual control
and wind force, there was a continuous certain vibration during the flight. In addition,
restricted by the sight distance, there was some deviation when flying far away.

The first row of Figure 9 displays a flight track over a stair-stepping stone corridor
which was 56 m long and descended 4 m. The UAV moved at 6 m above the highest flat
ground and captured a video with resolution of 1280 × 720. The main content of the image
was the stone ladder, and a few plants were captured when flying to the bottom of the
stone ladder. The comparison results are shown in the right of the first row of Figure 9.
Our method could estimate the complete trajectory. In contrast, DSO could not estimate
the trajectory because the direct method represented by DSO requires harsh conditions,
with small motion and constant illumination. However, the actual data do not meet these
conditions. On the one hand, this data set exhibited the significant change in illumination;
on the other hand, outdoor drones cannot fly as slowly as robots move indoors, which
cause serious challenges to direct methods such as DSO. Due to the insufficient features,
ORB-SLAM3 could not perform successful initialization immediately. Initialization refers
to the establishment of a reliable initial map from sufficient features and then the start
of trajectory estimation. Due to the delay in initialization, the trajectory estimated by
ORB-SLAM3 was incomplete, (i.e., the first 12.5% of the sequence was missing). However,
our method could perform initialization successfully and rapidly on this data set, since the
upper limit of the number of LSVI matching points is very large. In the initialization stage,
we temporarily ignored the problem of efficiency and no limit was placed on the number
of LSVI matching points; that is, as long as a pair of LSVI matching points was within the
image range and conformed to the epipolar constraint, it was considered valid.

As shown in the second row of Figure 9, the drone flew over a campus garden along a
9-shaped path. The content of this scene was relatively rich. In addition to stone materials,
there were some green plants. The drone flew 10 m above the ground and captured a
video with resolution of 1280 × 720. Our method estimated the complete trajectory and the
trajectory looked very smooth, with small fluctuations and an even interval. Although DSO
generated part of the trajectory, it was obviously wrong. Again, ORB-SLAM3 could not
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perform initialization immediately and, thus, an incomplete trajectory is obtained, which
looked like a rectangle instead of a 9-shaped path (i.e., the first 23.4% of the sequence
was missing).
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Figure 9. Qualitative comparison experiments of real outdoor scenes. For the results of our method, the yellow dots
represent the UAV 3D positions, the green square represents the current pose of the UAV and the “zoom-in” views are
shown in the red boxes. For the results of ORB-SLAM3, the blue camera shape pattern represents the pose of the keyframe.
For the results of DSO, the green line represents the trajectory and the blue camera shape pattern represents the pose of
the keyframe.

From the third row of Figure 9, it can be seen that the drone flew over a campus
square along a spiral square polyline path. The drone flew 10 m above the ground and
captured a video with resolution of 1280 × 720. The content of this scene is very simple,
only comprised of stone floor bricks with no patterns; thus, this scene was extremely
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challenging and both DSO and ORB-SLAM3 could not estimate the trajectory. The reason
of failure is that ORB-SLAM3 could not perform initialization successfully. In contrast, our
method obtained a complete trajectory.

As shown in the fourth row of Figure 9, the drone made a roundtrip flight along a
suburban road outside the campus. In other words, the drone first moved east along the
road, then turned back and moved west. In the process of UAV round-trip movement, a
part of tracks did not overlap, which was caused by manual control and wind influence. It
should be noted that the actual track was longer than that shown in the panorama. The
UAV captured a video with resolution of 1920 × 1080. Although the main content of image
was asphalt pavement, there was continuous vegetation along both sides of the road and
the feature distribution on the vegetation was much denser than on the asphalt pavement.
In addition, vehicles sometimes passed on the road, making it a dynamic environment,
which further increased the difficulty. ORB-SLAM3 only estimated a fraction of the
trajectory for a section of the road with relatively rich feature points; however, for the
low-texture fraction of the road, ORB-SLAM3 cannot estimate the trajectory, the reason for
which was the initialization delay and lost tracking. Lost tracking refers to the failure of
camera pose estimation due to the insufficient feature points in some frames, which makes
VO algorithm unable to continue. Therefore, due to the two reasons, for ORB-SLAM3, in
total, 55% of the sequence was missing. DSO could not estimate the trajectory. In contrast,
our method estimated a complete trajectory.

The fifth row of Figure 9 displays another roundtrip flight along a suburban road
outside the campus in winter. It should be noted that the actual flight track was longer
than the road section shown in the panorama. Compared with the previous group of
experiments, the trees and other vegetation on both sides of the road became withered in
winter, such that the features on the vegetation became more rare. In addition, the drone
flew over a large artificial construction area, such as a large parking lot. Thus, this scene
was even more challenging. Due to the lost tracking and initialization delay, ORB-SLAM3
only estimated a part of the trajectory, missing 93% of the sequence. DSO still could not
estimate a trajectory. In contrast, our method estimated a complete trajectory.

From the qualitative evaluation, we can see that the proposed method has good
robustness in different real outdoor low-texture scenes.

4.2. Quantitative Evaluation

We also conducted quantitative evaluations. Due to a lack of ground truth in the
aerial videos collected by the DJI Phantom 4, we used Airsim [37], combined with Unreal
Engine, to obtain aerial images with ground truth in various simulation scenes. Airsim is a
simulator for drones or vehicles built on Unreal Engine. With this tool, we can simulate
the flight of a drone and collect data, including RGB images and GPS values, from Unreal
Engine. For the experiment, we adopted various environments, including a modern city, a
remote industrial city, and a castle town, as shown in Figure 10.

In the simulation experiments, there were four image sequences and the resolution
of images was 640 × 480. For the castle street scene, two image sequences were collected:
Downward-looking and forward-looking. For the modern city and remote industrial
city scenes, downward-looking sequences were collected. To make the experiment more
challenging, the selected scenes were man-made scenes based on stone materials and the
drone moved at a low height; thus, most of the content in downward-looking images was
roads, as shown in Figure 10. In order to generate the plots for quantitative evaluation,
we used the evo package [38]. Due to the unknown real scale, we adopt the alignment
mode of the evo tool to scale and align the trajectories of ORB-SLAM3, STVO-PL, and the
proposed method with the ground truth trajectories. STVO-PL is a representative point
and line combination VO method. As DSO could not estimate camera trajectories for these
image sequences, we could not plot them for comparison. Figure 11a shows a comparison
of the computed trajectories, compared to the ground truth. As shown in Figure 11a, for
the IndustrialCity-downward sequence, both STVO-PL and ORB-SLAM3 only estimated
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a part of the trajectory before the tracking was lost. The positions of lost tracking were
located in a low-texture road section, where the road was narrow and the roofs on both
sides were smooth, while a few facades of buildings were captured while the drone was
crossing this road section. As a point and line combination method, the estimated trajectory
of STVO-PL was a little longer than that of ORB-SLAM3. In addition, the trajectories
obtained by STVO-PL and ORB-SLAM3 showed frequent violent fluctuations. In fact,
the drone moved very smoothly in the simulation environment, such that there was no
fluctuation in the real trajectory. In contrast, our method showed robust performance and
obtained a complete and smooth trajectory. In addition, we use Figure 11b to show the
trajectories’ comparison on xyz three-axis. As shown in Figure 11b, the trajectory obtained
by the proposed method is closest to the ground truth on xyz three-axis, which shows
the good performance of the proposed method. Table 1 shows the absolute RMSE of the
different methods. The experimental results indicate that our method can obtain better
performances on most sequences, except CastleStreet-f sequence, which was composed
of forward-looking images. The content of the image in CastleStreet-f sequence was
the horizontal view captured by UAV flying in the street. The ordinary point features
distributed on the building facade were relatively rich. Therefore, ORB-SLAM3 can work
well in this sequence.

Drone

Low texture environmentCastle street

Remote industrial city

Modern city

...

...

...

Collected image sequence

Figure 10. Illustration of collecting images using Airsim. On the left, various scenes are displayed; in the middle, an
example of the drone crossing the scene is shown; and, on the right, an example of some collected image sequences is given.

Table 1. Comparison of RMSE (m) on simulation data set. ‘-d’ stands for downward and ‘-f’ stands
for forward, ‘x’ indicates no trajectory or too short trajectory using this method.

Methods IndustrialCity-d CastleStreet-d CastleStreet-f ModernCity-d

ORB-SLAM3 9.501 0.491 0.129 2.124
DSO x x x x

STVO-PL 13.90 1.787 0.662 4.517
Ours 5.186 0.467 0.199 1.384
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Figure 11. (a) Comparison of trajectories against ground truth on the IndustrialCity-downward
simulation sequence. (b) Comparison of trajectories on the IndustrialCity-downward simulation
sequence on xyz three-axis.

5. Discussion

We discuss the combination of ordinary point features and the LSVI matching points.
Our main reason for using ordinary point features is to ensure the stability of the

algorithm in environments with few lines. For scenes with few lines, although the line
segment features are few, the algorithm can still run stably due to the rich point features
present. For low-texture environments with rich lines, it is feasible to use only LSVI
matching points in the VO algorithm. We conducted experiments on outdoor simulation
data sets, in order to verify the VO algorithm performance using only LSVI matching
points. Figure 12 shows an example on the ModernCity-downward sequence. We can see
that the algorithm with only LSVI matching points obtained similar performance as the
algorithm using the combination of ordinary point features and LSVI matching points. The
performance of the algorithm with hybrid features was better, as the number of features was
more abundant and the distribution of features was more uniform. Since our algorithm
uses all kinds of features, the application is not limited; on the other hand, our algorithm
has the advantage of strong robustness in low-texture environment.



Sensors 2021, 21, 3394 17 of 20

(a) (b)

Figure 12. Quantitative comparisons of the algorithm with only LSVI matching points and the
algorithm with hybrid features against the ground truth in simulation experiments: (a) Trajec-
tory comparisons on ModernCity-downward sequence; and (b) Position error comparisons on
ModernCity-downward sequence.

We show the average timing results in Table 2 on the simulation data set. The average
processing time of each frame was 56.2 ms for an image with resolution of 640 × 480.
The average processing time of ORB-SLAM3 and STVO-PL was 33.1 ms and 47.8 ms,
respectively. The algorithm contains two parallel threads: tracking and local mapping.
Tracking is executed for every frame, but the local mapping thread does not work all
the time. When a new key frame is added, the local mapping thread will complete the
triangulation and BA operation. Although the time of mapping is 65.1 ms once, for the
total system, the average processing time is 56.2 ms. since we use two kinds of features,
line segment and ordinary point. Considering the efficiency, the two kinds of features
can be calculated synchronously and independently. However, since the calculation time
of line segment features (i.e., 39.1 ms and 2.84 ms) is longer than that of point features
(i.e., 25.0 ms and 1.00 ms), the time consumption of feature extraction and matching (i.e.,
39.1 ms and 2.84 ms) is basically equal to that of line segment features. Since line segment
processing is a time-consuming operation, although the stability of the system in the low-
texture environment is improved, after introducing line segment features, the efficiency
of the system will decline, which is a limitation of this paper. Note that our method is
independent of line feature detection and matching, so it is beyond the scope of this paper
to improve their efficiency.

Table 2. Timing results for each thread on the simulation data set.

Thread Operation Time (ms)

Tracking

Feature detection 39.1
Feature matching 2.84

LSVI matching points construction 3.98
Initial motion estimation 4.13

Total tracking 51.1

Local mapping

Triangulation 13.7
BA 51.4

Total mapping 65.1

Total mean 56.2
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6. Conclusions

Different from the traditional methods which only use the real map, generated by
ordinary point features to perform visual odometry estimation. In this paper, we defined a
concept of LSVI matching points and demonstrated that the virtual map constructed from
the LSVI matching points can be used to effectively estimate the camera pose. Based on
this idea, we proposed a novel virtual-real hybrid map based monocular visual odometry
algorithm. The camera pose estimation was solved through the hybrid 3D map, composed
of virtual map generated by LSVI matching points and real map generated by ordinary
point features. The proposed method can improve the stability of the VO algorithm under
low-texture environment. Extensive experiments were carried out to verify the effectiveness
and robustness of the algorithm. For future work, we plan to add a loop closure detection
thread to our current VO algorithm, in order to realize a complete virtual-real integrated
SLAM algorithm and, thus, eliminate the scale drift.
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Abbreviations
The following abbreviations are used in this manuscript:

VO Visual odometry algorithm
SLAM Simultaneous Localization and Mapping algorithm
UAV Unmanned aerial vehicle
LSVI Line segments based virtual intersection
GPU Graphics Processing Unit
SIFT Scale-invariant Feature Transform
DLT Direct Linear Transformation
PnP Perspective-n-Point
ORB Oriented FAST and Rotated BRIEF
BRISK Binary Robust Invariant Scalable Keypoints
EKF Extended Kalman filter
PTAM Parallel Tracking and Mapping
S-PTAM Stereo Parallel Tracking and Mapping

References
1. Martin, P.G.; Connor, D.T.; Estrada, N.; El-Turke, A.; Megson-Smith, D.; Jones, C.P.; Kreamer, D.K.; Scott, T.B. Radiological

Identification of Near-Surface Mineralogical Deposits Using Low-Altitude Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 3562.
[CrossRef]

2. Zhang, Y.; Han, W.; Niu, X.; Li, G. Maize Crop Coefficient Estimated from UAV-Measured Multispectral Vegetation Indices.
Sensors 2019, 19, 5250. [CrossRef] [PubMed]

3. Huang, W.; Jiang, S.; Jiang, W. A Model-Driven Method for Pylon Reconstruction from Oblique UAV Images. Sensors 2020,
20, 824. [CrossRef] [PubMed]

4. Liu, C.; Sziranyi, T. Real-Time Human Detection and Gesture Recognition for On-Board UAV Rescue. Sensors 2021, 21, 2180.
[CrossRef]

5. Yang, S.; Scherer, S.A.; Yi, X.; Zell, A. Multi-camera visual SLAM for autonomous navigation of micro aerial vehicles. Robot.
Auton. Syst. 2017, 93, 116–134. [CrossRef]

http://doi.org/10.3390/rs12213562
http://dx.doi.org/10.3390/s19235250
http://www.ncbi.nlm.nih.gov/pubmed/31795309
http://dx.doi.org/10.3390/s20030824
http://www.ncbi.nlm.nih.gov/pubmed/32033044
http://dx.doi.org/10.3390/s21062180
http://dx.doi.org/10.1016/j.robot.2017.03.018


Sensors 2021, 21, 3394 19 of 20

6. De la Escalera, A.; Izquierdo, E.; Martín, D.; Musleh, B.; García, F.; Armingol, J.M. Stereo visual odometry in urban environments
based on detecting ground features. Robot. Auton. Syst. 2016, 80, 1–10. [CrossRef]

7. Solin, A.; Cortes, S.; Rahtu, E.; Kannala, J. PIVO: Probabilistic Inertial-Visual Odometry for Occlusion-Robust Navigation.
In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, NV, USA, 12–15 March 2018;
pp. 616–625.

8. Tateno, K.; Tombari, F.; Navab, N. Large scale and long standing simultaneous reconstruction and segmentation. Comput. Vis.
Image Underst. 2017, 157, 138–150. [CrossRef]

9. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. In Proceedings of the European Conference
on Computer Vision, Zurich, Switzerland, 06–12 September 2014; pp. 834–849.

10. Engel, J.; Koltun, V.; Cremers, D. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 611–625. [CrossRef]
[PubMed]

11. Gao, X.; Wang, R.; Demmel, N.; Cremers, D. LDSO: Direct sparse odometry with loop closure. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 2198–2204.

12. Klein, G.; Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of the IEEE and ACM International
Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; pp. 225–234.

13. Pire, T.; Fischer, T.; Castro, G.; De Cristóforis, P.; Civera, J.; Berlles, J.J. S-PTAM: Stereo parallel tracking and mapping. Robot.
Auton. Syst. 2017, 93, 27–42. [CrossRef]

14. Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot.
2017, 33, 1255–1262. [CrossRef]

15. Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK: Binary robust invariant scalable keypoints. In Proceedings of the IEEE
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2548–2555.

16. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571.

17. Carlos, C.; Richard, E.; Juan, J.G.R.; José, M.M.M.; Juan, D.T. ORB-SLAM3: An Accurate Open-Source Library for Visual,
Visual-Inertial and Multi-Map SLAM. arXiv 2020, arXiv:2007.11898.

18. Pumarola, A.; Vakhitov, A.; Agudo, A.; Sanfeliu, A.; Moreno-Noguer, F. PL-SLAM: Real-time monocular visual SLAM with
points and lines. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June
2017; pp. 4503–4508.

19. Eade, E.; Drummond, T. Edge landmarks in monocular SLAM. Image Vis. Comput. 2009, 27, 588–596. [CrossRef]
20. Zhou, H.; Zou, D.; Pei, L.; Ying, R.; Liu, P.; Yu, W. StructSLAM: Visual SLAM with building structure lines. IEEE Trans. Veh.

Technol. 2015, 64, 1364–1375. [CrossRef]
21. Vakhitov, A.; Funke, J.; Moreno-Noguer, F. Accurate and linear time pose estimation from points and lines. In Proceedings of the

European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 583–599.
22. Gomez-Ojeda, R.; Gonzalez-Jimenez, J. Robust stereo visual odometry through a probabilistic combination of points and line

segments. In Proceedings of the IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May
2016; pp. 2521–2526.

23. Gomez-Ojeda, R.; Moreno, F.A.; Zuñiga-Noël, D.; Scaramuzza, D.; Gonzalez-Jimenez, J. PL-SLAM: A stereo SLAM system
through the combination of points and line segments. IEEE Trans. Robot. 2019, 35, 734–746. [CrossRef]

24. Yang, S.; Song, Y.; Kaess, M.; Scherer, S. Pop-up SLAM: Semantic Monocular Plane SLAM for Low-texture Environments. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Korea, 9–14 October 2016;
pp. 1222–1229.

25. Yang, S.; Maturana, D.; Scherer, S. Real-time 3D Scene Layout from a Single Image Using Convolutional Neural Networks.
In Proceedings of the IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016;
pp. 2183–2189.

26. Fu, Q.; Yu, H.; Lai, L.; Wang, J.; Peng, X.; Sun, W.; Sun, M. A Robust RGB-D SLAM System With Points and Lines for Low Texture
Indoor Environments. IEEE Sens. J. 2019, 19, 9908–9920. [CrossRef]

27. Fabian, S.; Friedrich, F. Combining Edge Images and Depth Maps for Robust Visual Odometry. In Proceedings of the British
Machine Vision Conference, London, UK, 4–7 September 2017; pp. 1–12.

28. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003.
29. Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2009, 81, 155–166.

[CrossRef]
30. Schönberger, J.L.; Frahm, J. Structure-from-Motion Revisited. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113.
31. Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment—A modern synthesis. In Proceedings of the

International Workshop on Vision Algorithms, Corfu, Greece, 21–22 September 1999; pp. 298–372.
32. Von Gioi, R.G.; Jakubowicz, J.; Morel, J.M.; Randall, G. LSD: A fast line segment detector with a false detection control. IEEE

Trans. Pattern Anal. Mach. Intell. 2008, 32, 722–732. [CrossRef] [PubMed]
33. Zhang, L.; Koch, R. An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric

consistency. J. Vis. Commun. Image Represent. 2013, 24, 794–805. [CrossRef]

http://dx.doi.org/10.1016/j.robot.2016.03.004
http://dx.doi.org/10.1016/j.cviu.2016.05.013
http://dx.doi.org/10.1109/TPAMI.2017.2658577
http://www.ncbi.nlm.nih.gov/pubmed/28422651
http://dx.doi.org/10.1016/j.robot.2017.03.019
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1016/j.imavis.2008.04.012
http://dx.doi.org/10.1109/TVT.2015.2388780
http://dx.doi.org/10.1109/TRO.2019.2899783
http://dx.doi.org/10.1109/JSEN.2019.2927405
http://dx.doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1109/TPAMI.2008.300
http://www.ncbi.nlm.nih.gov/pubmed/20224126
http://dx.doi.org/10.1016/j.jvcir.2013.05.006


Sensors 2021, 21, 3394 20 of 20

34. Wu, C. A GPU Implementation of Scale Invariant Feature Transform (SIFT). Available online: https://github.com/pitzer/SiftGPU
(accessed on 10 February 2021).

35. Nocedal, J.; Wright, S. Numerical Optimization, 2nd ed.; Springer: Berlin, Germany, 2006.
36. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. g2o: A general framework for graph optimization. In Proceed-

ings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3607–3613.
37. Shah, S.; Kapoor, A.; Dey, D.; Lovett, C. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. Field

Serv. Robot. 2017, 5, 621–635.
38. Grupp, M. evo: Python Package for the Evaluation of Odometry and SLAM. Available online: https://github.com/

MichaelGrupp/evo (accessed on 10 February 2021).

 https://github.com/pitzer/SiftGPU
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo

	Introduction
	LSVI Matching Points
	Definition 
	Virtual Map 
	Demonstration 
	Significance of Introducing LSVI Matching Points

	Virtual-Real Integrated VO Algorithm
	LSVI Matching Points Construction
	Hybrid Map
	Frame Management

	Results
	Qualitative Evaluation
	Quantitative Evaluation

	Discussion
	Conclusions
	References

