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Abstract: Breast cancer is a diverse disease caused by mutations in multiple genes accompanying
epigenetic aberrations of hazardous genes and protein pathways, which distress tumor-suppressor
genes and the expression of oncogenes. Alteration in any of the several physiological mechanisms
such as cell cycle checkpoints, DNA repair machinery, mitotic checkpoints, and telomere maintenance
results in genomic instability. Theranostic has the potential to foretell and estimate therapy response,
contributing a valuable opportunity to modify the ongoing treatments and has developed new
treatment strategies in a personalized manner. “Omics” technologies play a key role while studying
genomic instability in breast cancer, and broadly include various aspects of proteomics, genomics,
metabolomics, and tumor grading. Certain computational techniques have been designed to facili-
tate the early diagnosis of cancer and predict disease-specific therapies, which can produce many
effective results. Several diverse tools are used to investigate genomic instability and underlying
mechanisms. The current review aimed to explore the genomic landscape, tumor heterogeneity, and
possible mechanisms of genomic instability involved in initiating breast cancer. We also discuss the
implications of computational biology regarding mutational and pathway analyses, identification
of prognostic markers, and the development of strategies for precision medicine. We also review
different technologies required for the investigation of genomic instability in breast cancer cells,
including recent therapeutic and preventive advances in breast cancer.

Keywords: breast cancer; genomic instability; DNA repair pathways; PARP inhibitor

1. Introduction

Breast cancer occurs due to the abnormal functioning of genes controlling the growth
and differentiation of cells, which may be caused by any pathological processes or environ-
mental exposure [1]. The female population is 49.5% of the entire world’s population, out
of which a large portion is females that are more than 60 years of age. A total of 2.3 million
women were diagnosed with breast cancer by 2020, and 685,050 women will lose their lives
to the disease. There were 7.8 million women who had been diagnosed with breast cancer
in the past five years as of the end of 2020, making it the most common cancer in the world.
Breast cancer is the leading cause of disability-adjusted life years (DALYs) lost in women
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worldwide. Breast cancer affects women of all ages after puberty; however, the incidence
rises with age [2,3]. In the United States, approximately 160,000 patients suffered from
advanced breast cancer [4]. Despite the fact that developed countries have the greatest
incidence rates, Asia and Africa accounted for 63% of all deaths in 2020 [5]. Women in
high-income nations are more likely to survive breast cancer than those in low- and middle-
income countries [6]. Any genomic aberration may selectively deliberate the clones of
cells via promoting their outgrowth, ultimately governing their native tissue environment.
Moreover, some additional factors such as surrounding stroma, the metabolic and hormonal
milieu, and the immune system play a significant role in directing clones’ behavior. The
hallmark of cancer includes the acquired functional capabilities of cancer cells that promote
their survival, proliferation, and dissemination, which favors tumor growth and metastatic
process [7]. The breast cancer etiology and signaling cascades involved in its proliferation
are the main emerging research areas during the past decades. Germline BRCA testing is
performed as diagnostic in metastatic breast cancer patients, given the availability of PARP
(poly ADP-ribose polymerase) inhibitors [8–10]. The inherited breast cancer risk is, to a
lesser degree, associated with several syndromes interrelated to germline mutations of DNA
repair and genomic integrity-maintaining genes. ATM, PALB2, CHEK2, PTEN, TP53, and
STK11 are a new panel of genes discovered via next-generation sequencing beyond BRCA1
and BRCA2 to assess inherited breast cancer [11]. The proposed mechanisms include the
change in mammary gland sensitivity to later exposure of hormones, the amount of stem
cells or progenitor cell reduction that consequently causes the elimination of the target for
malignant transformation, and altered gene expression patterns that lead to a reduction
in cell proliferation and increased differentiation [12–14]. Some other breast cancer risk
factors include lack of breastfeeding, early menarche, and late onset of menopause. Many
studies have reported that modified risk factors such as obesity, alcohol consumption, and
physical inability contribute to approximately 20% of global breast cancer incidence, and
may offer the potential for reduction in the burden of disease through promoting a healthy
lifestyle [15]. The rising issues after the treatment of cancer include sexual dysfunction, loss
of strength, bone health, and physical and mental health [16–18]. Breast cancer is mostly ep-
ithelial in origin. However, it can be further subdivided into different subtypes depending
on its biological behavior and its microscopic appearance, as displayed in Table 1.

Table 1. Breast cancer types [19].

Breast Cancer Type Incidence Features Prognosis

Infiltrating ductal
carcinoma 70%−80%

â Presence of ductal
carcinoma in situ

â Characteristics of a cell vary
â Solid tumor
â The appearance is

speculated and irregular

â Grade- and stage-dependent

Infiltrating lobular
carcinoma 15%

â Solid tumor in texture
â The appearance of cells in a

single pattern order
â Estrogen receptor (positive)

while human epidermal
receptor 2 (negative)

â Similar prognosis to IDC
â Metastasis differs from IDC
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Table 1. Cont.

Breast Cancer Type Incidence Features Prognosis

Tubular carcinoma 1–5%

â Estrogen receptor (negative)
while human epidermal
receptor 2 (positive)

â Small and tubelike
structure formation

â Not palpable

â Better prognosis than
infiltrating ductal carcinoma

â Rarely lymph node
metastasis

Invasive papillary
carcinoma Less than 1%

â Soft tumor texture
â Have fingerlike projections

â Prevalent in
postmenopausal women

â Good prognosis

Colloidal carcinoma Less than 1%

â Nonpalpable tumor
â Cells surrounded by

excess mucin
â Soft tumor texture

â Lymph node involvement
â Low occurrence in

young age
â Good prognosis

Medullary carcinoma Less than 1%
â Soft tumor texture
â Sheetlike cells
â Triple-negative tumors

â Frequent in young women
â BRCA1 mutation carriers

Mammography is currently the most frequently used modality for the diagnosis
of asymptomatic and at-risk breast cancer women at the age of 40. In conjugation with
mammography, ultrasound is used for further assessment of suspicious lesions found and in
patients with greater-density breast tissue. In addition, magnetic resonance imaging (MRI)
is commonly used for high-risk patient screening [20]. On clinical breast cancer suspicion
via breast mass palpation or abnormal mammogram, there is suitable investigative testing
such as an image-guided biopsy, assessment of its staging, and appropriate therapy for
targeting the malignant lesion [21]. Patients are classified into a subsequent Breast Imaging
Reporting and Data System (BI-RADS) category that ranges from category 0 to 6, depending
on the characteristics present on the mammogram, with 0 referring to an incomplete study
that requires further imaging for evaluation, while category 6 represents biopsy-confirmed
malignancy. Tomosynthesis, gamma imaging, and contrast-enhanced imaging are some
emerging technologies that report increased cancer detection rates in conjunction with
mammography. In these, tomosynthesis is the most likely candidate for future screening of
breast cancer [22]. After malignant diagnosis, appropriate recommendations are made by
surgical and medical oncologists, particularly breast malignancies specialists.

2. Methodology

This current review included the recent advances in the research of genomic instability
in breast cancer to provide precise and comprehensive information on several aspects. All
required information were in English and have been collected through electronic search of
different sources including PubMed, ScienceDirect, SciELO, Google Scholar, and Web of
Science. The selected articles’ reference lists were also checked to find relevant data. Titles
and abstracts were screen independently to determine the eligibility of the study. Therefore,
articles that were linked to incidence and recurrence of breast cancer, breast metastasis,
mechanism of genomic instability in breast cancer, detection approaches, computational
approaches, theranostic implications, DNA repair pathways, and PARP inhibitors were
included. The study database encompassed peer-reviewed journal articles, books, theses,
and review articles covering all aspects of genomic instability and breast cancer. Duplicate
articles were identified with EndNote and excluded. WHO-, FDA- and CDC-related data
were also included.
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3. Breast Cancer Metastasis

Breast cancer tends to spread to the bone, brain, liver, lungs, and distant lymph nodes,
in addition to recurrence in the local area [23]. Seventy percent of patients with metastatic
breast cancer had bone metastases, the most prevalent type of distant metastasis [24]. It is
estimated that 30% of metastases are found in the liver, while the brain is the third most
common site (10–30%) of metastasis [25]. Overall survival and organ metastasis tendencies
for breast cancer subtypes are notably different. The Surveillance, Epidemiology, and End
Results Program conducted a study on the association between breast cancer subtypes and
distant metastatic sites [26] There is a strong correlation between bone metastasis risk and
the HR+/HER2+ (luminalHER2) subtypes, according to these findings. The HR/HER2+
(HER2-enriched) subtype is more likely than the HR+/HER2 (luminal A and luminal B)
subtype to metastasize to the brain. Additionally, the HER2-enriched subtype has a higher
rate of liver metastases than the other HER2 subtypes. Patients with TN breast cancer are
most frequently found to have pulmonary metastases. A multivariate analysis comparing
different subtypes revealed that luminalHER2 and HER2-enriched subtypes had a much
greater rate of brain, liver, and lung metastases than luminal A HER2-negative subtypes.
Both basal-like and other TN subtypes are associated with a high risk of brain, lung, and dis-
tant lymph node metastases. The basal-like subtype, on the other hand, is associated with a
low incidence of liver and bone metastases [27] Cancer cells accrue genetic mutations dur-
ing tumor development and progression, which can result in the alteration of critical genes
and pathways. A recent large-scale genomic evolution study of patients with breast cancer
metastasis and local relapse revealed that metastases had a higher mutation burden than
primary tumors, including inactivation of the SWItch/sucrose nonfermentable and Janus
kinase 2-signal transducer and activator of transcription 3 (JAK2-STAT3) pathways [23].
According to another study, Notch pathway gene mutations/chromosomal inversions,
fragile histidine triad gene mutations/rearrangements, and other shared changes in genes
influence the immune response to metastatic cells [28]. As a result, organ-specific metas-
tases from various primary cancer types may share genetic abnormalities to adapt to the
same distant immune and host metabolic milieu. By comparing tumor cells in the primary
site to distant lesions in the organ of interest in breast cancer animal models, tissue-specific
gene signatures and signaling pathways have been found [29].

4. Genomic Instability and Its Consequences in Developing Breast Cancer

Genomic instability is a hallmark of breast cancer because it develops several etiologies
for this heterogeneous disease, and brings up an increased tendency to alter the genome [30].
Any alteration in several mechanisms such as cell cycle checkpoints, DNA repair machinery,
mitotic checkpoints, or telomere maintenance results in genomic instability, as they are
known to protect the integrity of the human genome [31].

Genomic instability is the most significant feature that empowers the functional
competencies of cancerous cells for their survival, proliferation, and spread through several
mechanisms at different times throughout tumorigenesis due to its ability to generate
accidental transmutations and chromosomal reorganization. In some cases, functional loss
of tumor-suppressor genes occurs as a result of accumulated errors induced by a deficient
DNA repair system; while in other cases, it may lead to the stimulation of oncogene
function and finally, promote cancer growth and development [32]. The proliferative
capacity of tumor cells is sustained by various mechanisms, including the acquired ability
of cancer cells to produce growth factors that can trigger self-proliferation in an autocrine
manner, or by activating the surrounding normal stromal cell to produce growth factors
in a paracrine manner [33]. Moreover, cancer cell proliferates by the downregulation
of membrane-receptor-mediated signals, either by increasing the surface expression of
membrane receptor or by the structural alteration of proteins that are responsible for
ligand-independent activation of signaling pathways [32]. In breast cancer, a clear example
of pathway inhibition is the human epidermal receptor (HER) pathway [34]. Human
epidermal growth factor receptor 1 (EGFR/HER1), human epidermal growth factor receptor
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2 (ErbB2/HER2), human epidermal growth factor receptor 3 (ErbB3/HER3), and human
epidermal growth factor receptor 4 (ErbB4/HER4) are four members of the HER family,
and the expressions of HER1 (30–40%), HER2 (20–30%), and HER3 (20%) are increased
in the case of breast cancer instead of HER4 [35]. In breast cancer, the HER2 pathway
is deregulated, and results in cellular functioning by several signaling pathways. The
functional activation of the intracellular tyrosine kinase domain of HER2 occurs after the
homo- or heterodimerization of the receptor, and leads to the activation of three major
signaling cascades, Ras/Raf/MAPK, JAK/Stat, and PI3K/AKT/mTOR, which ultimately
leads to cell proliferation, survival, division, apoptosis, migration, and metabolism [32].

The pathogenesis of breast cancer is associated with several molecular changes. Raised
proliferative activity of a cell results in malignant transformation, and subsequently the
accumulation of DNA replication errors accompanying an increased duplication rate of
DNA [36]. Nevertheless, in response to several genotoxic events, the cell holds a mechanism
to conserve the integrity of the genome. Under a genotoxic condition, the information from
a DNA damage lesion is not transmitted by checkpoints to cell cycle regulators because the
cell does not progress through the cell cycle [37]. Downregulation or mutation in genes such
as ataxia-telangiectasia mutated (ATM), which are responsible for marking DNA damage
as less severe, has been associated with the development of breast cancer [38,39]. The ATM
protein belongs to a family of protein kinases containing three catalytic domains, ATM, ATR,
and PI3K, also key components of the DNA damage response signaling cascade, which
is encoded by the ATM gene to maintain the integrity of the genome inside the cell. To
establish an association between DNA damage, progression of the cell cycle, and apoptosis,
ATM primarily senses double-stranded DNA breaks and then phosphorylates and activates
several proteins of downstream signaling pathways, including DNA damage repair, cell
cycle arrest, and cell death [40]. In all nucleated cells, a normal physiological mechanism
such as DNA repair is indispensable to maintain genomic integrity. A multifaceted, highly
integrated, sensitive, and interconnected DNA damage response mechanism has developed,
and appears to stimulate various cellular responses including DNA damage, cell cycle
arrest, and cell death. The ATM protein, central to DDR, is a protein kinase that initiates
the signaling pathway in response to double-stranded DNA damage [41]. ATM acts as
a damaged sensor and a potential therapeutic target for cancer treatment. Additionally,
ATM also participates in the normal processes in the cell such as metabolic regulation,
transcriptional modulation, cell proliferation, oxidative stress, and degradation of proteins.
ATM is expressed as nuclear serine/threonine protein kinase. In response to DNA damage,
ATM is activated and phosphorylates several proteins, including p53, CHK1, CHK2, and
BRCA1, which are important for DNA repair [42]. DNA damage activates the CHK1 protein
which is the first line of defense against DNA damage. CHK1 arrests the cell cycle at the
G1 phase by promptly modifying the CDC25 level and by altering kinase activity of cyclins
at the S and G2 phases. The best-known modulator of CHK1 activity is a tumor suppressor
named PTEN. Previous studies have also demonstrated that the PI-3K/AKT signaling
pathway may regulate the phosphorylation of CHK1- and PTEN-deficient cells showing
elevated phosphorylation of CHK1. In response to DNA damage, serine phosphorylation
of CHK1 decreased the ability of the protein to be phosphorylated at another residue. As a
consequence of lower CHK1 activity, PTEN-deficient cells are not able to regulate the level
of CDC25, as well as cell cycle arrest [43]. Previous studies have reported that CHK1 is most
commonly localized in nuclear compartments, while mutant CHK1 might be primarily
seen in the cell cytoplasm. In addition, nuclear CHK1 could be seen departing from the
nucleus toward the cytoplasm at the G2 phase of the cell cycle, and resulted in reduced
CHK1 in the nucleus, which may elucidate the increased level of cdc25 at the G2 phase of
the cell cycle. Further studies suggested that due to PTEN deficiency, reduced functional
activity of CHK1 leads to a checkpoint defect at the G2 phase [44]. Lack of PTEN directly
increases the kinase activity of AKT, which in turn stimulates CHK1 phosphorylation. After
phosphorylation, CHK1 undergoes post-translational modification by the addition of the
ubiquitin protein, which may inhibit CHK1 entry into the nucleus. In the cytoplasm, the
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sequestering checkpoint protein CHK1 spoils its normal function in DNA repair checkpoint
initiation. Apart from checkpoint impairment at the G2 phase in PTEN-deficient cells,
there will be an accumulation of DNA double-strand breaks due to the inactivation of the
CHK1 [45].

Analysis of the checkpoint protein CHK1 in breast cancer cells specifies a raised level
of CHK1 in the cytoplasm, along with deficiency of PTEN and increased phosphoryla-
tion of AKT. These observations propose that a lack of PTEN may induce defects in the
normal functioning of the checkpoint protein, which triggers the signaling process of onco-
genes. Decreased activity of CHK1 is highly associated with an increased risk of genomic
instability and breast cancer. Additionally, AKT activation inhibits the key inhibitors,
including p21, p27, and cdc25 of cyclins, which are responsible for arresting the cell cycle
in response to checkpoint activation. Furthermore, AKT may induce MDM2 phospho-
rylation and activation to trigger the destruction of p53 [46,47]. Increased expression of
CDC25A is the major substrate of checkpoint protein CHK1 has been seen in breast cancer.
CDC25 overexpression may trigger the activation of the cyclin E/cdk2 complex, which
may induce unscheduled replication origin firing, as well as initiation of chromosomal
instability [48,49]. In response to the genotoxic-stress tumor suppressor, p53 stimulates
various cellular DNA repair pathways responsible for preventing cell proliferation and
inducing apoptosis [42]. Additionally, p53 is also responsible for transcriptional regulation
of genes encoding different proteins involved in apoptosis and DNA repair. As a result
of mutation or deletion, p53 declines its normal function and appears to play a critical
role in the progression of breast cancer [50,51]. BRCA1 participates in the regulation of
various genes’ expressions, which is associated with an increased risk of breast cancer.
Cell-proliferation control, genome-integrity maintenance by recombination processes, and
DNA repair are regulated by BRCA1 [52]. So, the mutation in BRCA1 also plays a causative
role in the etiopathogenesis of breast cancer [53]. The genetic defect in genes that causes the
response to DNA damage and DNA repair mechanism downregulation leads to genomic
instability, which promotes breast cancer growth and development [54].

Multiple changes in the genome such as amplification, deletion, and formation of
translocation lead to heritable genomic instability in the cell or significant DNA damage,
which ultimately results in malignancy [55]. The most lethal form of DNA damage is the
double-strand break (DSB), which can be repaired by different repair pathways, including
HR and NHEJ. DNA broken ends are joined by the NHEJ repair pathway without the
identification of DNA sequence homology, and consequently, this pathway is extremely
disposed to errors that occur during the cell cycle. The HR repair pathway is comparatively
error-free because it depends on DNA sequence homology, and it prevails in the S and G2
phases of the cell cycle [56,57]. Covalently joined, inappropriate dicentric chromosomes
may be caused by errors in the NHEJ repair pathway. During anaphase, these dicentric
chromosomes may break, and through further NHEJ repair, leads to the formation of a new
dicentric chromosome [58]. This whole process of dicentric chromosome formation is called
the breakage fusion bridge cycle (BFB) and plays a critical role in causing genomic instability
related to telomeres [59] (Figure 1). In many cancers, especially breast cancer, BFB may be
responsible for causing genomic instability, because BFB cycles are self-propagating [60].
The HR repair pathway includes products of numerous genes, many of which are involved
in stalled replication fork repair [57]. The tumor suppressors BRCA1 and BRCA2 play
very vital roles in maintaining genomic stability, as they are the key players in the HR
repair pathway. Linkage studies in families with breast cancer at an early age suggest
that mutation in BRCA1 and BRCA2 is linked to breast cancer predisposition [60]. In one
meta-analysis, breast cancer risk for mutation in BRCA1 and BRCA2 was 57% and 49%
respectively [61]. Additionally, the hereditary mutation in BRCA1 and BRCA2 is associated
with prostate, pancreatic, and colon cancer [62]. Moreover, BRCA1 and BRCA2 germline
mutations are linked to different breast cancer subtypes; for example, cancer associated
with BRCA1 is of the more aggressive triple-negative breast cancer subtype, whereas
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BRCA2-associated cancer is mostly related to the hormone-receptor-positive subtype of
breast cancer [60].
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Figure 1. Schematic representation of genomic instability in breast cancer. In humans, inherited mu-
tations in ATM, P53, CHK1, CHK2, and BRCA1/BRCA2 genes, which are DNA damage checkpoints,
are associated with predisposition to malignancy. Primarily, the exact etiology of breast cancer is
not clear, but various estimated factors, including heritable, endogenous, and exogenous, may cause
DNA damage. Initiation of checkpoint response requires ATM or ATR kinase, depending upon the
type of DNA damage. In response to DNA damage, ATM or ATR phosphorylate different substrates
such as BRCA1, P53, CHK1, and CHK2. The caretaker tumor-suppressor genes BRCA1 and BRCA2
maintain the integrity of the genome by fixing errors mainly related to DNA double-strand breaks
and replication forks. Breast cancer cells cannot repair the DNA strand breaks due to mutations in
BRCA1 or BRCA2, which may result in accumulation of mutations that are responsible for triggering
proliferation and metastasis. On the other hand, in response to DNA damage, BRCA1-mutated cells
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have a defective checkpoint function in the G1/S phase of the cell cycle, as BRCA1 also plays an
important role in mediating cell cycle arrest. In DNA damage response, BRCA1 acting as a scaffold
protein facilitates p53 phosphorylation by ATM, which leads to p53-induced p21 induction and
mediates G1/S arrest. Primarily, this will result in defective DNA repair and chromosome instability,
which further leads to acquiring genomic instability and malignant features. In breast cancer cells,
germline or somatic mutation, copy number aberration, and epigenetic control alteration have been
shown to affect several genes that are responsible for maintaining genomic stability in normal
conditions. Loss of key DNA damage repair genes including BRCA1, BRCA2, RAD52, PALB2, BR1P;
and genome caretaker genes such as ATM, CHEK2, and TP53 are highly associated with increased
risk of breast cancer development. PI3-K/Akt, the extracellular signaling pathway, is crucial for the
control of cell growth and is normally regulated by several extracellular signaling proteins, including
insulin and insulin-like growth factors. In cancer cells, this pathway is abnormally activated by
mutation in PTEN, and cancer cells can grow in the absence of such a signal, so this abnormal
activation of Akt is central to the dysregulated growth process. The most common mutation of
the tumor-suppressor gene in breast cancer is the loss of PTEN phosphatase, the normal function
of which is to limit Akt activation by dephosphorylating PI3K. The tumor suppressor PTEN is an
important modulator of chk1 function. Akt activation in response to PTEN loss phosphorylates
CHK1 and leads to its monoubiquitination and sequestration from the nucleus. Outside the nucleus,
phosphorylated CHK1 is unable to respond to its activating substrate, AKT/ATM, and there will
be no phosphorylation of its substrate, including CDC25. CDC25A is the major substrate of chk1,
which is overexpressed in breast cancer cells. In breast cancer, CDC25A overexpression leads to
activation of the cyclin E/cdk complex, and has shown to play a very vital role in the unscheduled
firing of origins of replication and induction of chromosome instability. So, reduced PTEN leads
to increased Akt activation and increased cytoplasmic chk1 phosphorylation, thereby inhibiting its
checkpoint function. A reduced amount of chk1 function is predisposed to genomic instability, and
contributes to the development of breast cancer. In addition, Akt activation inhibits cyclin/CDK
complex inhibitors, including p21, p27, and CDC25, which stimulate cell cycle arrest in response
to activation of checkpoints. Moreover, activation of Akt phosphorylates and activating MDM2
stimulate the destruction of p53. In p53-deficient cells, the blockage of cdk2/cyclin E by p21 is
not functional, thus hyperamplification of the centrosome may occur, which is the prerequisite for
mitotic catastrophe.

5. Theranostic Interpolation Approach of Genomic Instability in Breast Cancer

At present, genomic instability can be detected through many diverse technologies
that can range from single-cell approaches to high-throughput multicellular techniques.
These technologies all have the capability to detect different levels of changes in the genome.
However, no assay can measure the small chromosomal change rate, including deletions,
amplifications, and within-cell population in any version. So, there is a prerequisite for the
need for sensitive, high-resolution technologies that can detect genomic instability over
time. Finding more effective therapeutic solutions via capitalizing on differences between
cancer and noncancer cells is an ongoing and intense area of research.

6. Detection of Genomic Instabilities in Breast Cancer

The genomic instability in cancer can be detected via numerous strategies. It should
be noted that genomic inability refers to the rate of chromosomal changes, and is therefore
a measure of variability in the state of chromosomes between each cell within the tumor.
Repeated cell-population measurements throughout the tumor evolution are required
for accurate instability assessment. Preferably, individual cancer cell measurements are
necessary to define the exact rate of genomic alteration or variability for a specific cancer.
However, this measurement is more easily obtained for cancer cell lines, but it is more
difficult to measure accurate genomic instability in clinical specimens of the tumor; as
they have limited material, along with substantial cellular heterogeneity. Few studies
have characterized true genomic instability via determining the accurate chromosomal
alteration rate in various cancer types [63]. Due to the difficulty of measuring actual
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genomic instability, numerous methods have been used as a surrogate to estimate the extent
and frequency of genomic alteration for static cancer cell populations for describing the
genomic instability. Therefore, while claiming to interpret the genomic instability in cancer,
precautions must be taken. As we know, genomic instability is linked to any genetic level,
so the methods that can detect any change in chromosomes, microsatellites, or nucleotides
are adequate for the assessment of genomic instability components. Such methods for
detection includes karyotyping, flow cytometry, single-nucleotide polymorphism (SNP)
arrays, genome sequencing, and polymerase chain reaction (PCR) (Table 2).

Table 2. Different methods of detection of genomic instabilities.

Detection Method Cellularity Detected Alterations

Karyotyping Single-cell Complete and segmental chromosomal instability, aneuploidy

Single-cell sequencing Single-cell Complete and segmental chromosomal instability, translocations,
insertions, deletions, and mutations

Flow cytometry Multicell Cell ploidy/aneuploidy

Comparative genomic
hybridization array Multicell Complete and segmental chromosomal instability

SNP arrays Multicell Complete and segmental chromosomal instability, single-nucleotide
polymorphisms, uniparental disomy, loss of heterozygosity

PCR Multicell MSI, mitochondrial instability

Whole-genome sequencing Multicell Complete and segmental chromosomal instability, translocations,
insertions, deletions, and mutations.

The techniques that can analyze growing cultures triggered from a single cell at a
regular time; i.e., serial sample analyses, are used to assess chromosomal instability, while
single-cell tracking is utilized for monitoring multiple cells and their progeny simultane-
ously within an experimental population. For assessing the chromosomal instability rate
prerequisite, techniques that have no adverse effect on cell viability or proliferation are
needed; therefore, live-cell imaging is employed. The chromosomal visualization can be
achieved in numerous ways, including fluorescent labeling of chromatin-associated pro-
teins, fluorescently labeled artificial chromosomes, fluorescent operator/reporter systems,
and modified gene-editing systems.

7. Fluorescent Labeling of Chromatin-Associated Proteins

Genetically encoded fluorescent tags are used for chromosome labeling for live-cell
imaging for detecting histones and other chromatin-related proteins. This technique is
unable to measure chromosomal instability per se, as it does not allow the tracking of
any gain or loss in a particular chromosome, as it uniformly labels all chromosomes. This
approach allows the evaluation of the dynamics of the chromosome as the cell progresses
through the mitotic process, which unwraps aberrant mitotic changes that include all
phenotypic-associated chromosomal instabilities, chromosomal congression or segregation
errors, anaphase bridges, breakage of chromosomes, and decompaction [64]. Though this
technique conventionally relies on the manual inspection of an image, which can be lengthy
and time taking, software-driven automation and analyses are possible via single-cell
tracking tools included in many image-capture software packages [65].

8. Fluorescent Reporter/Operator System

This approach enables numerical CIN quantification within the live cells. They contain
a fluorescently tagged DNA binding protein, the reporter, that binds to a stably integrated
DNA element, called the operator, within the genome at a distinct locus of the chromosome.
The number of fluorescent foci present within the cell can be used as a surrogate marker
for the chromosome copy number, and this can be monitored via multiple cycles of cell
division. Therefore, to evaluate N-CIN, both population heterogeneity and the temporal
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dynamics of copy-number losses or gains can be quantified. This technique does not detect
events involving nonlabeled chromosomes, and is also incapable of assessing structural
CIN [66].

9. Human and Mouse Artificial Chromosomes

Rather than introducing a transgenic marker into an endogenous chromosomal locus,
a related approach involves the use of human or mouse artificial chromosomes engineered
to contain informative reporting genes in order to enable the assessment of HAC or MAC
copy-number changes through flow cytometry or QuantIM. These artificial chromosomes
include centromeric sequences that form functional kinetochores, and they rely on the same
segregation machinery as endogenous chromosomes [67]. So, the increased rate of change
in human artificial chromosome copy number or mouse artificial chromosome copy number
indicates an enhanced whole chromosome mis-segregation or N-CIN rate. However, these
systems allow the evaluation of either gain or loss of HAC or MAC theoretically, but until
now, they practically are only designed for the assessment of chromosomal loss [68]. The
fundamental limitation of these approaches is that they cannot detect changes involving
endogenous chromosomes directly, so they are not able to differentiate the loss or gain
rate of a particular chromosome. These techniques assume a consistent mis-segregation
rate for all endogenous chromosomes that are equal to the HAC or MAC mis-segregation
rate. Interestingly, mouse artificial chromosomes (MACs) are maintained more stably in
some cell types, showing that human artificial chromosomes (HACs) may have inherent
instability levels in certain contexts. These approaches are suitable for research-based
applications and the most effective preliminary screening tools [69].

10. Modified Gene-Editing Systems

To visualize some particular loci, many emerging gene-editing technologies are em-
ployed, including zinc-finger nucleases (ZFNs), CRISPR/Cas9 systems, and transcription
activator-like effector nucleases (TALENs) [70]. Generally, for standard gene-editing pur-
poses, these methods contain an endonuclease that is directed to a specific locus through a
target-recognition sequence. In zinc-finger nuclease and transcription activator-like effector
nuclease, the target recognition and endonuclease activity are provided by a single protein,
while CRISPR typically employs the Cas9 endonuclease and RNAs for targeting a gene [71].

11. Single-Cell Genomic Approaches

Recent advances in scientific research have made it possible to conduct genomic
analyses at a single-cell level, permitting the evaluation of both numerical and structural
chromosomal instability at an unprecedented resolution. These are called single-cell CGH,
single-cell whole-genome sequencing (sc-WGS), single-cell whole-exome sequencing (sc-
WES), and single-cell copy number variation (sc-CNV) analyses. Presently, most single-cell
genomic approaches require isolated single cells and their amplified DNA before any
further analyses. Not all genomic regions being identically amplified is the common
limitation to these approaches. Various single-cell isolations and techniques for DNA
amplification are available at present. These approaches have continued to evolve toward
an improvement in the capture rate of tumor cells, as well as an enhancement of the
amplification of DNA [72,73]. Moreover, innovative single-cell whole-genome techniques
have emerged that bypass the requirement of DNA preamplification [74]. Gonzalez-Pena
and Natarajan et al. [75] investigated a new single-cell WGA using primary template-
mediated amplification (PTA), and showed greater coverage of genome coverage and
variant detection from single cells.

12. Multicellular Approaches

The cytogenetic approaches, usually used for the detection of structural chromosomal
instability and N-CIN, are extensively employed in clinical and research areas. These
approaches include karyotyping analysis, fluorescence in situ hybridization (FISH), spectral
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karyotyping, and multiplex-banding techniques. In addition to these, quantitative and
high-throughput imaging cytometry is also used to quantify singular cell data from a huge
number of cells, as it increases the experimental throughput. The two commonly used
quantitative high-throughput cytometry approaches are quantitative imaging microscopy
and imaging flow cytometry [76]. Another multicellular approach to detect microsatellite
instability is known as polymorphism chain reaction (PCR), which amplifies the specific
region, thereby comparing the lengths of tumor DNA short tandem repeats and normal
DNA to assess the MSI state [77].

13. Computational Identification of Mutations Leading to Breast Cancer

Cancer can initiate, progress, and metastasize due to mutations, particularly genomic
insertions or deletions, single-nucleotide variants (SNVs), structural variants, and epige-
netic changes [78]. The advent of technologies has led to the progress of whole-genome
sequencing and genome analysis of tumor cells in collaboration with the International
Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) [79–82]. These
projects have successfully identified and reported numerous somatic SNVs responsible
for various cancer types, and especially, they have developed a comprehensive landscape
representing all reported somatic mutations in breast cancer patients [82]. The identified set
of mutated genes and their associated pathways among the most prominent cancer types
have initiated the functional assessment of tumor cells, though this area still needs to realize
a lot of progress, and initial development cannot be ignored either. The main challenge is
to determine the underlying mechanisms differentiating driver mutations from passenger
mutations. Mutations that selectively progress the growth of tumor cells are termed driver
mutations, whereas inert mutations, which usually do not deliberately participate in tumor
cell growth, are called passenger mutations [83].

The functional impact of SNVs is mostly studied for coding regions, and the characteri-
zation of such changes is usually predicted by employing various computational techniques
regarding how a mutation will alter the normal phenotype of the cell or molecule perform-
ing a critical role in regulatory pathways. However, a major number of mutations reported
within cancer samples and tumor analysis resides within noncoding regions [84]. Such
noncoding mutations directly affect the transcription factor binding, as well as the activity
of RNA-binding proteins and even miRNAs, which in return affect the gene regulatory
mechanism, transcription, methylation, protein stability, and translation [85]. Mutation
analysis and prediction of functional SNVs require computational pipelines to speed up the
analysis; while they require experimental validation and characterization of SNVs and their
role in cancer progression, such integration of computational and experimental techniques
has proved to be a good analysis technique in various studies [86–88]. Generally, functional
SNVs are predicted via a common pipeline that includes the identification of somatic SNVs,
analysis of regulatory regions, comparison of SNVs with common germline variants, and
prediction of altered transcription-factor binding sites. Somatic SNVs are identified by
comparing tumor genome sequences with normal tissues. Usually, this is quite challenging
due to the low frequency of somatic SNVs, and they should be distinguished from common
sequencing errors [89]. Thus, this overall requires high-end sequencing techniques, which
may increase the cost as well. Some commonly used tools for the identification of somatic
SNVs include GATK [90,91], which identifies tumor-specific SNVs by comparing normal
and tumor samples; and MuTect [90,92], which uses statistical or heuristic models to ana-
lyze tumor samples. These algorithms usually employ single methods to identify SNVs,
whereas some approaches use a combination of methods to increase efficiency as well [93].

Among millions of identified SNVs, only a few are diverse, and to detect such func-
tional mutations currently, two strategies have been implemented. One is to target the
regulatory DNA elements, which may include promoters, transcription initiation sites,
histones marks, etc. [89]. Some studies only focused on cancer-related regulatory elements,
because restricting the overall analysis to only targeted regulatory elements empowers the
detection technique by reducing the search space for SNVs. Another strategy in use to
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identify the SNV clusters instead of single mutations within small DNA fragments is called
hotspots. The advantage of the identification of such mutational hotspots within small
DNA windows is to increase the frequency of marking and reduce the dimensionality by
comparing the SNV frequency of the window with the whole distribution of SNVs. This
technique is adopted either locally or globally; i.e., the comparison of SNV frequency either
to the close genomic regions or to functionally similar regions. The DNA window size may
also vary depending on the nature of the computational power, and may range from 50 to
500 bp. Though small windows may provide a higher resolution than longer ones, which
are usually associated with gene expression levels or replication timings [94]. To increase
the efficiency of the detection technique, both strategies are often used in combination.

Moreover, there are special centers and programs designed to facilitate cancer research
and to develop a better understanding of the disease and responsible factors, as well as
to predict novel therapeutic options. The German Consortium for Hereditary Breast and
Ovarian Cancer (GC-HBOC) is a center that specializes in genetic screening, counseling,
and providing healthcare benefits to breast and ovarian cancer patients [95]. These centers
are facing the major challenge of classifying the uncertain significance of variants in various
cancers and maintaining a central patient registry to define all the genetic aberrations. In
addition to that, breast cancer patients are screened for BRCA1/2 mutations, which may
determine the severity of the disease and determine the therapeutic options and response
time of the patient. To analyze the mutations crucially and to avoid any chance of missing
information, automized predictions employing in silico approaches, machine learning, and
artificial intelligence have become frequently adopted techniques. Existing approaches
classify the mutations based on the difference between biochemical properties of replaced
amino acids and the location of mutations among highly conserved regions. For such types
of analyses, computational tools adopt structure- or sequence-based techniques, which may
rely on assumptions as well [96–98].

Here, we will briefly discuss four commonly used prediction tools of medical genetics,
including SIFT [99], Align-GVGD [100,101], MutationTaster2 [102], and PolyPhen-2 [103].
Align-GVGD takes input in the form of aligned sequences. It then computes scores for
each aligned column indicating a substitution. For each column, a biochemical distance
score is calculated based on the extension of the pairwise Grantham difference (GD) and
conservation score following Grantham variation (GV). Seven different classes of substi-
tutions are then formed based on these scores, which indicate the mutation having the
least likely to most likely interference with function [100,101]. SIFT, based on sequence
analysis, determines evolutionary conserved amino acids within a protein, and classifies
nonsynonymous single-nucleotide polymorphisms (nsSNPs) on their bases. It calculates
the probability for each amino acid substitution to occur at each position of the aligned
sequences, and threshold values are assigned. Amino acids having scores less than the
threshold value of 0.05 are predicted to be missense variants that can damage the protein
both structurally or functionally [99]. MutationTaster2 classifies the variants into either
polymorphisms or disease-causing, based on regulatory features, splice sites, and evolu-
tionary conservation. It also connects with different databases to classify mutations as
polymorphisms or disease-causing [102]. The Polymorphism Phenotyping v2 (PolyPhen-2)
tool for the naive Bayes classifier is also based on sequence analysis, but can also analyze
structural features if the 3D structure is known [103].

For the past several years, various authors have published comparisons of available
computational tools and in silico prediction methods, and studied their functional impact
to provide a comprehensive picture of these applications [104–107]. Though each tool has
its strengths and weaknesses, but the latter can be overcome by combining the results of
various approaches and predicting a concise result on its basis.

14. Pathway Analysis of Tumor Cells Leading to Genomic Instability

Genome analysis alone has several gaps in the core identification of protein function;
thus, research has been focused on the regulation of signaling pathways in cancer cells. It
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has also become a vital component in the prediction and advancement of targeted therapies.
Numerous studies have been reported to unravel the underlying signaling cascades in
breast cancer. A study reported a pathway analysis of a genome-wide association study
(GWAS) especially in breast cancer, and highlighted pathways highly associated with ge-
netic alterations of breast cancer. These pathways included signaling of hepatocyte growth
factor receptor, growth-hormone signaling, and syndecan-1-mediated signaling. Genes
from these pathways were then checked for their associated SNPs, and their enrichment
score represented the gene-based associations. Finally, overlapping genes were marked
using hierarchical clustering, and the adaptive rank-truncated product (ARTP) method was
adapted to identify clusters having more associative signals. Thus, pathways having regu-
latory genes with the most effective roles in breast cancer could be identified. Similarly, the
authors reported the RAS/RAF/MAPK canonical signaling cascade to be highly associated
with breast cancer susceptibility [108].

Pathway analysis and protein–protein interactions (PPIs) have also been studied to
identify the key genes of breast cancer. Wang et al. introduced a method called BridGE to
classify structured motifs within genetic networks, especially those derived from GWAS
studies. Reverse-genetics studies have revealed that the members of a particular pathway
share patterns that can be searched to predict pathway interactions within a population.
The bridGe is based on this principle, and it has been applied to a total of six breast
cancer cohorts to identify significant pathways and their interactive members. They overall
predicted vitD receptor, mitotic prometaphase, purine metabolism, a steroid hormone,
and glutathione conjugation as the major biosynthetic pathways related to breast cancer
risk [109].

Triple-negative breast cancer (TNBC) patients cannot express the progesterone, es-
trogen, and HER2 receptors, and have a poor prognosis history; thus, researchers have
also been focused on discovering the underlying mechanisms of TNBC. Pathway analysis
has potentially helped to identify the initiation and developmental process of TNBC by
comparing expression profiles of genes of TNBC patients with non-TNBC ones. These
genes were then analyzed via gene ontology and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway, and their protein interactions were then modulated. The
authors calculated the correlation between survival rate and gene expression levels to
discover potent targets for diagnosis and prognosis, which later on could also be evaluated
as potential therapeutic targets as well [110].

Moreover, transcriptome data analysis also lays a good foundation to discover key
regulatory elements in a particular pathway or network. Numerous studies have been
designed to analyze transcriptomic data to decipher complex signaling networks involved
in various diseases, especially cancers [111–113]. RNA-seq transcriptome analysis of BC
patients from the Gulf region by integrating NGS data analysis with pathway analysis
to highlight some important functional and signaling perturbations during BC develop-
ment [113]. They observed some common signatures of BC-derived genes among the
transcriptome of BC patients from the Gulf region, as well as differentially expressed genes
from the TCGA BC dataset.

15. Computational Prognostic Indicators for Breast Cancer

Breast cancer prognosis has always been a challenge due to its complexity and a lack
of uniform models, as well as the incomplete analysis of datasets. Computational models
based on biological implications can contribute significantly by integrating significant
information on chromatin modification, transcriptomic alterations, and stroma response,
which in return may help to determine the prognosis of breast cancer patients, and will
provide valuable insights into the oncological determinants [114]. The lack of precision
molecular indicators is the main reason to impede the personalized and specified therapeu-
tic interventions. An ideal (sensitive, specific, and cost-friendly) prognostic indicator can be
designed by employing integrated computational models based on clinical variables, which
can significantly increase the understanding of heterogeneity and the complex biology
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of breast cancers. Moreover, prognostic indicators are expected to clearly define the risk
groups associated with individuals in terms of tumor progression, metastasis, invasion, or
response to a particular treatment [115].

The most common prognostic indicators of breast cancer are BRCA1 mutations, es-
pecially for early diagnosis, and they serve as a predictive biomarker for almost 80% of
patients with combined ovarian and breast cancer and up to 20% of women with a family
history of breast cancer [116]. Enhanced expression of cohesion and RAD21 is another
prognostic factor associated with increased resistance to chemotherapy, mostly in HER2,
basal, and luminal breast cancers [117]. Additionally, expressions of anterior gradient-2
(AGR2) protein and muscle segment homeobox 2 (Msx2) are also observed for prognosis in
breast cancer patients [118,119].

The Cox proportional hazards regression model is another commonly used computa-
tional approach to predict critical biomarkers [120,121]. It calculates a survival function to
produce the probability of death or survival given at a time after diagnosis. Some other
computational methods have also been proposed in the same context, including Bayesian
network analysis and support vector machine methodologies. Bayesian network analy-
sis of signaling pathways facilitates the evaluation of a probabilistic relationship among
candidate genes within the network [122]

Moreover, transcriptomic microarray and sequence data analysis provide multigene
signatures [123], which not only contribute to prognosis, but also can predict tumor sub
types and their specific resistance to chemo or radiation [124]. Such multigene models
generally classify patients by indicating the particular outcome of the disease or treatment
response according to the disease pathology; e.g., the DNA content of patients with breast
cancer classifies them in either stable or unstable (conferring a good or poor prognosis)
states [125]. In addition, machine-learning algorithms have been successfully applied to
identify multigene signatures and pathways associated with breast cancer. These algorithms
are usually applied to mass spectrometry profiles or transcripts, and are usually charac-
terized in three main groups, which include: (1) supervised classifiers; (2) unsupervised
data mining; and (3) semisupervised models. Supervised models (for example, prediction
analysis of microarray (PAM) or decision-tree [126] models are trained for sample labels,
including good or poor outcomes, before making a decision. Results of semisupervised
models are based on input labels and raw data, which allow partial labeling. The choice
of model selection truly depends on the type of data provided for the analysis. Some
computational methods based on gene expression to identify prognostic determinants in
breast cancer are given in Table 3.

Table 3. List of methods for identification of prognostic determinants in breast cancer.

Data Source Methods

Gene expressions
(based on the experiment)

• Expression levels
• Hierarchical clustering
• “Leave-one-out” cross-validation [127]

Gene expressions
(based on text mining)

• eScience–Bayesian [128]

Gene expressions
(based on clinical and genetic markers)

• I-RELIEF [129]
• (Iterative method based on the feature selection algorithm)

Gene expressions
(based on copy number and pathway)

• iCluster [130]
• PARADIGM [131]

Genomewide gene expression

• RXA-GSP [132]
• LDS [133]
• MSS [134]
• BCRSVM [135]
• Correlation [136]
• PAM [137]
• Cox proportional-hazards regression modeling [126]
• Bayesian network analysis [138]
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16. Computational Approaches to Facilitate Precision Medicines

Precision medicine can be the root of the cancer treatment if fully guided by the tumor’s
genomic alterations. Its hypothesis has sparked major goals in oncology, and has led to the
expedited initiation of whole-genome sequencing, genome analyses, development of cancer
databases, and new tools for statistical analysis of data. Such an advent of computational
technology has embraced much appreciation in the field of science and technology, which
led to research focused on altered genomes and targeted therapies [139]. This eventually
will lead to the delivery of the right drug to the right person [140]. Precision oncology
is not only based on the genome sequence of an individual; rather, it also targets blood
typing, target proteins, inhibitors, biomarkers, and pathway analysis [141]. Even with the
high advancements in sequencing technologies and computational frameworks, precision
medicine still lacks a defined outcome in clinical trials, as it has been reported that only
10% of mutations are actionable [142]. Moreover, tumors also depict remarkable diversity
in their genomic alterations, and thus provide a heterogenous mutational landscape as
a challenge.

Precision medicine is one of the greatest challenges in the field of pharmacogenomics,
which aims to produce effective drugs based on specific genetic signatures. Driver muta-
tions identified via next-generation sequencing, along with the molecular targets, forecast
how a person will respond to a particular treatment or drug. One common example of pre-
cision pharmacology is trastuzumab (Herceptin), a breast cancer drug that targets patients
with overexpressed human epidermal growth factor receptor 2 (HER2) [143]. Precision
pharmacology aims to screen compounds with the aid of genomic information to target a
specific group of genetic profiles, rather than having broad action against many diseases.
This includes genomewide sequencing; statistical analysis, which correlates the genomic
data with clinical observations; and identification of actionable driver mutations. This
process is halted or delayed because of the absence of databases and the availability of
specific data facilitating the understanding the diagnosis and prognosis in cancer biology.

Various tools and computational pipelines have been designed to analyze massive
clinical, genomic, and proteomic data [144,145]. Statistical correlation can help to deal
with massive experimental observations, whereas bootstrapping and cross-validation
techniques can help to predict the key variables. Coupling computational, theoretical, and
experimental biology can unravel the major mechanisms responsible for genome alteration,
interactions of proteins, DNA damage, and drug development. Merging all this data will
articulate the path toward the development of targeted medicine, and may prosper in
treating cancers with greater accuracy and precision.

17. Therapies Targeting DNA Repair Pathways

Currently, few chemotherapy drugs have been reported that can be used as direct
therapeutic agents in DNA repair. DNA repair inhibitors cause the fragile DNA repair
system to break down, which leads to the demolition of cellular homeostasis, which in turn
results in cancer cell death [146]. One of the DNA repair inhibitors is the O6-methylguanine-
DNA methyltransferase (MGMT) inhibitor. MGMT is a DNA repair protein that detaches
the alkyl group, and is an early target in developing a DNA repair inhibitor [147].

18. PARP Inhibitors

PARP inhibitors are emerging chemotherapeutics that show significant activities in
various cancer treatments, including breast cancer. The PARP substrate is the main tar-
get of their inhibitors, with a goal of hindering the DNA repair pathway in the cancer
cells. The first-ever PARP inhibitor that received monotherapeutic approval was Olaparib
(AZD-2281) for treating ovarian cancer in females with a BRCA mutation. Homologous
recombination-mediated DNA repair is upregulated via PARP inhibitors, as they induce
RAD51 foci formation [148,149]. This explains why PARP inhibitors may be synthetically
lethal to nonfunctional homologous recombination cells. Any tumor having a defect in
the homologous recombination function would show synthetic lethality with PARP, which
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subsequently displays several gene mutations, including BRAC1, BRAC2, ATM, RAD51,
RAD54, XRCC2, XRCC3, DSS1, RPA1, CHK1, CHK2, ATR, FANCA, MRE11, etc. [150]. More-
over, epigenetic silencing of BRCA1 function induces hypersensitivity to PARP inhibitors.
The PARP and homologous recombination synthetic lethality may be extended to nonho-
mologous recombination components that modulate their protein function. For example,
PTEN mutation is sensitive to PARP inhibitors due to RAD51 modulating expression and
cell cycle checkpoint regulation [151,152]. Other DNA repair genes that are not associated
with homologous recombination function, shown defective as the result of PARP inhibitor
sensitivity, are XAB2, CDK5, CDK1, DDB1, PLK3, MAPK12, PNKP, Lig1, STK36, and
STK22c [153–155]. Most PARP inhibitors predominantly trap PARP on DNA-sensitizing
alkylating agents, while some show their activity in inhibiting the catalytic activity of PARP
via topoisomerase I inhibitors [156].

The immune microenvironment of DNA-repair-deficient tumors is generally immuno-
suppressive, with exhausted T-cell infiltrate expressing high levels of checkpoints. The
targeted cell death caused by PARP inhibitors has the potential to reset the tumor mi-
croenvironment and polarize the immune response toward a Th1 antitumorigenic profile,
resulting in a shift from immune escape to the elimination of the tumor [157]. Therefore,
PARP inhibitors represent a promising combination therapy with therapies targeting im-
mune checkpoints. The development of PARP inhibitors has led to a surge in interest in
other DNA repair protein inhibitors as monotherapy or sensitizing agents. They include
inhibitors of poly(ADP-ribose) glycohydrolase (PARG), which is involved in the process
of catalytic activity of PARP reversal before DNA repair completion. Breast cancer cells
deficient in BRCA2 were reported to be sensitized to PARG inhibition [158,159]. Other DNA
repair protein inhibitors include APE1 inhibitors, ATM and ATR inhibitors, RecQ helicase
inhibitors, DNA-PK inhibitors, and FEN1 inhibitors [160–165]. However, the changes
in these DNA repair proteins that are therapeutically relevant to cancer are not obvious.
PARPi is generally well tolerated, but Chk1 inhibitors are associated with serious adverse
effects and limited biospecificity (Table 4). The ATM/ATR inhibitors are in trial stages. It is
also a challenge to recognize DNA damage response proteins that bear selective toxicity
to cancer cells. Mutations or alterations in expression do not result in a changed func-
tion. To deliver the utmost therapeutic advantage from DNA damage-response therapies,
the development of functionally applicable biomarkers is crucial to delivering accurately
précised medication.

Table 4. Major PARPi for the treatment of breast cancer.

PARPi FDA Approval Catalytic Sites Patient Population

Olaparib/AZD-2281 Approved PARP 1,2,3 HER2 negative, homologous recombination deficiency,
TNBC and/or germline BRCA mutation, stage I to III

Niraparib/MK-4827 Not approved PARP 1,2 HER2 negative, BRCA mutation

Rucaparib/AG-014699 Not approved PARP 1,2,3 TNBC and/or germline BRCA mutation, homologous
recombination deficiency

Talazoparib/BMN-673 Approved PARP 1,2 HER2 negative, germline BRCA mutation, stage I to III

Veliparib/ABT-888 Not approved PARP 1,2 Triple-negative breast cancer, stage II to III

Pamiparib/AG-14361 Not approved PARP 1 HER2 negative, germline BRCA mutation, stage II

19. DNA Repair Pathway

DNA damage, if left unchecked, may predispose one to malignant transformation
of the cell. Multiple pathways function in cells to correct such errors by either initiating
DNA repair or apoptosis. DNA repair pathways were found to be recruited within the cell
immediately after DNA damage. They can be categorized as the nuclear excision repair
pathway (NER), base excision repair pathway (BER), mismatch repair pathway (MMR),
and DNA double-strand-break repair pathway (DSBR) [166].
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The nucleotide excision repair pathway (NER), consists of 25 proteins that are activated
to replace modified nucleotides in damaged DNA with the correct ones. DNA damage
caused by exogenous chemicals, UV light, and chemotherapeutic agents is repaired by
this pathway. NER operates through the following steps to repair DNA. Firstly, there is
recognition of the damaged site. Secondly, incision of involved strand takes place. Thirdly,
DNA is synthesized; and lastly, there is ligation of disconnected wings by the DNA ligase
enzyme [167]. Three distinct pathways operate under the NER pathway. These are the
transcription-coupled repair pathway (TCR), global genomic repair pathway (GGR), and
differentiation-associated repair pathway (DAR) [168].

In the base excision repair pathway (BER), there is a substitution of modified bases with
correct ones by the processes of methylation, deamination, and oxidation [169]. A specific
DNA glycosylase enzyme that can recognize and excise modified bases from the genome
removes these structurally changed bases from the DNA. New bases are synthesized by
polymerase delta or epsilon, and the remaining cut ends are ligated by the DNA ligase
enzyme [170]. Many SNPs are involved in the core base excision repair protein and DNA
glycosylase genes in different malignancies, such as breast cancer. The BER efficiency is
found to be a chief determinant of BC risk, because it works in oxidative DNA damage
repair that is induced by free radical production during cellular estrogen metabolism or
exogenous exposure. Numerous studies have reported the relationship of polymorphism
with BER genes (XRCC1, APEX1, and OGG1) and breast cancer [171,172].

The mismatch repair pathway (MMR) is responsible for two types of mismatches
in the cell. First, the base mismatches’ excision is caused by endogenous and exogenous
agents, responsible for base methylation, deamination, and oxidation. Second, it also
corrects base-to-base mismatches originating from replication and insertion or deletion
errors [173]. This system functions by recognition of lesions, strand distinction, excision,
and then repair [174]. MMR gene variants may predispose one to breast cancer. SNPs play
a pivotal role in genomic integrity, so SNPs in MMR genes contribute to susceptibility to
breast cancer risk. Genetic aberration in the prime MMR genes hMLH1 and hMLH2 were
found to be associated with sporadic breast cancer [175].

A double-strand-break repair system (DSBR) repairs broken DNA strands. This path-
way is further divided into nonhomologous end-joining repair (NHEJ) and homologous
repair (HR). In the NHEJ repair process, broken ends of DNA strands are ligated by a
specific ligase enzyme. This pathway is deprived of a homologous sequence control system.
As a consequence, there is a possibility of errors, such as inversion or deletion [176]. HR
functions in error-free mode as broken ends are repaired according to the homologous
DNA sequence [177]. The selection of pathways for repair is determined by whether RAD
51 or KU binds to the damaged site. In the case of binding of RAD 51, the NHEJ pathway is
activated, and if KU binds, the HR pathway is activated. Many proteins involved in homol-
ogous recombination are dysregulated in the case of breast cancer. RAD 51 is overexpressed
or deregulated in invasive ductal breast cancer, triple-negative breast cancer, and bilateral
breast cancer. Variation in the Rad21 gene is probably involved in hereditary breast cancer
development. The precise role of BRCA1 in homologous recombination involves 5′ to 3′

DSB resection to form 3′ ssDNA overhangs and load RAD51 to ssDNA [178]. Many studies
have highlighted the genotypic polymorphisms of genes participating in nonhomologous
recombination, including KU70, KU80, XRCC4, DNA-PKcs, and their linkage with an
increased risk of breast cancer [178].

20. Conclusions

Breast cancer is an alarming heterogeneous disease; substantial by the profile of gene
expression, modified genomic patterns, along with fluctuated molecular markers, leads to
epigenetic aberrations that alter the growth and survival pathways. The genomic profile of
breast cancer is essential for the prognosis of the disease due to the association between
DNA mutation, genomic instability, and nucleotide modification. Many researches on
cancer are focused on finding a definite cure. An integrative computational model of omics
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data and clinical variables may significantly improve the understanding of the biology
and heterogeneity of breast cancer. It also could help in identifying cancer-related genes
and pathways for cancer initiation and development. Further efforts through various
approaches toward the breast cancer genome, amplifiers, and complex patterns could
identify selective vulnerabilities created by underlying instabilities, which may not only
enlighten the precise genomic instability mechanisms and reasons, but also lead to new
treatment regimens and methods regarding the definite cure of breast cancer.

21. Limitations and Future Perspective

Despite of extensive research on breast cancer genomic integrity and genomic insta-
bility, the ubiquitous mechanism for the initiation of tumors still remains a mystery. All
hypotheses probably could be true in different contexts. Research into the prospect of
activating checkpoints that monitor genetic integrity has made great progress. Continued
sequence-level research of amplicon architecture may provide insight into the amplifier
pattern’s underlying cause. Additionally, it is unknown whether amplification is primarily
a temporary activity (occurring during telomere crisis) or a continuous process altering
tumor genomes. Future research should elucidate the nature of a potential failure in DSB
repair in complex-pattern breast cancers, as well as the functioning of BRCA1 and BRCA1
pathway components. Future investigations should target selective vulnerabilities induced
by underlying genetic instabilities in both amplifiers and complex-pattern cancers. It is
also known that the cancer-associated patterns of genetic alterations are complicated and
multilayered, which makes it difficult to personalize therapy decisions in specific instances.
Understanding these nuanced patterns of interindividual heterogeneity is critical to devel-
oping innovative medications, predicting therapy responses, and identifying diagnostic
and companion biomarkers for better breast cancer care.
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