
Unsupervised, piecewise linear decoding enables an accurate 

prediction of muscle activity in a multi-task brain computer interface 

 

Xuan Ma 1, *, Fabio Rizzoglio 1, Kevin L. Bodkin 2, Lee E. Miller 1, 3, 4, 5 

1 Department of Neuroscience, Northwestern University, Chicago, IL, United States of 

America  

2 Department of Neurobiology, Northwestern University, Evanston, IL, United States of 

America 

3 Department of Biomedical Engineering, Northwestern University, Evanston, IL, United 

States of America  

4 Shirley Ryan AbilityLab, Chicago, IL, United States of America  

5 Department of Physical Medicine and Rehabilitation, Northwestern University, 

Chicago, IL, United States of America  

* Corresponding author. E-mail: xuan.ma1@northwestern.edu 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.09.612102doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.09.612102
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract  

Objective. Creating an intracortical brain-computer interface (iBCI) capable of seamless 

transitions between tasks and contexts would greatly enhance user experience. However, 

the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. 

We aimed to develop a method that differs from a globally optimized decoder to address 

this issue. Approach. We devised an unsupervised approach that relies on the structure 

of a low-dimensional neural manifold to implement a piecewise linear decoder. We 

created a distinctive dataset in which monkeys performed a diverse set of tasks, some 

trained, others innate, while we recorded neural signals from the motor cortex (M1) and 

electromyographs (EMGs) from upper limb muscles. We used both linear and nonlinear 

dimensionality reduction techniques to discover neural manifolds and applied 

unsupervised algorithms to identify clusters within those spaces. Finally, we fit a linear 

decoder of EMG for each cluster. A specific decoder was activated corresponding to the 

cluster each new neural data point belonged to. Main results. We found clusters in the 

neural manifolds corresponding with the different tasks or task sub-phases. The 

performance of piecewise decoding improved as the number of clusters increased and 

plateaued gradually. With only two clusters it already outperformed a global linear 

decoder, and unexpectedly, it outperformed even a global recurrent neural network (RNN) 

decoder with 10-12 clusters. Significance. This study introduced a computationally 

lightweight solution for creating iBCI decoders that can function effectively across a broad 

range of tasks. EMG decoding is particularly challenging, as muscle activity is used, under 

varying contexts, to control interaction forces and limb stiffness, as well as motion. The 

results suggest that a piecewise linear decoder can provide a good approximation to the 

nonlinearity between neural activity and motor outputs, a result of our increased 

understanding of the structure of neural manifolds in motor cortex. 
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Introduction 

An intracortical brain-computer interface (iBCI), which converts the spiking activity of 

simultaneously recorded motor cortical neurons into user intentions, is a promising tool 

for assisting individuals suffering from paralysis or other neuromotor disabilities [1–4]. Key 

to this function is the “decoder”, an algorithm that is trained to find a reliable mapping 

between neural activity and motor outputs (Figure 1A). An iBCI decoder is generally built 

using ordinary supervised machine learning algorithms, an approach that has been 

demonstrated quite successfully for applications involving a limited range of motor 

behaviors. Most existing motor iBCIs are kinematic in nature, allowing their users to 

control computer cursors [5,6] and robotic limbs [2,7,8]; a few provide simple force control 

[9]. However, an iBCI that seeks to restore a more natural interaction with objects must 

be able to control kinematics and forces together. This is where current iBCIs fall short, 

as kinematic decoders require an unnatural strategy to exert forces, for example, at the 

time of contact with an object during the onset of grasp [10]. A potential solution could be 

an iBCI that directly controls muscle activity, mimicking the control mechanism of our 

neuromuscular system.  

Our group pioneered a Wiener filter-based decoder of muscle activity, rather than 

movement kinematics [11]. We predicted the electromyographs (EMGs) from neural 

signals in motor cortex (M1) with R2 values ranging from 0.5 to 0.9. When used to 

modulate the intensity of functional electrical stimulation (FES), these real-time EMG 

predictions allowed the monkeys to perform the same task despite paralysis of hand 

muscles induced by a transient peripheral nerve block [12]. However, in later experiments, 

neither a Wiener filter-based or long short-term memory (LSTM) network-based EMG 

decoders generalized across a set of wrist tasks that required dynamical loads ranging 

from isometric contractions to unloaded movements [13]. An analogous observation was 

made for a decoder of reach velocity in a precision reaching task; following training on 

the initial, primary phase of movement, the decoder generated poor predictions of 

velocities during a subsequent corrective phase [14]. 

The effectiveness of linear decoders for individual tasks or sub-movements, as illustrated 

by the toy data samples and linear fits in Figure 1B, aligns with the linear relationship 

reported between M1 neural activity and motor outputs by previous studies [15–17]. 

However, since the motor outputs required for individual tasks usually fall within a limited 

range, these linear relationships tend to be local and do not capture the nonlinearities 

present across a broader range of motor behaviors [18–20]. This poses challenges in 

developing an iBCI system capable of handling multiple tasks. 

Rather than developing a highly generalizable algorithm capable of predicting motor 

outputs for new tasks, a more feasible solution may be to train the decoder with data from 

a variety of tasks, allowing it to capture the “global” characteristics of the neural activity. 
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As the number of tasks increases, the accuracy of the predictions for any given task by a 

“global” linear decoder will likely decrease. It will “miss” some tasks and tend to perform 

worse than the decoders trained individually (Figure 1B). When we applied this approach 

to the wrist tasks described above, the linear decoder predictions improved but fell well 

short of the single-task decoders. In that study, the LSTM decoder improved predictions 

substantially [13], but it remained uncertain whether a global nonlinear decoder could 

achieve satisfactory performance when applied to a larger, more diverse range of tasks. 

The performance and efficiency of these networks is significantly influenced by the 

selection of hyperparameters and the available data. LSTMs in particular are notoriously 

slow to train on larger datasets. Recently, with large language models gaining prominence 

[21], LSTMs have been replaced by transformer-based models, which are faster to train 

and can more effectively make use of vast amounts of neural recordings [22,23]. The 

expectation is that such pretrained large models could accommodate the variations in 

neural activity across time, tasks, and subjects for iBCI applications. However, the 

consumption of computing resources is still substantial: for instance, POYO-1 required 8 

Nvidia A40 GPUs for training over 5 days, and additional fine-tuning was necessary 

before it could be used [23]. 

In this study, rather than pursuing a globally optimal linear or nonlinear decoder, we 

exploited the local linearity illustrated in Figure 1B. We used linear and nonlinear 

 

Figure 1. The nonlinearity in neural activity makes it difficult to fit a global decoder across multiple tasks 

distributed across a low-dimensional neural manifold. (A) A decoder maps neural activity to motor 

outputs. (B) Fitting the relationship between neural activity and motor outputs. The dots of different 

colors represent the data samples from different hypothetical tasks, while the colored lines denote linear 

decoders fit to those samples. The blue line represents a global linear decoder fit to all the data samples. 

The gray curved line shows a nonlinear fit over all data samples from different tasks.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.09.612102doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.09.612102
http://creativecommons.org/licenses/by-nc-nd/4.0/


dimensionality reduction techniques to discover the underlying neural manifolds [24] and 

applied unsupervised algorithms to identify clusters within those spaces. We computed a 

series of piecewise linear decoders of arm and hand muscle activity, each accurate within 

a restricted region of the low-dimensional neural manifold. We activated specific decoders 

according to the cluster each new neural data point belonged to. We tested this piecewise 

decoding using a dataset comprising a diverse set of behaviors, some that were trained 

and others that were innate. With only two clusters, our approach already outperformed 

a global linear decoder; unexpectedly, it outperformed even a global LSTM decoder when 

the number of clusters reached 10-12. These findings suggest that piecewise linear 

decoding can achieve a good approximation to the nonlinearity between neural activity 

and motor outputs and provide a lightweight solution for multi-task iBCI applications. 

 

Methods 

Subjects and behavioral tasks  

Two adult male rhesus monkeys (Macaca mulatta), T and P, were used in this study. Both 

were trained to perform a series of behavioral tasks in two distinct environments (Fig. 1B). 

The first we termed the “in-lab” environment; the monkeys were seated in a standard 

primate chair with the body posture fixed and one arm restrained as they performed three 

types of tasks. Two of the tasks required the monkeys to reach and grasp an instrumented 

device placed in front of them with their free hand. The device was either a 1.5cm 

diameter cylinder facilitating a power grasp with the palm and the fingers, or a small 

rectangular cuboid (1 x 2 x 2 cm) facilitating a key grasp with the thumb and the lateral of 

the index finger. Force sensitive resistors (FSRs) were attached on opposite sides of each 

device, which controlled the movement of a cursor on a monitor in front of the monkey. 

The sum and the difference of the forces controlled the position on the vertical and 

horizontal axes, respectively. The monkey had to keep his hand resting on a touch pad 

for a random time (0.5 – 1.0 s) to begin each trial. After the hold, one of three rectangular 

force targets appeared on the screen together with an auditory go cue. The monkey was 

required to place the cursor into the target and hold for 1 s in order to receive a fluid 

reward. The third task required the monkeys to grasp small food pellets held with tweezers 

at arm’s length by the experimenter. The monkeys typically used a precision grasp 

involving the thumb and the tip of the index finger, but this action was less constrained 

than the other two. For the power grasp and key grasp tasks, we detected the onset of 

grasp based on the measured forces, designating the period from 0.5 s before to 1 s after 

the force onset time as a trial. For the food pellet retrieval, or “precision grasp” task, we 

monitored the monkeys’ movements with industrial cameras (Ximea Inc., Münster, 

Germany). The frames in the video were synchronized to the neural recordings using 

pulses generated by the Cerebus system. We then identified the moment when the 
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monkeys touched the pellet based on those videos, again using the period 0.5 s before 

and 1 s after as a trial. 

The second “in-cage” environment, was a plastic cage measuring 2 x 1 x 1 meters, 

allowing the monkeys to move freely without constraints. We placed a single monkey in 

the cage at a time and recorded wirelessly from both primary motor cortex and a variety 

of muscles in the arm contralateral to the array (details below).  The monkeys’ behavior 

was monitored using the same video recording system as in the lab. At one end of the 

cage, we mounted a duplicate of the in-lab power-grasp device, actuated like the in-lab 

device, but with the monkey required to balance while squatting on the floor of the cage, 

and to initiate the task by pushing a button instead of the touch pad. At the opposite end, 

a small opening allowed the monkeys to stand and interact with the experimenter, such 

as grasping small food pellets, an in-cage version of the precision grasp task. Five rods 

spanning the width of the cage and positioned 10 cm above the floor served as perch 

bars as the monkeys moved between the power and precision grasp ends of the cage. 

While walking back and forth along the length of the cage, the monkeys typically 

performed a series of power grasps on these bars. Given the difficulty in controlling the 

timing of movements in such an unconstrained setting, we relied again on video 

recordings to identify and time-align these grasps. Together with the lab tasks, our 

 

Figure 2. The environments where the tasks took place. (A) The in-lab environment. Monkeys were 

seated in a standard primate chair, and were trained to perform power, key, and precision grasp tasks. 

(B) The in-cage environment. Monkeys were put inside a large plastic cage. Perch bars and 

instrumented devices were mounted inside the cage. Monkeys were trained to perform power and 

precision grasps, similar to those in the lab, and performed a series of grasps on the perch bars when 

they walked between ends of the cage. 
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analyses focused on these three in-cage tasks: discrete power and precision grasps at 

either end of the cage, and the locomotion-related grasps on the perch bars. For the 

power grasp task, we obtained the force onset time in the same way as for the in-lab 

power grasp. For the other two tasks, we identified the moments when the monkey 

touched the food pellet or placed the palm on the perch bars based on video recordings 

to extract 1.5-s trials as the lab. In addition to these defined cage tasks, the monkeys 

engaged in various spontaneous behavior as well. 

We began each experimental session with the in-lab power and key grasp tasks in 

interleaved trials, followed by a block of the in-lab precision grasp task. Typically, these 

sessions lasted 35 to 45 minutes. Once finished, we removed the monkey from the 

primate chair and put him in the plastic cage. In-cage recordings typically began within 

15 minutes after the in-lab recordings and lasted for 60 – 90 minutes. 

Surgical procedures and data collection 

We implanted a 96-channel Utah electrode array (Blackrock Neurotech, Inc.) between the 

arm and hand representations in the so-called “PDC zone” of M1 [25] of each monkey 

(monkey T: left M1, monkey P: right M1). The stereotaxic coordinates of the implant site 

were pre-planned and finally determined during the surgery with reference to the sulcal 

patterns and the muscle contractions evoked by intraoperative surface cortical stimulation. 

We also implanted intramuscular leads in upper arm, forearm and hand muscles of the 

arm contralateral to the implanted array in a separate surgical procedure (monkey T: right 

arm, monkey P: left arm). Electrode locations were verified during surgery by stimulating 

each lead. 

M1 activity was recorded during task performance using a Cerebus system (Blackrock 

Neurotech, Inc.). For the in-lab recordings, neural signals were amplified by a Cereplex-

E headstage. For the in-cage recordings, neural signals were amplified, digitized at 30 

kHz, and transmitted by a Cereplex-W wireless headstage. In both environments, the 

signals on each channel were then bandpass filtered (250 - 5000 Hz) and converted to 

spike times based on threshold crossings. The threshold was set with respect to the root-

mean square (RMS) activity on each channel (monkey T: -5.25 x RMS; monkey P: -4.75 

x RMS). The time stamp and a 1.6 ms snippet of the waveform surrounding each 

threshold crossing were recorded. For all analyses in this study, we used multiunit 

threshold crossings instead of discriminating only well-isolated single units. We applied a 

Gaussian kernel (S.D. = 50 ms) to the spike counts in 25 ms, non-overlapping bins to 

obtain a smoothed estimate of firing rate as function of time for each channel.  

The EMG signals were amplified, band-pass filtered (4-pole, 50 - 500 Hz) and sampled 

at 2000 Hz using a 32-channel amplifier chip (RHD 2132, Intan Inc., Los Angeles, CA) 

and a wireless transmitter (RCB-W24A, DSP Wireless Inc., Haverhill, MA) for both in-lab 

and in-cage environments. In the cage, this device was placed in a backpack on the 
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monkey’s jacket. Since the amplifier recorded monopolar EMG inputs, software 

differencing was performed between the paired channels after digitalization. The EMGs 

were then digitally rectified, low-pass filtered (4-pole, 10 Hz, Butterworth) and subsampled 

to 40 Hz to match the time resolution of the binned neural data. To remove occasional 

artifacts, the data points of each channel were clipped to be no larger than the mean plus 

6 times the S.D. of that channel. Within each recording session, we removed the baseline 

of each EMG channel by subtracting the 2nd percentile of the amplitudes and normalized 

each channel to the 90th percentile across all tasks. For each monkey we recorded EMG 

signals from 16 muscles (Table 1). 

Table 1 The list of muscles with intramuscular electrodes implanted* 

Monkey Upper arm muscles Forearm muscles Hand muscles 

T TRI, BI ECU, FCU, PT, FDS, FDP, 
ECR, FCR, EDC, SUP 

Lum, FPB, APB, 
1DI, 3DI 

P TRI, BI ECU, FCU, PT, FDS, FDP, 
ECR, FCR, EDC, EPL  

Lum, FPB, APB, 
1DI, 4DI 

 

* Abbreviations for the muscles: ECU (extensor carpi ulnaris), FCU (flexor carpi ulnaris), ECR (extensor 

carpi radialis), EDC (extensor digitorum communis), FCR (flexor carpi radialis), FDP (flexor digitorum 

profundus), ECR (extensor carpi radialis), FCR (flexor carpi radialis), 1DI (first dorsal interosseous), FPB 

(flexor pollicis brevis), PT (pronator), SUP (supinator), APB (abductor pollicis brevis), Lum (the first 

lumbrical), FDS (flexor digitorum superficialis), 4DI (fourth dorsal interosseous), EPL (extensor pollicis 

longus), TRI (triceps), BI (biceps) 

We conducted two styles of analysis with the neural and EMG data. In one approach, we 

split the data, including both in-lab and in-cage recordings, into trials as described above. 

In the other, focusing only on the in-cage recordings, we retained the continuously 

acquired data without dividing it into trials.  

All surgical and experimental procedures were approved by the Institutional Animal Care 

and Use Committee (IACUC) of Northwestern University under protocol #IS00000367 

and are consistent with the Guide for the Care and Use of Laboratory Animals. 

Piecewise linear decoders 

The construction of the piecewise linear decoders is shown in Fig. 3A. In the first step, 

we applied either Principal Component Analysis (PCA) or Uniform Manifold 

Approximation and Projection (UMAP) over the full-dimensional neural recordings of the 

training set to find the low-dimensional embeddings of the neural activity in the latent 

space. PCA finds a linear manifold, as it transforms the original data into a new coordinate 

system such that each successive orthogonal component captures a smaller amount of 

variance in the data. We included the first 12 components in the subsequent analyses, 

which accounted for more than 70% of variance in the concatenated trials from all tasks. 

In contrast, UMAP finds a nonlinear manifold for neural activity by constructing a graph-
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based representation of the high-dimensional data, then optimizing the layout of the 

representation in the low-dimensional space by minimizing the cross-entropy between the 

two representations [26]. We used parametric UMAP [27], which learns the relationship 

between the original data and low-dimensional embeddings by using a neural network to 

minimize the same objective function as regular UMAP. This network allowed us to project 

new data into the low-D space without having to retrain the model, which would have 

been necessary with standard UMAP. For consistency with PCA, we also used the first 

12 components for all subsequent UMAP-based analysis. UMAP includes a “min_dist” 

parameter that sets the minimum distance that adjacent data points can have in the low-

dimensional representation. Smaller “min_dist” values encourage UMAP to preserve finer 

topological structure while larger ones preserve the broader topological structure. We set 

min_dist to 0.75 to emphasize broader manifold structure. An additional “n_neighbors” 

parameter constrains the size of the local neighborhood UMAP considers when learning 

the embeddings. Low n_neighbors values emphasize local structure while large ones 

increase the neighborhood size surrounding each point. Due to the large size of our 

datasets, we set n_neighbors to 1/1000 of the number training sample of datapoints to 

balance the tradeoff between global and local structure and minimize the computational 

complexity which increases with n_neighbors. 

 

 

Figure 3. The construction of piecewise linear decoders. (A) The decoder training process. Full 

dimensional neural signals were projected into low dimensional latent space, where clusters were 

identified. The Gaussian mixture model (GMM) was used to identify these clusters. For each cluster 

(indicated by different colors), a decoder was trained using the data samples in this cluster. (B) The use 

of the trained decoders on incoming new data samples. A cluster label for the data sample at a given 

time t was obtained after passing the sample through the trained dimensionality reduction and GMM. 

One of the trained decoders was activated based on the cluster label to generate a prediction of motor 

outputs at this time step. 
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Following dimensionality reduction with either PCA or UMAP, we used Gaussian mixture 

models (GMMs) to find clusters in the neural manifolds in an unsupervised manner. GMM 

assumes the data points were generated from a mixture of a specified number of 

Gaussian distributions, with unknown mean and variance. After initially estimating the 

center of each distribution using a k-means clustering algorithm, we ran the expectation-

maximization (EM) algorithm for 100 iterations to refine the model parameters. We set 

the components’ covariance to “full”, allowing them to take any shape and orientation. We 

used the “GaussianMixture” class in “scikit-learn” Python package [28] to implement the 

algorithms. 

We then trained a Wiener filter-based decoder for each of the identified clusters as in 

several previous studies [13,29]. The filter was fitted using linear regression to predict the 

EMG at time t given neural responses from time t to time t - T, where we set T = 8 (200 

ms) for all decoders used in this study: 

   (Eq .1) 

Here, y(t) is a 16-dimensional vector of EMGs to be predicted at time t, while x(t) is a 96-

dimensional vector for of neural firing rates at time t and β(τ) is a matrix corresponding to 

the filter parameters for time step τ. We can write the equation above in matrix form: 

  (Eq .2) 

where Y is an M×16 matrix for the EMGs to be predicted, with M being the number of 

samples. X is an M×(8×96) matrix and B is an (8×96)×16 matrix of the regression 

coefficients to be estimated. We also added a bias term for both X and B. We computed 

B by a ridge regression estimator: 

  (Eq .3) 

We chose ridge regression to limit the risk of decoder overfitting by penalizing solutions 

with large regression coefficients with the regularization term . Its value was chosen by 

sweeping a range of 20 values between 10 and 105 on a logarithmic scale.  

After training all models and decoders, new data samples were processed sequentially 

as illustrated in Figure 3B. At each time step, one of the decoders was activated based 

on proximity to the clusters identified by the GMM. 

Global decoders 

We compared the proposed piecewise linear decoders to both linear and nonlinear global 

decoders. The global linear decoder followed the same form as described in Equation (1), 

T 1
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( ) ( ) ( )t t
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with the distinction that it was trained using the data from all tasks across the two 

environments. Likewise, the global nonlinear decoder was a recurrent neural network with 

LSTM cells trained on all tasks. The network comprised one LSTM layer with 100 units 

and one feedforward layer with 16 outputs, to match the number of EMG channels. We 

used PyTorch [30] to implement this LSTM-based decoder. We tuned the hyper-

parameters listed in Table 1 and selected the set enabling the best results (Table 2). 

  Table 2. The hyper-parameters of the LSTM-based decoder 

Hyper-parameter Value 

Learning rate 0.001 

Number of training epochs  150 

Batch size during training 256 

Type of loss function Mean square error (MSE) 

Optimizer Adam [31] 

Dropout rate 0.05 

 

Evaluating the quality of clusters 

To assess the quality of the clusters, we computed the “silhouette score” [32], which 

quantifies the proximity of a data point to other points in its own cluster compared to all 

other clusters.  The silhouette score ranges from -1 to 1, with values closer to 1 indicating 

more distinct clustering and values near 0 suggesting overlaps between clusters. We 

computed the silhouette score for each sample, then averaged across all samples to 

report a single number. Assuming x is a data sample in cluster CX, we computed the mean 

distance, d between x and all other samples in CX as:  

  (Eq. 4) 

where NX is the total number of samples in CX, and y represents another data sample in 

CX. We then computed the mean distance between x and all the samples in some other 

cluster CZ, and found the mean distance from x to all samples in its nearest neighboring 

cluster as: 

  (Eq. 5) 

where z is a sample in CZ, and NZ is the total number of samples in CZ. The silhouette 

score of x is then defined as: 

  (Eq. 6) 

,

1
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if the number of samples in CX is more than 1, otherwise s(x) = 0. We then computed the 

mean silhouette score over all samples.  

Decoder accuracy 

To evaluate the performance of the decoders, we implemented a 4-fold cross validation, 

with training and testing sets each containing equal numbers of trials from all tasks. We 

used the coefficient of determination (R2), which indicates the proportion of variation of 

the actual EMGs that was predicted by the decoder. As EMGs are multi-dimensional, we 

computed a multivariate R2 (m-R2) in which, after computing the R2 for all the single 

dimensions, we found a weighted average across dimensions, with weights determined 

by the variance of each dimension. This was implemented using the “r2_score” function 

of the scikit-learn python package with “variance weighted” for the “multioutput” parameter.  

 

Results 

Global decoders failed to maintain prediction accuracy across tasks 

We trained a series of Wiener filter-based decoders using data from each individual task, 

evaluated their accuracies within and across these tasks, and compared the results to 

those of global decoders trained on data encompassing all tasks of both environments. 

Figure 4A shows example EMG predictions for four representative muscles using the 

global linear decoder and decoders trained and tested exclusively on data from each task. 

The predictions by the within-task decoders tracked the actual EMGs well; however, the 

predictions by the global linear decoder were much worse. We further summarized the 

EMG decoding accuracy as m-R2 over all tests in Figure 4B. The single-task decoders 

achieved good EMG decoding accuracy for the trained task (entries along the diagonal), 

however, none predicted the EMGs accurately during different (off-diagonal) tasks. 

Furthermore, while performance of the linear global decoder (the second column from 

right) was well above the off-diagonal performance, it was dramatically lower than the 

decoders that were trained and tested on single tasks. We also tested a global LSTM 

decoder (the rightmost column in Figure 4B), which performed substantially better than 

the global linear decoder. For in-lab power and key grasp task, it performed better or 

equally well as the within-task linear decoders. Performance on the remaining tasks was 

marginally worse than the within-task linear decoders. These results are consistent with 

our illustration in Figure 1B: The within-task decoders achieved accurate linear fits for 

each cluster of datapoints, while the fits to each group of points by the global decoder 

were worse, as it endeavored to optimize the fit over all samples. 
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Task-related clusters emerge within the neural manifolds 

We first determined the number of identifiable clusters in the neural manifolds following 

dimensionality reduction of the neural activity to 12 dimensions using either PCA or UMAP. 

We fit Gaussian mixture models with different numbers of clusters to these data and 

computed the silhouette scores over held-out testing trials. Figure 5A shows the silhouette 

scores for the PCA-based manifold, which remained consistently near 0.2, with no 

obvious peak. The low scores indicate that only rather indistinct clusters exist in the PCA-

space, although the points are not distributed uniformly (which would yield score = 0). 

The absence of a prominent peak makes determining the number of clusters that best 

describe the clustering of the data difficult.  

The corresponding silhouette scores within the nonlinear UMAP-based manifold ranged 

from 0.4 to 0.6 (Figure 5B), more than twice that of the linear manifold. For monkey T, the 

highest score was achieved for eight clusters, although the peak was fairly broad. For 

monkey P, we observed similar results, with the highest score occurring for six or seven 

clusters, slightly greater than the number of recorded motor tasks. The more distinct 

clustering in the UMAP-space indicates that the actual neural manifold is significantly 

nonlinear.  

 

Figure 4. The performance of individual linear decoders and the linear global decoder over different 

tasks. (A) EMG prediction examples during one trial from each task when using both the within-task 

decoder and the linear global decoder fit with data from all tasks across the two environments. Each 

column shows a trial from one task and each row corresponds to a muscle.  (B) A summary of EMG 

prediction accuracies using the global and single-task decoders. The prediction accuracy was measured 

by m-R2 across EMGs from 16 muscles. The m-R² values for the unlabeled (black) matrix locations are 

all negative. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.09.09.612102doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.09.612102
http://creativecommons.org/licenses/by-nc-nd/4.0/


We then examined the identified clusters from a representative session of monkey T to 

understand how they were associated with the tasks. Figure 6A shows the eight clusters 

of data samples identified by GMM in 3-dimensional PCA latent space. The data comprise 

equal numbers of trials for each of the six tasks, extracted from the continuously recorded 

data and concatenated. These clusters were adjacent in space, without clear boundaries, 

consistent with the silhouette score of 0.2 (Figure 5A). Figure 6B shows the time course 

of latent signals for 10 trials from each task, color-coded according to the cluster label of 

each data sample. It is notable that tasks of a similar nature, performed in different 

contexts, often shared clusters.  For example, in-lab and in-cage power grasp shared 

clusters 7, 5, and 4, while precision grasp, both in the lab and cage, shared clusters 2 

and 3. These plots also reveal cluster switching near certain behavioral events. For 

example, samples preceding force onset by up to 250 ms and corresponding to hand pre-

shaping belonged largely to cluster 5 for both in-lab and in-cage power grasp. Samples 

immediately after force onset, corresponding to the maintained grasp, belonged to cluster 

4. Similar observations could be made for the remaining tasks, but the transitions were 

less precisely aligned to task events. Since these tasks, including in-cage perch bar grasp, 

and both in-lab and in-cage precision grasp, were identified manually through video-

based labeling, such variation may have been introduced by labeling deviations.  

 

Figure 5. Determining the number of clusters in linear and nonlinear neural manifolds. (A) The silhouette 

scores indicate the quality of clusters found using Gaussian mixture models (GMMs), in this example, 

following dimensionality reduction by Principal Component Analysis (PCA) and (B) Uniform Manifold 

Approximation Projection (UMAP). The symbols represent mean silhouette values across 4 folds, and 

the error bars represent standard deviation. 
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Figure 6 C, D shows the analogous clustering in the nonlinear UMAP space. In contrast 

to the linear clusters, these were clearly separated. Each of the in-cage tasks and the in-

lab precision grasp task had exclusive clusters (7: in-lab precision grasp, 3: in-cage power 

grasp, 6: in-cage perch bar grasp, 2: in-cage precision grasp). In-lab power grasp and 

key grasp shared cluster 8 before force onset, then separated into clusters 1 and 5 after 

force onset. Notably, when GMM was set to identify more than eight clusters in the UMAP 

space, the additional clusters were quite small, presumably reflecting occasional, atypical 

behaviors, while the correspondence between well-defined tasks and the primary clusters 

persisted. We observed similar results in sessions from monkey P. Together, these 

observations suggest that neural activity in both linear and nonlinear low-dimensional 

manifolds form identifiable clusters. These clusters are readily interpretable given their 

correspondence to either the category or sub-phase of the tasks. 

 

 

Figure 6. Spatiotemporal characteristics of neural manifold clusters. (A) Clustering (represented by 

different colors) of neural activity in linear neural manifold found by Principal Component Analysis (PCA). 

(B) Time plots of 10 representative individual trials for the first three dimensions in PCA space. The gray 

dashed line at 0.5 s in each sub-plot indicates the time of force onset during power and key grasp task, 

the moment when the monkey touched the food pellet during precision grasp, and the moment when 

the monkey touched the perch bar. (C) Clustering of neural activity in nonlinear neural manifold found 

by Uniform Manifold Approximation Projection (UMAP). Note that unlike PCA, the latent components of 

UMAP were not ordered by variance. (D) Corresponding time plots of the first three UMAP dimensions.  
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Piecewise linear decoding outperformed both linear and nonlinear global 

decoders 

We evaluated the performance of the piecewise linear decoders with various numbers of 

clusters and compared it to that of both linear and nonlinear global decoders. Figure 7 

illustrates these results from a representative session for each monkey. We calculated 

the average m-R² between the actual and predicted EMGs on three experimental 

sessions for each monkey using 4-fold cross-validation on testing data that each included 

all tasks. The piecewise linear decoders significantly outperformed the global linear 

decoders in accuracy, with just two clusters, for both PCA and UMAP clustering (monkey 

T, m-R2 for piecewise linear decoders: 0.57 ± 0.02 for PCA, 0.62 ± 0.01 for UMAP (mean 

± s.e.); m-R2 for global linear decoder: 0.48 ± 0.01; both paired t-test comparisons were 

p<0.001. monkey P, m-R2 for piecewise linear decoders: 0.57 ± 0.02 for PCA, 0.59 ± 0.01 

for UMAP; m-R2 for global linear decoder: 0.53 ± 0.01; both paired t-test comparisons 

were p<0.001). Their performance continued to improve and plateaued at 14 clusters for 

monkey T (no significant difference between 14 and 16 clusters; p = 0.16, paired t-test), 

and at 13 for monkey P (p = 0.06, paired t-test between 13 and 15 clusters) for PCA 

piecewise linear decoders. In the PCA-based scenario, m-R2 for the piecewise linear 

decoders significantly surpassed even the global LSTM decoder at 10 clusters for monkey 

T (0.69 ± 0.01, mean ± s.e. and 0.68 ± 0.01, respectively; p = 0.02, paired t-test) and 12 

clusters for monkey P (0.64 ± 0.01 and 0.63 ± 0.01, respectively; p = 0.008, paired t-test). 

For the UMAP-based clusters, this superior performance occurred already with only 6 

clusters for monkey T (0.69 ± 0.01, mean ± s.e. and 0.68 ± 0.01, respectively; p = 0.03, 

 

Figure 7. The EMG prediction accuracies for the global decoders and the piecewise linear decoders, 

tested with different numbers of clusters. For each type of global decoder (LSTM or Wiener filter) there 

is only one m-R2 value, computed across 16 EMG channels on a testing set that included trials from all 

in-lab and in-cage tasks. 
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paired t-test) and 10 clusters for monkey P (0.64 ± 0.01, mean ± s.e. and 0.63 ± 0.01, 

respectively; p = 0.01, paired t-test). 

 

Figure 8. Comparisons between different types of decoders for each task. (A) The difference in 

decoding accuracy between piecewise linear decoding in PCA-space and UMAP-space. Each dot 

shows the comparison for one task in one (of three) dataset. A value above zero means piecewise 

decoding had superior performance. (B) Same format, comparing piecewise PCA and a global linear 

decoder.  (C) Same format, comparing piecewise PCA and a global LSTM decoder.   
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Performance also differed between the PCA and UMAP spaces with relatively few 

clusters. UMAP outperformed PCA with fewer than 12 clusters for monkey T (p < 0.001 

for 12 clusters or less except p = 0.003 for 4 clusters, p > 0.05 for all clusters above 12, 

paired t-test), and 8 for monkey P (p < 0.001 for 7 clusters or less except p = 0.03 for 4 

clusters, p = 0.04 for 8 clusters, p > 0.05 elsewhere).  

We further compared the performances of the decoders on individual tasks (Figure 8). 

For each monkey and pair of decoders, we calculated the difference in m-R2 prediction 

accuracy for individual tasks across three sessions. We first compared the performance 

of PCA-based cluster to that of UMAP (Figure 8A). Datapoints below zero indicate that 

UMAP had overall better performance compared to PCA. However, the performance 

advantage was modest, generally not exceeding 0.1, and came at a cost of significant 

computational overhead when computing the nonlinear projection compared to PCA. 

Given this tradeoff, a PCA-based piecewise linear decoder may be a more feasible 

solution for practical iBCI systems, therefore, we only tested PCA-based piecewise linear 

decoders in further analyses.  

For all numbers of clusters greater than one (where the approaches are equivalent) the 

PCA piecewise linear decoders consistently outperformed the global linear decoders 

(Figure 8B). With two clusters, the global LSTM decoder performed better for all tasks, 

but it gradually lost this advantage as the number of clusters increased. For monkey T, 

the piecewise linear decoders surpassed the global LSTM decoder for all but the in-lab 

power grasp task with 10 clusters. For monkey P, the piecewise linear decoder achieved 

better decoding accuracy with 12 clusters for most in-cage tasks, but the in-lab power 

and key grasp tasks remained slightly less accurate, even with 16 clusters (Figure 8C). 

Piecewise linear decoders yield accurate decoding even from continuously 

recorded data  

In real-world iBCI applications, there is usually no predefined trial structure or fixed set of 

motor behaviors. Consequently, the decoder must work continuously to produce accurate 

predictions once trained. To assess whether the piecewise decoders could meet this 

requirement, we trained them using data from the initial 15 minutes of an in-cage 

recording session without selecting individual trials or identifying specific types of tasks. 

Subsequently, we evaluated their performance on the remaining continuously recorded 

data.  

As noted above, the slight accuracy advantage of UMAP-based piecewise decoding 

(Figure 8A) is computationally expensive. Since the number of data samples in 

continuous recordings was ~10 times greater than in the trial-concatenated case, training 

the neural networks required to compute the parametric UMAP projection for 15 minutes 

of continuous data demanded >1 hour of CPU time, as did performing inference on the 

remaining 30 minutes of data. Although a GPU could accelerate the calculations, the 
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improvement in time efficiency was modest. Consequently, it was feasible only to do this 

analysis in linear space. Figure 9 shows the results from one representative session for 

each monkey. Because of the greater complexity and more widely varied behaviors of 

these datasets, we set the number of clusters to 12. We computed m-R2 in one-minute 

windows and used linear fits to characterize decoding accuracy throughout the session 

as a function of time. For both monkeys, the piecewise decoding performance was better 

than both global linear and LSTM decoders (Figure 9A, B). Although predictions were 

somewhat less accurate than for the trial-concatenated data (Figure 7), the small 

difference was surprising, considering that the continuous data had nearly an order of 

magnitude more datapoints representing less well-defined defined behaviors. It had been 

well acknowledged that the drifting of neural recordings may affect the stability of iBCI 

decoding accuracy [33], even within the same session [34]. We observed slow declines 

in m-R2 over the 30-minute testing data, characterized by the negative slopes of the linear 

 

Figure 9. EMGs decoded from continuously recorded M1 signals as monkeys moved freely in the cage. 

(A) The accuracies of three types of decoders for data from monkey T. Each dot represents decoding 

accuracy for 16 muscles (m-R2) computed in one-minute windows with a particular decoder (indicated 

by color). (B) Corresponding results for monkey P. (C) A segment of actual EMGs and the predictions 

using piecewise linear decoders from the session of monkey T in (A). This segment was from the 20th 

minute since decoder training. The colors in the predictions indicate the cluster of the neural signals 

belonged to at the current time step. (D) EMG samples and predictions from the session of monkey P 

in (B), which was from the 22nd minute since decoder training. 
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fits for all decoders, which suggests the existence of such instability. The slopes for the 

piecewise linear decoders were smaller than those of the LSTM decoder. Figure 9 C, D 

show segments of continuously recorded EMGs and the corresponding piecewise linear 

predictions for monkey T and monkey P, respectively. It was notable that even though the 

EMGs were more variable compared to the trial-based case (Figure 4B), the piecewise 

linear decoders made accurate predictions by switching between the appropriate 

decoders. Together, these results reinforce the feasibility of using piecewise linear 

decoding in practical iBCI use, especially for an FES BCI, which requires continuous EMG 

predictions to modulate the electrical stimulator.  

 

Discussion 

Most iBCIs have been tested in a relatively limited range of motor behaviors, and virtually 

all effect purely kinematic control. The FES BCI we developed previously [12] has the 

advantage that users can control both postures and forces with the same interface, but 

the ever-changing control dynamics present a challenge to the decoder. A user’s 

experience with the iBCI would be significantly impacted by any inability to work 

effectively across tasks [35]. Here, we have introduced a novel approach to enable iBCIs 

to handle multiple tasks and contexts, specifically for an EMG decoder, but a similar 

approach should work for decoders of movement kinematics [8,36,37] or grasp force 

[9,38]. In the interest of developing highly generalizable decoders, there have been recent 

exciting proposals to develop “large cortical models” that mimic the training of the 

remarkably successful large language models [21], thereby to learn huge dictionaries of 

motor cortical dynamics [22,23]. However, these approaches require vast amounts of 

data and intensive GPU-based training; our approach requires neither. We developed a 

pipeline that finds clusters of neural activity within low-dimensional manifolds and then 

trains a linear decoder to predict EMGs for each cluster. This allowed us to approximate 

the complex nonlinearities [39,40] in neural activity in a piecewise linear manner. We 

compared this piecewise linear decoding with global Wiener filter and LSTM-based 

decoding, both trained on data from all tasks. Surprisingly, the piecewise linear approach 

slightly outperformed even the LSTM. 

Challenges for building iBCI decoders to handle multiple tasks 

iBCI systems typically enable users to handle one type of task in a fixed setting, for 

example, moving several fingers [41], a 2D cursor [6], a virtual arm avatar [42], or an 

anthropomorphic robot arm [8]. While a linear decoder can effectively represent the 

relationship between M1 activity and motor outputs for a single task, for a broader range 

of tasks, the effect of nonlinearities in the mapping becomes more pronounced. Indeed, 

in the current study a linear EMG decoder, trained with data from all the tasks, performed 
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relatively poorly on each component task (Figure 4B). Similar observations have been 

made for wrist muscles under different loading conditions, and for decoding the velocity 

of both initial and corrective movements during reaching [14]. These results highlight the 

impact of the nonlinearity between M1 activity and motor outputs for iBCI systems. Such 

nonlinearities may originate from downstream processes such as gain mechanisms in 

subcortical structures or the spinal cord [20,43,44], or from cognitive or sensory feedback 

inputs to M1 [45]. It is typically not feasible to model these nonlinearities explicitly. If we 

instead parametrize them using artificial neural networks, such as LSTM-based decoders, 

we can achieve significantly higher performance (Figure 4B). However, selecting optimal 

parameters for these decoders during training can be difficult, yet may make the 

difference between mediocre and excellent performance [46].  

Instead, we hypothesized that we could approximate the nonlinearities across tasks using 

a set of linear decoders trained on samples from clusters occurring naturally in low-

dimensional neural manifolds. Our approach tests the hypothesis (illustrated in Figure 

1B), that simple linear decoders can be used to make accurate predictions of EMG 

throughout a broad range of contexts and motor behaviors, if they can approximate the 

complex, nonlinear geometry of the neural landscape in M1. Remarkably, not only was 

our piecewise linear decoder more accurate than a global linear one, but it even sightly 

outperformed a global LSTM decoder, making it a viable option for multi-task iBCI 

systems. 

The most salient factor determining the accuracy of our piecewise decoding approach is 

the number of clusters. Although the analysis of silhouette scores alone did not offer a 

definitive means to select an optimal number of clusters (Figure 5), there were significant 

changes in decoding accuracy as the number of clusters increased (Figure 7).  Piecewise 

decoders began to outperform the global nonlinear decoder when using eight clusters, 

just above the number of identified tasks. However, as the number of clusters increased 

further, performance saturated, in part because the “additional” clusters had very few data 

samples so the corresponding decoders could not be adequately trained. Another factor 

that influenced performance is the dimensionality reduction method used to identify the 

neural manifold. As shown in Figure 7, decoders trained on clusters within the UMAP 

latent space had a small but consistent advantage that vanished when the number of 

clusters exceeded 12. For this reason and given the reduced computational complexity 

of the linear space, we concluded that piecewise decoders based on clusters within the 

PCA latent space are a more efficient solution for practical iBCI use. 

Organization of the neural activity in the low-dimensional manifold 

Previous studies in species ranging from drosophila, to mice, to monkeys, have used 

dimensionality reduction to process movement kinematics and identify clusters within a 

low-dimensional behavioral subspace [47–49]. This allows complex behaviors to be 
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decomposed into simpler sub-behaviors, corresponding to the identified clusters, which 

have been called “behavioral motifs”. It is reasonable to assume that there may be similar 

"neural motifs" controlling these behaviors. These neural motifs may be found at different 

locations in the neural manifold, with identifiable topological relationships between each 

other, revealing how neural activity is organized during motor control. However, verifying 

this hypothesis has been challenging, due to the limited variety of motor behaviors for 

which neural recordings were available. This is especially true for studies with monkeys, 

as they generally need to be restrained in laboratory setting and connected to the 

equipment needed to record neural signals. Our group previously examined the neural 

activity recorded from monkeys in the lab during several types of constrained wrist and 

grasp tasks and found the underlying (linear) neural manifolds all had similar orientation 

[50].   

Our use of wireless recordings [51–53] within a cage allowed us to expand the range of 

tasks explore how the neural activity underlying these tasks in very different contexts were 

organized in the manifold. We recently computed the dimensionality and linearity of neural 

activity in these two settings using methods developed and validated using synthetic data 

[54,55]. We found the in-cage task dimensionality was approximately 50% higher than 

those in the lab, and that the in-cage manifolds tended to be more nonlinear. By studying 

the clustering of neural activity in both linear and nonlinear spaces, we were able to infer 

even more details about the organization of neural manifolds, such as how the sub-

regions of the manifold are related to the tasks, and the topological relationships between 

them. Unlike nonlinear space, clusters within the linear manifolds, were unexpectedly 

related to sub-phases of tasks. For instance, hand pre-shaping clusters were commonly 

identified in both in-lab power and key grasp, as well as in in-cage power grasp (Figure 

6A and B). The nonlinear view of the neural manifold, while more challenging 

computationally, may better approximate its true curved geometry [39,54,56], The more 

clearly-separated, task specific clusters (Figure 6 C and D) suggest that neural activity 

for different tasks and contexts may reside in different regions of a curved nonlinear 

manifold. Thus, in addition to its success at decoding complex movements, our approach 

can enhance our understanding of the organization of M1, providing an intuitive view of 

the complex processes underlying multiple motor tasks and across different contexts. 

Limitation and future directions 

In summary, we have tested a piecewise linear approach to EMG decoding in a multi-

task iBCI that is easy to implement, yet as accurate as a nonlinear RNN. While promising, 

we recognize several limitations in the current study. Although our approach can produce 

accurate EMG predictions from data that span multiple tasks, it requires training data from 

all tasks for good performance. We performed leave-one-task-out tests using piecewise 

linear filters, global Wiener filters, and LSTM decoding. All failed to predict the motor 

outputs of the left-out task. Extrapolation beyond the well-explored region of a nonlinear 
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manifold is always likely to fail. However, by further studying the topology of the curved 

manifolds and the geometric relationships between the clusters, we may be able to build 

decoders through interpolation across the curved manifold, at least for novel tasks having 

activity that falls within the convex hull of the training data.    
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