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Abstract

Zika virus (ZIKV) is a mosquito-borne flavivirus and can cause neurodevelopmental disorders

in fetus. As a neurotropic virus, ZIKV persistently infects neural tissues during pregnancy but

the viral pathogenesis remains largely unknown. ZIKV has a positive-sense and single-

stranded RNA genome, which encodes 7 non-structural (NS) proteins, participating in viral rep-

lication and dysregulation of host immunity. Like those in many other viruses, NS proteins are

considered to be products evolutionarily beneficiary to viruses and some are virulence factors.

However, we found that some NS proteins encoded by ZIKV genome appeared to function

against the viral replication. In this report we showed that exogenously expressed ZIKV NS2A

and NS4A inhibited ZIKV infection by inhibiting viral RNA replication in microglial cells and

astrocytes. To understand how viral NS proteins suppressed viral replication, we analyzed the

transcriptome of the microglial cells and astrocytes and found that expression of NS4A induced

the upregulation of ISGs, including MX1/2, OAS1/2/3, IFITM1, IFIT1, IFI6, IFI27, ISG15 or

BST2 through activating the ISGF3 signaling pathway. Upregulation of these ISGs seemed to

be related to the inhibition of ZIKV replication, since the anti-ZIKV function of NS4A was par-

tially attenuated when the cells were treated with Abrocitinib, an inhibitor of the ISGF3 signaling

pathway, or were knocked down with STAT2. Aborting the protein expression of NS4A, but not

its nucleic acid, eliminated the antiviral activity of NS4A effectively. Dynamic expression of viral

NS proteins was examined in ZIKV-infected microglial cells and astrocytes, which showed

comparatively NS4A occurred later than other NS proteins during the infection. We hypothe-

size that NS4A may possess intrinsic features to serve as a unique type of pathogen associ-

ated molecular pattern (PAMP), detectable by the cells to induce an innate immune response,

or function with other mechanisms, to restrict the viral replication to a certain level as a negative

feedback, which may help ZIKV maintain its persistent infection in fetal neural tissues.
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Author summary

The birth of microcephaly infants due to ZIKV infection in pregnant women is related to

ZIKV persistent infection. However, it is unclear how ZIKV maintains its persistent infec-

tion. In this work, we observed the delayed appearance of ZIKV NS4A protein in neuro-

glia including microglia and astrocytes compared with other non-structural proteins.

Subsequently, we revealed that ZIKV NS4A inhibited viral RNA replication by activating

the ISGF3 signaling pathway and inducing the production of ISGs. Aborting NS4A pro-

tein expression totally rescued ZIKV viral replication. Our study, combined with the pre-

vious findings, suggests that viral non-structural proteins may regulate viral replication,

thus perpetuating ZIKV infection. Our hypothesis provides a mechanism for ZIKV to

maintain its status of a persistent infection during viral infection in fetus, which can shed

lights on our further understanding of viral neuropathogenesis in ZIKV infection.

Introduction

Zika Virus (ZIKV) belongs to the genus flavivirus in the family flaviviridae, which includes

Dengue virus (DENV), Japanese encephalitis virus (JEV), and West Nile virus (WNV) [1]. The

viral genome is a single-stranded RNA of *11 kb, encoding three structural proteins (capsid,

pre-membrane and envelope) and seven non-structural (NS) proteins (NS1, NS2A, NS2B,

NS3, NS4A, NS4B, NS5) [2]. The structural proteins are responsible for the formation of viral

particles, while the NS proteins are involved in viral replication, organization and evasion

from host immunity [3]. In general ZIKV causes asymptomatic infections [4] or mild flu-like

symptoms [5].When ZIKV infects pregnant women, the infection could lead to the birth of

microcephaly infants [6–8]. ZIKV also causes Guillain-Barré syndrome in some adults [9–11].

The mechanism of neurological disorders caused by ZIKV has been extensively investigated in

the past years.

Microglia, the resident macrophages of the central nervous system (CNS), have a perivascu-

lar localization which allows them to monitor the influx of blood-borne components into the

CNS [12]. Our and other studies show that microglia are highly susceptible to ZIKV [13]. In
vitro culture and histology of fetal brain tissues from the brain with microcephaly have shown

that ZIKV activates microglia and induces high levels of pro-inflammatory cytokines [14,15].

The inflammatory factors may be detrimental to the development of the fetal brain [16]. In

addition, microglia-like cells (pMGLs) could invade and initiate neuronal infection when

ZIKV infected-pMGLs were co-cultured with neurospheres [17]. Because microglia originate

from primitive macrophages close to the maternal vasculature, they may act as a viral reservoir

for ZIKV and help establish an infection of the fetal brain [17].

Astrocytes, the most abundant cells of the CNS, have a number of neuroprotective func-

tions, including maintaining the integrity of the blood-brain barrier (BBB), regulating synapses

function and promoting neuronal repair [18]. Viral infection of astrocytes leads to increased

permeability of the BBB and the entry of neurotoxic substances into the brain. Therefore,

astrocytes have a critical impact on viral neuropathogenesis [18,19]. ZIKV infects astrocytes by

recognizing AXL receptors and regulates their immune response [20,21]. ZIKV can persis-

tently infect human fetal astrocytes (HFAs) at least one month, and no obvious apoptosis is

induced [22]. The above findings suggest that microglia and astrocytes may play an important

role in neurological disease induced by ZIKV, but how the virus maintain its status of persis-

tent infection in infants remains unknown.
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Progress has been made in the study on ZIKV NS proteins in viral pathogenesis. ZIKV

NS1, NS3, NS4B and NS5 all inhibit the interferon signaling pathway [23–26] and NS2B-NS3

impedes JAK-STAT signaling pathway [23]. NS2A and NS4A may play a role in ZIKV-

induced neurological disorders. ZIKV NS2A attenuates the proliferation of radial glial cells

and causes defects of adherent junction proteins in human forebrain organoids [27]. Co-

expression of NS4A and NS4B in fetal neural stem cells inhibits Akt-mTOR signaling pathway,

which is one of the key cellular pathways essential for brain development and autophagy regu-

lation by promoting autophagy and inhibiting neurogenesis in human fetal neural stem cells

[28]. NS4A may also inhibit brain development through inhibiting the function of Ankle2,

whose mutations cause an autosomal recessive microcephaly in humans [29]. However, stud-

ies on ZIKV NS proteins are mostly in non-neural cells.

In this study, we confirmed that ZIKV could infect human microglial cells and astrocytes

by examining the replication of viral genome and the expression of viral proteins. We observed

a late appearance of NS4A during viral infection in human microglia and astrocytes and won-

dered whether this delayed appearance of NS4A had a unique role in viral neuropathogenesis.

To our surprise, expression of NS4A exhibited an activity against ZIKV replication, which

prompted us to analyze the underlying mechanism and possible ramification of this intrinsic

“viral protein against itself” feature. We propose that ZIKV utilizes its NS4A to suppress its

replication via a unique mechanism, so that viral persistent infection could be maintained and

ZIKV stay in fetal neural tissues for extended presence.

Materials and methods

Cells and viruses

HMC3 cells were maintained in Minimum Essential Medium (MEM) (Gibco, ThermoFisher)

supplemented with 10% fetal bovine serum (FBS, Gibco) at 37˚C in 5% CO2. U251, HeLa,

HEK293, Vero and BHK21 cells were maintained in Dulbecco’s modified Eagle medium

(DMEM) (Gibco, ThermoFisher) with 10% FBS. ZIKV strain SZ01/2016 (GenBank number:

KU866423) was isolated from a patient who returned from Samoa [30]. ZIKV strains MR766

(#VR1838) were obtained from ATCC. SFTSV (JS-2010-14 strain) was isolated from periph-

eral blood samples of a patient by Jiangsu Provincial Centers for Disease Control and Preven-

tion [31]. EV-A71 (Fuyang strain) was kindly provided by Dr. Wu Bin at Jiangsu Provincial

Centers for Disease Control and Prevention [32]. All viruses were propagated in Vero cells

and the virus stock titers were determined by a plaque formation unit (PFU) assay.

Construction of cell lines

To construct microglial and astrocytes cells expressing ZIKV NS proteins, the cDNA of NS1,

NS2A, NS2B, NS3, NS4A and NS4B were amplified from ZIKV SZ01/2016 and cloned into

pLVML-3×HA-MCS-IRES-Puro (MiaoLing Plasmid Sharing Platform, China) or pRK5-HA

vector. The empty vector pLVML-3×HA-MCS-IRES-Puro or pLVML-3×HA-MCS-IRE-

S-Puro-NS, psPAX2 and PMD-2.G were co-transfected into HEK293 cells in a 1:1:1 ratio by

Vigofect (Vigorous Biotechnology, Beijing, China) and the lentiviruses in culture supernatant

were collected at 48 h post transfection. Microglial and astrocytes, HMC3 and U251 cells,

respectively, were infected by the lentiviruses and the infected cells were screened with 2 or

8 μg/ml puromycin (Selleck, Shanghai, China) for 48 h post infection (p.i.). Two weeks later,

HMC3 and U251 cells stably expressing ZIKV NS proteins were validated by immunofluores-

cence assay (IFA) and western blot analysis (WB). Cell lines, which were generated using lenti-

viruses with empty vector, served as a control for cells expressing NS proteins. We uniformly

labeled these cells as “Vector” in all figures.

PLOS NEGLECTED TROPICAL DISEASES Regulation of ZIKV Replication by Viral NS4A

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010366 May 6, 2022 3 / 24

https://doi.org/10.1371/journal.pntd.0010366


To obtain cell lines expressing NS4A-X, nucleotides TAA were inserted before the start

codon ATG of NS4A sequence on the pLVML-3×HA-MCS-IRES-Puro-NS4A plasmid, allow-

ing the retention of the NS4A nucleic acid and the termination of protein expression

(NS4A-X). Subsequently, cell lines stably expressing NS4A-X were obtained according to the

method described above.

To achieve U251 cells knocking down STAT2, p-GIPZ-shSTAT2 and p-GIPZ were pur-

chased from Shanghai Jiao Tong University. Subsequently, together with psPAX2 and PMD-2.

G, lentiviruses were constructed and used to infect U251 cells with or without NS4A expres-

sion. The lentiviruses packaged by empty plasmid p-GIPZ were set as the negative control for

knockdown of STAT2.

Immunofluorescence assay (IFA)

To verify whether HMC3 and U251 cells stably expressed ZIKV NS protein, cells were seeded

on sterile coverslips in 24-well plates at 1x105 per well. 24 h later, cells were fixed with 4% para-

formaldehyde (Sigma-Aldrich, St Louis, MO) for 15 min, then perforated by 0.1% Triton X-

100 for 15 min, blocked by 3% BSA for 30 min. Then the cells were incubated with anti-HA

rabbit antibodies (1:500, CST, USA) for 1 h at room temperature. After three PBS washes, the

cells were incubated with AlexaFluor 488-labelled donkey anti-rabbit IgG (1:1,000, Thermo-

Fisher Scientific, Wilmington, DE, USA) for 1 h at room temperature. Following five washes

by PBS, the coverslips were sealed with Prolong Gold Antifade reagent with DAPI (Thermo-

Fisher Scientific, Wilmington, DE, USA) and observed under the Olympus FLUOVIEW

FV3000 confocal microscope. To detect the expression of viral dsRNA in HMC3 cells express-

ing NS2A or NS4A, the HMC3 cells were infected by 0.1MOI of ZIKV SZ01/2016 for 24 or 48

h. The J2 mouse monoclonal anti-dsRNA antibody (1:1000, SCICONS, Sizlaku, Hungary) was

used as a primary antibody and Alexa Fluor 488-labelled donkey anti-mouse IgG (1:1000,

ThermoFisher Scientific, Wilmington, DE, USA) was used as a secondary antibody.

Western blot analysis

To test the expression of viral proteins in HMC3 or U251 cells, cells were lysed at various time

points after ZIKV infection using cell lysis buffer for Western and IP (Beyotime Biotechnology,

Shanghai, China) with protease inhibitors (1:100, ThermoFisher Scientific, Wilmington, DE,

USA). The polyclonal anti-ZIKV E rabbit antibodies (1:1000, biodragon-immunotech, Beijing,

China), anti-ZIKV NS2B, NS3, NS4A, or NS5 rabbit antibodies (1:1000, GeneTex, CA, USA),

or the monoclonal anti-GAPDH antibodies (1:1000, Proteintech, Wuhan, China) were used as

the primary antibodies. The horseradish peroxidase (HRP)-conjugated antibodies (1:3000)

against mouse IgG or rabbit IgG obtained from Proteintech (Wuhan, China) were used as the

secondary antibodies. To verify whether the expression of NS2A and NS4A activates the

ISGF3 signaling pathway, HMC3 cells expressing NS2A or NS4A were collected for detection

of STAT1, phospho-STAT1 (Tyr701), STAT2, phospho-STAT2 (Tyr690) and IRF9. Antibod-

ies for the above proteins were purchased from ABclonal (Wuhan, China).

Flow cytometry

To examine the response of HMC3 or U251 cells stably expressing ZIKV NS proteins to ZIKV

infection, the above cells were infected with 0.1 MOI of ZIKV SZ01/2016. 72 or 48 h p.i. later,

the cells were prepared according to the instructions of the apoptosis kit (US Everbright,

Suzhou, China) as follows. Briefly, the cells were washed with PBS, then digested with 0.25%

EDTA-free trypsin. After 2 washes with PBS, the cells were suspended with 100 μl binding

buffer with 5 μl Annexin V and 5 μl propidium iodide (PI). After 15 min incubation at room
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temperature, 400 μl binding buffer was added to each sample. Finally the cells were filtered

through 200 mesh gauze and immediately analyzed on a BD FACS Calibur. The collected data

were further analyzed by FlowJo V10.

Viral plaque formation unit assay

BHK21 cells were seeded on a 12-well plate at 5x105 per well the day before infection. Ten-fold

serially diluted viruses were inoculated to BHK21 cells in triplicates. After 2 h of infection, the

virus inoculum was discarded and replaced by DMEM containing 2% FBS in 1% low melting

point agarose. After the agarose was solidified at room temperature, the plates were transferred

to an incubator. 4–5 days later, when viral plaques were visible, the cells were stained with crys-

talline violet dye in 4% paraformaldehyde (PFA) for 4 h at room temperature. The plates were

washed and viral plaques were counted.

Quantitative real time polymerase chain reaction (qRT-PCR)

To quantify viral RNA copies in cell culture medium after virus infection in HMC3 cells

expressing NS2A or NS4A, the culture medium was collected at 24, 48, 72 and 96 h p.i. Viral

RNA was extracted using the TIANamp Virus RNA Kit (Tiangen biotech, Beijing, China), and

viral RNA copies were quantified by One Step PrimeScript RT-PCR Kit (Takara Bio, Shiga,

Japan) with the QuantStudio 5 PCR instrument (ABI). The following primers were used:

ZIKV-E-F-Taq (5’- GGTCAGCGTCCTCTCTAATAAACG -3’), ZIKV-E-R-Taq(5’- GCACC

CTAGTGTCCACTTTTTCC-3’), Probe (5’-6-FAM-AGCCATGACCGACACCACACCGT

-BHQ1-3’). Standard curves were prepared using a plasmid encoding ZIKV E gene.

To determine the expression of viral genes in cells after viral infection or the expression of

NS4A-induced ISGs, total RNA was isolated from the cells using RNAiso Plus reagent (Takara

Bio) and reversed by HiScript III RT SuperMix for synthesis of cDNA and qPCR analysis

(+gDNA wiper) (Vazyme Biotech, Nanjing, China). Then gene expressions were quantified by

TB Green Premix Ex Taq II (Tli RNaseH Plus) (Takara Bio) with the QuantStudio 5 or ABI

Viia 7 PCR instrument. The primers are listed in Table 1.

ZIKV attachment, entry, and replicon assay

ZIKV attachment and entry experiments were performed as previously described [33]. For the

viral attachment assay, HMC3 cells expressing NS2A or NS4A were seeded in 6-well plates at

1x106 cells per well. 24 h later, the cells were infected with ZIKV SZ01/2016 (MOI = 2) and

incubated at 4˚C for 1 h. The unbound viruses were removed and the cells were washed twice

with PBS, followed by preparation of total RNA from the cells for measuring viral RNA copies

by qRT-PCR. For the entry assay, after the incubation of the cells and virus at 4˚C for 1 h, the

cells were washed twice with PBS, and subsequently treated with pre-warmed MEM for 10

min at 37˚C. After 3 time washes with PBS, the cells were treated with 0.25% trypsin. After

another 3 time washes with PBS, the cells were collected for preparing total RNA and measur-

ing viral RNA copies by qRT-PCR.

The replicon assay was referred to previous reports [34,35] with modifications. ZIKV repli-

cons carrying genes encoding three structural proteins and seven NS proteins were gifted by

Long Gang at Institut Pasteur of Shanghai, Chinese Academy of Sciences. Firstly, the plasmids

with ZIKV replicon were linearized by Mlu1 enzyme (NEB, USA). After phenol/chloroform

extraction, the linearized plasmids were transcribed into infectious viral RNA in vitro accord-

ing to the instructions of mMESSAGE mMACHINE T7 Transcription Kit (Thermo Fisher Sci-

entific). Subsequently, 5x106 HMC3 cells expressing NS2A or NS4A were resuspended in

400 μl electrotransfer solution cytomix buffer. The mixtures of cells and 5 μg Zika RNA were
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transferred to sterile electroporation cuvette (4 mm, BioRad, USA). After electroporation the

cells every 3 s at 450V, 25 uF, total 3 times, by Gene Pulser Xcell Electroporation System

(BioRad, USA), the cells were transferred to 3.5 ml MEM containing 2% FBS immediately, and

seeded in 6 cm dishes for culture at 37˚C, 5% CO2. Finally, the cells were collected at 48 and 96

h for measuring viral RNA copies by qRT-PCR or at 24, 48, 72 and 96 h for determining the

expression of NS2B by western blot assay.

Table 1. Sequences of primers for qRT-PCR used in the study.

Primer name Sequence (5’ to 3’)

H-MX1-F CACCAGCGACAAGCGGAAGTT

H-MX1-R AGTCGTCAGTCCAGTGGCTACC

H-MX2-F GAACAATCAGCCACCACCAGGA

H-MX2-R TTCAGCACCAGCGGACACCT

H-OAS1-F GCAGACGATGAGACCGACGAT

H-OAS1-R GCACTGGCATTCAGAGGATGGT

H-OAS2-F TGCTCTCGGTGCTTCCAACTCA

H-OAS2-R TGGCTGCTGGCATAGAGGATGT

H-OAS3-F ATGCCGACCTCGTGGTGTTC

H-OAS3-R AACTGCCGCTCCTGTTGACAT

H-IFITM1-F TCCTTCCAAGGTCCACCGTGAT

H-IFITM1-R CGTCGCCAACCATCTTCCTGTC

H-IFIT1-F GCGCTGGGTATGCGATCTCT

H-IFIT1-R AAGCGGACAGCCTGCCTTAG

H-IFI6-F GCTGGTCTGCGATCCTGAATGG

H-IFI6-R GCTGCTGGCTACTCCTCATCCT

H-IFI27-F AATCGCCTCGTCCTCCATAGCA

H-IFI27-R CCTCGCAATGACAGCCGCAAT

H-BST2-F GCAGAGGTGGAGCGACTGAGAA

H-BST2-R AGCAGGACGGACCTTCCAAGAT

H-XAF1-F GCCTACTTGCTGTGGTGGTCTT

H-XAF1-R ATGTTCCTTCGACGCCTGGTT

H-ISG15-F TGCTGGTGGTGGACAAATGCG

H-ISG15-R CCCCTCGAAGGTCAGCCAGA

H-USP18-F CCATCGTGCCTGGCTCACAT

H-USP18-R AACCAACCAGGCCATGAGGG

ZIKV-E-F GGGTTGATGTTGTCTTGGAACAT

ZIKV-E-R AGGCTTCACCTTGTGTTGGG

ZIKV-NS3-F TGCCATGCCACCTTCACTTCAC

ZIKV-NS3-R CCTCGCCCATCTCAACCCTTGT

ZIKV-NS4A-F ACAAGGGCATAGGGAAGATGGG

ZIKV-NS4A-R AGCACCACCAGCAATAGGAACA

SFTSV-F GCAAGATGACCAACACAGTATGGTT

SFTSV-R CCACTAGGCCACCTAAGAGCA

EV-A71-F CGCCCAAGGTTGTGACACGATT

EV-A71-R ACTATGCCGACGACGCCATGTT

HA-NS4A-F TTATGATGTCCCAGACTACGCA

HA-NS4A-R ATTCCCAGCGAGACTGTTCC

H-β-actin-F AAGGAGAAGCTGTGCTACGTCGC

H-β-actin-R AGACAGCACTGTGTTGGCGTACA

https://doi.org/10.1371/journal.pntd.0010366.t001
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RNA-Sequencing (RNA-Seq)

The HMC3 cells expressing NS2A or NS4A were plated on 10 cm culture plates and infected

with 0.1 MOI of ZIKV/SZ01. Total RNA was prepared from the cells using RNAiso Plus

reagent (Takara Bio) at 24 h p.i. and sent to Gene Donovo (Guangzhou, China) for RNA-Seq.

Statistical analysis

Statistical analyses were performed by SPSS 13.0. The differences between groups of ZIKV NS

proteins and controls were evaluated by two-tailed Student’s t test and the p-value of each test

was chosen according to the result of Levene’s Test for Equality of Variances. �, P < 0.05; ��,

P< 0.01; ���, P < 0.001.

Results

NS4A protein occurred later than NS2B, NS3 and NS5 during ZIKV

infection

ZIKV could infect human microglial and astrocytic cells and induce cytopathic effect and cell

death (S1 Fig). We examined the replication of ZIKV RNA and the expression of viral proteins.

ZIKV RNA replication was shown in Fig 1A (HMC3) and Fig 1B (U251) as we measured the

relative viral RNA copies of genes encoding structural (E) or NS proteins (NS3 and NS4A).

The RNA amplification trends of the three viral proteins were consistent, with a rapid increase

before 18 h p.i. and a plateau after 30 h p.i. However, the protein expression of NS4A occurred

later than other NS proteins in HMC3 and U251 cells. As shown in Fig 1C, 1D and 1F–1G,

NS2B, NS3 and NS5 were highly expressed at 18, 30 or 42 h p.i, and NS4A was highly expressed

at 30, 42 and 54 h p.i. It seems that the appearance of NS4A is delayed compared with other

NS proteins. To test whether the delayed appearance was also present in non-neuronal cells,

we examined the expression of ZIKV NS proteins in Vero cells. As shown in Fig 1E and 1H,

NS4A also occurred later than NS2B, NS3 and NS5 in Vero cells.

NS2A and NS4A were reversely associated with cell death induced by ZIKV

infection

To investigate the effect of ZIKV NS proteins on viral infection, we constructed HMC3 and U251

cell lines stably expressing ZIKV NS proteins. As shown in S2 and S3 Figs, HMC3 and U251 cells

stably expressed ZIKV NS1, NS2A, NS2B, NS3, NS4A, or NS4B. Since NS5 expression inhibits

glial cells growth [36], we failed to construct glial cells stably expressing NS5. HMC3 or U251 cells

stably expressing ZIKV NS proteins were infected by 0.1 MOI of ZIKV for 72 or 48 h. The cell

morphology changes were observed under a microscope and the cell death was detected by flow

cytometry analysis after Annexin V/PI staining. As shown in Figs 2A and S4, the expression of

ZIKV NS proteins significantly inhibited the number of Annexin V- positive HMC3 cells after

viral infection. The expression of NS2A, NS2B, NS3, and NS4A significantly reduced the number

of PI- positive U251 cells after viral infection (Figs 2B and S4). However, the morphology of

HMC3 (Fig 2C) or U251 (Fig 2D) cells expressing NS1, NS2B, NS3, or NS4B was similar to the

control cells after infection, and the cells were shrunk and suspended; the morphology of the

infected cells expressing NS2A or NS4A remained as healthy as the control cells without infection.

There were lower Annexin V or PI positive rates in cells expressing NS2A or NS4A than that of

cells expressing other NS proteins, with 4.76% or 7.67% Annexin V- positive rates in HMC3 cells

(Fig 2A) and 15.3% or 4.11% PI- positive rates in U251 cells (Fig 2B), respectively. NS2A and

NS4A may be able to inhibit viral infection more effectively than other NS proteins, thus reducing

cell death, which is what we intended to investigate.
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NS2A and NS4A inhibited ZIKV infection

To investigate the effect of NS protein expression on ZIKV infection, HMC3 cells expressing

NS proteins were infected by 0.1 MOI of ZIKV, and the viral titers in the culture supernatants

Fig 1. NS4A protein occurred later than NS2B, NS3 and NS5 during ZIKV infection. (a-b) Replication of ZIKV genome in microglial cells

(HMC3) and astrocytic cells (U251). (c-e) Expression of ZIKV proteins in HMC3, U251 and Vero cells. (f-h) Gray scale analysis of Fig 1C (f), Fig

1D (g) and Fig 1E (h). After ZIKV/SZ01 (0.1 MOI) infection of HMC3, U251 or Vero cells for 0, 6, 18, 30, 42, and 54 h, the viral RNA or viral

proteins in cell lysates was determined by qRT-PCR or western blot analysis. Data are means ± SEM of triplicate experiments. E, envelope

protein; NS2B, non-structural 2B protein; NS3, non-structural 3 protein; NS4A, non-structural 4A protein; NS5, non-structural 5 protein.

https://doi.org/10.1371/journal.pntd.0010366.g001
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were measured by a plaque formation unit (PFU) assay. As shown in Fig 3A and 3B, the infec-

tious viral particles in cells expressing NS2A or NS4A were significantly less than that in the

control cells without NS. ZIKV E protein levels in HMC3 cells expressing NS2A or NS4A were

markedly lower than that in the cells expressing other NS proteins after ZIKV infection (Fig

3C). To further verify the inhibition of ZIKV replication by NS2A and NS4A, the culture

Fig 2. NS2A and NS4A were reversely associated with cell death induced by ZIKV infection. (a-b) Cell death after ZIKV/SZ01

infection of HMC3 or U251 cells expressing ZIKV NS proteins. (c-d) Cytopathic effect after ZIKV/SZ01 infection of HMC3 (72 h p.i.)

or U251 (48 h p.i.) cells expressing ZIKV NS proteins. Scale bar, 50 μm. HMC3 or U251 cells (expressing ZIKV NS1, NS2A, NS2B, NS3,

NS4A, or NS4B) were infected by 0.1 MOI of ZIKV/SZ01. Cell death was determined by flow cytometry and Annexin V/PI apoptosis

kit at 48 (U251) or 72 (HMC3) h p.i. The cytopathic effect was observed under a light microscope. The differences between groups of

control and NS proteins were evaluated by two-tailed Student’s t test. Data are means ± SEM of triplicate experiments; �, P< 0.05; ��,

P< 0.01; ���, p< 0.001.

https://doi.org/10.1371/journal.pntd.0010366.g002

PLOS NEGLECTED TROPICAL DISEASES Regulation of ZIKV Replication by Viral NS4A

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010366 May 6, 2022 9 / 24

https://doi.org/10.1371/journal.pntd.0010366.g002
https://doi.org/10.1371/journal.pntd.0010366


Fig 3. NS2A and NS4A inhibited ZIKV infection. (a-b & e) NS2A and NS4A reduced the production of infectious viral particles in HMC3 or U251

cells (48 h p.i.). (c) NS2A and NS4A inhibited the expression of ZIKV E protein in HMC3 cells. (d) NS2A and NS4A inhibited viral RNA replication

in HMC3 cells. (f) NS2A and NS4A inhibited the replication of viral genome in U251 cells. HMC3 or U251 cells (expressing ZIKV NS1, NS2A, NS2B,

NS3, NS4A, or NS4B) were infected by 0.1 MOI of ZIKV/SZ01 for 48 or 72 h. ZIKV titers in the culture supernatants were determined by viral plaque

formation unit assay (Fig 3A, 3B and 3E) and the expression of ZIKV envelope (E) at 48 h p.i. (Fig 3C) was examined by western blot analysis. Fig 3B

was the quantitative analysis of results shown in Fig 3A. ZIKV E was stained by an anti-E rabbit antibody. HMC3 or U251 cells (expressing ZIKV

NS2A or NS4A) were infected by 0.1 MOI of ZIKV/SZ01 and total RNA was prepared at various time points p.i. for measuring viral RNA copies in

the culture supernatants (HMC3, Fig 3D) or viral genome in cell lysates (U251, Fig 3F), determined by TaqMan or SYBR Green qRT-PCR. The

differences between groups of control and NS proteins were evaluated by two-tailed Student’s t test. Data are means ± SEM of triplicate experiments;
�, P< 0.05; ��, P< 0.01; ���, p< 0.001.

https://doi.org/10.1371/journal.pntd.0010366.g003
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medium of ZIKV infected cells were collected at 24, 48, 72 and 96 h p.i. for measuring viral

RNA copy numbers by qRT-PCR. We found that the viral RNA copies in cells expressing

NS2A or NS4A were much less than those in cells without NS proteins (Fig 3D). In agreement

with results from HMC3 cells, NS2A and NS4A expression in U251 cells also effectively inhib-

ited the infection of ZIKV (Fig 3E and 3F).

NS2A and NS4A mainly inhibited ZIKV RNA replication

To examine which step of viral life cycle was targeted by NS2A and NS4A, HMC3 cells express-

ing NS2A or NS4A were infected with ZIKV at 4˚C for 1 h, followed by washing the cells to

remove unbinding viruses. Total RNA was prepared from the cells to determine the viral

attachment by qRT-PCR. The results showed that NS4A expression inhibited 28.9% of ZIKV

attachment to HMC3 cells but NS2A expression had no such effect (Fig 4A). Subsequently, we

detected the impact of NS2A and NS4A on ZIKV entry. As shown in Fig 4B, both NS2A and

NS4A exhibited significant inhibitory effect on viral entry compared to the control, with the

inhibition rates of 33.8% and 35.1%, respectively. At the same time, viral dsRNA was detected

at 24 and 48 h p.i. As shown in Figs 4C, 4F and S5, NS2A and NS4A significantly inhibited the

production of viral dsRNA. To characterize the effect of NS2A and NS4A on viral RNA repli-

cation, plasmids carrying cDNA of ZIKV full genome were transcribed into RNA in vitro and

then the infectious RNA was electrotransfected into HMC3 cells expressing NS2A or NS4A.

Total RNA were prepared from the transfected cells for viral RNA detection and cell lysates

were collected to determine the expression of NS2B. NS2B is part of the replication complex

and is responsible for grouping together the other components of the replication complex

[37,38]. As shown in Fig 4D, NS2A and NS4A expression significantly suppressed viral RNA

replication, with 177 or 795-fold lower viral copies than controls at 48 or 96 h post transfec-

tion, respectively. The expression of NS2B protein was markedly lower in the cells expressing

NS2A or NS4A than that in the controls (Fig 4E). These results indicate that NS2A and NS4A

mainly inhibited ZIKV RNA replication.

NS2A and NS4A broadly inhibited viral infection

The above results showed NS2A and NS4A from ZIKV/SZ01 inhibited ZIKV/SZ01 infection.

Here, we detected whether NS2A and NS4A inhibited the infection of ZIKV/MR766, SFTSV

and EV-A71. As shown in Fig 5A and 5B and Fig 5E and 5F, expression of NS2A and NS4A

could inhibit the infection of ZIKV/MR766 as effectively as did of ZIKV/SZ01. We tried two

other viruses, one from bunyaviridae, SFTSV, and another from piconaviridae, EV-A71, to see

if NS2A and NS4A could have any impact on them from different families. As shown in Fig

5C, 5G and 5H, replications of SFTSV and EV-A71 were also inhibited to some extents. HeLa

and HEK293 cells were also tested by transfection with plasmids expressing NS2A or NS4A.

As shown in Fig 5I–5L and Fig 5D, transient expression of NS2A and NS4A also could effec-

tively inhibit the replication of ZIKV/SZ01, ZIKV/MR766, SFTSV and EV-A71 in HeLa or

HEK293 cells. The above results suggested that NS2A and NS4A not only affected the process

of ZIKV infection, but also might activate some host broad spectrum of antiviral responses.

NS4A enhanced ISGs expression by activating ISGF3 pathway in HMC3 cells

We next explore the antiviral mechanism of NS4A against ZIKV infection. HMC3 cells

expressing NS4A were infected with ZIKV/SZ01 for transcriptome analysis and the differen-

tially expressed genes in NS4A-expressing cells were determined by RNA-Seq. As shown in

Fig 6A, there were more than 800 genes, which were differentially expressed between ZIKV-

non-infected and infected cells (Vec-M-vs-Vec-S). Of these, 532 genes were consistent with
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Fig 4. NS2A and NS4A inhibited ZIKV RNA replication. (a) Inhibition of ZIKV attachment to cells by NS2A and NS4A. HMC3 cells

expressing NS2A or NS4A were incubated with 2 MOI of ZIKV at 4˚C for 1 h, followed by washes extensively with PBS. Viral

attachment was assessed by qRT-PCR. (b) Inhibition of ZIKV entry into cells by NS2A and NS4A. HMC3 cells expressing NS2A or

NS4A were incubated with 2 MOI of ZIKV at 4˚C for 1 h, followed by incubation at 37˚C for another 10 min. Viral entry into cells was

determined by qRT-PCR. (c & f) Inhibition of ZIKV dsRNA production by NS2A and NS4A. DsRNA synthesis was analyzed by IFA in

HMC3 cells (expressing ZIKV NS2A or NS4A) infected with 0.1 MOI of ZIKV for 24 or 48 h (Fig 4F). DsRNA was probed by the J2

mouse monoclonal anti-dsRNA antibody (green) with cell nuclei stained by 4,6-diamidino-2-phenylindole (DAPI, blue). Scale bar,
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the differentially expressed genes between the infected cells expressing or non- expressing

NS4A (Vec-S-vs-NS4A-S). In contrast, there were just 12 differentially expressed genes

between NS4A-expressing cells infected with or without ZIKV (NS4A-M-vs-NS4A-S), which

substantiated NS4A could inhibit the replication of ZIKV in HMC3 cells. Meanwhile, there

were about 70 differentially expressed genes between the cells with or without expression of

NS4A (Fig 6A). Thirteen IFN-stimulated genes (ISGs), including Mx1/2, Oas1/2/3, Ifitm1,

Ifit1, Ifi6, Ifi27, Xaf1, Bst2, Isg15, and Usp18, were up-regulated by NS4A expression (Fig 6B

and 6C), which may be due to the activation of IFN-stimulated gene factor 3 (ISGF3) signaling

pathway (Fig 6D). To verify the activation of ISGF3 signaling pathway, the expression levels of

phosphorylated STAT1\STAT2 and IRF9 in HMC3 cells were analyzed by western blot assay.

As shown in Fig 6E, phosphorylated STAT1\STAT2 and IRF9 increased in NS4A-expressing

cells in comparison with the cells without NS4A. Taken together, these results indicated that

NS4A induced the expression of ISGs through activating the ISGF3 signaling pathway.

The ISGF3 signaling pathway was partially responsible for the antiviral

effect of NS4A

To examine the role of ISGF3 signaling pathway in the antiviral effect of NS4A, Abrocitinib

(JAK1 inhibitor, also inhibition of STAT1 phosphorylation) [39,40] was used to pre-treat the

cells for inhibiting the ISGF3 signaling pathway. As shown in Fig 7A Abrocitinib inhibited the

phosphorylation of STAT1 and the expression of STAT1 and IRF9 effectively. In the cells with-

out NS4A expression, ZIKV E protein obviously increased with the dose of Abrocitinib (Fig

7A). ZIKV E protein in the cells expressing NS4A was not detected in the presence of Abrociti-

nib, indicating that the expression of ZIKV E remains low. Though the viral copies in the cul-

ture supernatants of the cells expressing NS4A significantly increased with the dose of

Abrocitinib, they were about 100 fold lower than that of cells without NS4A expression. (Fig

7B). We knocked down STAT2 with specific shRNA in U251 cells expressing NS4A to exam-

ine whether STAT2 was also involved in the antiviral activity of NS4A. As shown in Fig 7C,

knockdown of STAT2 resulted in decreased expression of STAT2 and p-STAT2, but no visible

increase of the ZIKV E protein expression. Although E RNA replication was significantly

enhanced in the cells expressing NS4A and shSTAT2 compared to control at 48 h p.i., it was

145-fold lower than that in the cells without NS4A expression (Fig 7D). These results suggested

that STAT1 and STAT2 may be less associated with the antiviral activity of NS4A.

In addition, we observed that NS4A in U251 (Fig 8A) or HeLa (Fig 8B) cells significantly

induced the expression of Ifi27 and Bst2 or Mx1 and Isg15, a different pattern from observed

in HMC3 cells, probably suggesting that NS4A up-regulated some ISGs in a cell type-depen-

dent manner. According to the above, the activation of ISGF3 signaling pathway may play a

partially role in the antiviral effect of NS4A.

Aborting NS4A protein expression rescued ZIKV RNA replication and

protein expression

To further explore the inhibitory effect of NS4A on ZIKV replication, we generated the cell

lines expressing mutant NS4A (NS4A-X) by transfecting HMC3 or U251 cells with plasmids

50 μm. Four fields of each group were randomly selected for statistical analysis by Image J (Fig 4C). (d) Inhibition of ZIKV RNA

replication by NS2A and NS4A. (e) Inhibition of ZIKV NS2B expression by NS2A and NS4A. HMC3 cells expressing NS2A or NS4A

were transfected with RNA from ZIKV replicons. At 48 or 96 h post transfection, total RNA was prepared from the cells and ZIKV RNA

copies were measured by qRT-PCR (Fig 4D). Lysates were collected to determine the expression of NS2B by western blot assay at 24, 48,

72 or 96 h.p.i. (Fig 4E). The differences between groups of controls and NS proteins were evaluated by two-tailed Student’s t test. Data

are means ± SEM of at least triplicate experiments; ��, P< 0.01; ���, p< 0.001.

https://doi.org/10.1371/journal.pntd.0010366.g004
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expressing HA-NS4A, which has a stop codon introduced to abort the translation of NS4A.

We specifically detected HA-NS4A RNA replication by designing the upstream primers in the

HA sequence and the downstream primers in the NS4A sequence. As shown in Fig 9, even

though the NS4A RNA was transcribed, NS4A protein was absent due to the termination of its

translation in the transfected cells. In the absence of NS4A protein, ZIKV E RNA replication

Fig 5. NS2A and NS4A broadly inhibited viral infection. (a-c & e-h) The antiviral activity of NS2A and NS4A in HMC3 or U251 cells. HMC3 or U251

cells expressing NS2A or NS4A were infected by 0.1 MOI of ZIKV/SZ01, ZIKV/MR766, SFTSV or EV-A71 for 24 and 48 h. Viral RNA copies in infected

cells were determined by qRT-PCR. (d & i-l) Antiviral activity of NS2A and NS4A in HEK293 or HeLa cells. HEK293 or HeLa cells were transfected with

plasmids expressing NS2A or NS4A for 24 h, followed by infection with ZIKV/SZ01, ZIKV/MR766, SFTSV or EV-A71 for 24 (Fig 5D) or 48 h. Viral RNA

copies in infected cells were determined by qRT-PCR. The differences between groups of control and NS2A or NS4A were evaluated by two-tailed Student’s

t test. Data are means ± SEM of triplicate experiments; �, P< 0.05; ��, P< 0.01; ���, p< 0.001.

https://doi.org/10.1371/journal.pntd.0010366.g005
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Fig 6. NS4A enhanced ISGs expression by activating ISGF3 pathway in HMC3 cells. (a) Venn Diagram of differentially expressed genes. After HMC3

cells with or without NS4A expression were infected with 0.1 MOI of ZIKV/SZ01 for 24 h, total RNA from the mock and virus infected cells were
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(Fig 9A and 9C) and protein expression (Fig 9B and 9D) were almost all reverted to the level of

the controls in HMC3 cells, or even higher in U251 cells. The above results suggest that the

expression of NS4A protein plays a major role in the inhibition of viral infection.

Discussion

In this report, we observed a delayed appearance of ZIKV NS4A in human microglial cells and

astrocytes (Fig 1). We constructed HMC3 and U251 cell lines stably expressing ZIKV NS pro-

teins (NS1, NS2A, NS2B, NS3, NS4A, or NS4B) (S1 and S2 Figs), and analyzed the effect of NS

proteins on ZIKV infection. The results showed that expression of ZIKV NS2A and NS4A acti-

vated the IFN response signaling or other unknown mechanism, which inhibited ZIKV infec-

tion through suppressing ZIKV RNA replication in HMC3 and U251 cells (Figs 2–4). We did

not pursue the detection of the NS2A expression due to lack of antibodies for ZIKV NS2A.

ZIKV proteins are produced from one open reading frame into a polyprotein that is subse-

quently cleaved into different proteins. It is interesting how NS4A is delayed in appearance

compared to other NS proteins. Even though the difference could come from various sensitivi-

ties of antibodies, we consider that the later appearance of NS4A may be due to other reasons.

One would be the half-life of NS4A, which could be shorter than other NS proteins possibly

due to its post-translational modifications and proteolytic processes present in the infected

cells. The half-lives of NS3, NS4A, and NS5A of hepatitis C virus (HCV) were 12, 11, and 10 h,

respectively, when detected by kinetic analysis in human cell lines expressing HCV open read-

ing frame[41]. We have collected a set of preliminary data for detecting the expression of NS

proteins by a parallel reaction monitoring (PRM) mass spectrometry assay. In the PRM pre-

experiment with cell lysates prepared from the mixed infected cells at 24, 36, 48 h p.i., NS1,

NS2A, NS2B, NS3, NS4B and NS5 were all detected, but NS4A was not (S1 Table). The low

expression of NS4A could be that NS4A is prone to be degraded in the cells infected with

ZIKV at certain stage of infection. ER membrane protein complex (EMC) is essential for the

correct topology and stable expression of flavivirus polyproteins [42], especially multi-pass

transmembrane proteins, such as NS4A. Absence of the EMC leads to degradation of NS4A

[43]. Ancient ubiquitous protein 1 (AUP1), a type-III membrane protein with dual localization

signals for lipid droplets (LDs) and ER, carries NS4A from lipid droplets into the autophago-

some upon DENV infection [44]. Therefore, different expression trend of NS4A from other

NS proteins may be related to the post-translational modifications and proteolytic processes in

cells.

During infection, ZIKV persists in the male reproductive system for as long as six months

[45] likely resulting in damages of testicles and fertility [46,47]. ZIKV can also persist in whole

blood for up to 73.5 days and in blood cells for up to 95.4 days [48]. The establishment of

ZIKV persistent infection in monocytes enhances their adhesion and transmigration [49].

ZIKV persistent infection in the placenta and brain may be related to infant microcephaly

[14,50]. And glial cells, including microglia and astrocytes, may serve as viral reservoirs for

ZIKV [17,22]. We hypothesize that ZIKV may reduce its replication to a level for persistent

infection and our finding in this study suggest that NS4A and NS2A may somehow activate

collected for RNA-Seq, followed by analyses of the differentially expressed genes. Vec-M or Vec-S, mock or ZIKV/SZ01 infected- HMC3 cells without

NS4A expression; NS4A-M or NS4A-S, mock or ZIKV/SZ01 infected-group of HMC3 cells with NS4A expression. (b) Expression of ISGs in HMC3 cells

expressing NS4A determined by RNA-Seq. (c) Expression of ISGs in HMC3 cells expressing NS4A verified by qRT-PCR. The differences between groups

of control and NS4A were evaluated by two-tailed Student’s t test. Data are means ± SEM of triplicate experiments; �, P< 0.05; ��, P< 0.01; ���,

p< 0.001. (d) The top 20 enriched pathways of Vec-M vs NS4A-M. The pathway enrichment analysis was used to group the differentially expressed

genes in HMC3 cells expressing NS4A and vector. (e) Detection of STAT1, p-STAT1 (Tyr701), STAT2, p-STAT2 (Tyr690) and IRF9 protein expression

in the ISGF3 signaling pathway in HMC3 cells expressing NS4A by western blot analyses.

https://doi.org/10.1371/journal.pntd.0010366.g006
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the IFN response signaling or use other mechanisms to generate a negative feedback loop

which regulates viral replication and maintains a status of a persistent infection. ZIKV infec-

tion in pregnant women results in 4–6% of fetuses with microcephaly and 5–14% with congen-

ital abnormalities [51]. NS2A and NS4A may lead to self-limiting infections through activating

Fig 7. The ISGF3 signaling pathway was partially responsible for the antiviral effect of NS4A. (a) Effect of Abrocitinib on the

expression of ZIKV E protein in HMC3 cells. (b) Effect of Abrocitinib on the reproduction of ZIKV in HMC3 cells. HMC3 cells expressing

NS4A were infected with 0.1 MOI of ZIKV/SZ01, with (1 μM or 5 μM) or without the treatment of Abrocitinib. Protein expression of

STAT1, p-STAT1 (Tyr701), STAT2, p-STAT2 (Tyr690), IRF9 and ZIKV E was detected by western blot analyses (Fig 7A) and viral RNA

copies in the culture supernatants were determined by TaqMan qRT-PCR at 48 h p.i. (c) Effect of knockdown of STAT2 on ZIKV E

protein expression in U251 cells. (d) Effect of knockdown of STAT2 on ZIKV E RNA replication in U251 cells. The STAT2 in U251 cells

with or without NS4A expression was knocked down by shSTAT2. Subsequently, the above cells and the control cells were infected with

0.1 MOI of ZIKV /SZ01. Protein expression of STAT1, p-STAT1 (Tyr701), STAT2, p-STAT2 (Tyr690), IRF9 and ZIKV E was detected by

western blot analyses (Fig 7C) and viral RNA in the cell lysates was determined by TB Green qRT-PCR (Fig 7D). The differences of ZIKV

viral RNA copies between groups of control and Abrocitinib or shSTAT2 were evaluated by two-tailed Student’s t test. Data are

means ± SEM of triplicate experiments; �, P< 0.05; ���, p< 0.001.

https://doi.org/10.1371/journal.pntd.0010366.g007
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antiviral mechanisms, allowing infected neural cells survive till after infants are born, which

may be beneficial for viral transmission.

Expression of NS2A and NS4A not only inhibited the infection of ZIKV/SZ01, ZIKV/

MR766, but also suppressed SFTSV and EV-A71 replication (Fig 5), suggesting that a broad

spectrum of antiviral mechanism is involved, but the activation mechanism remains elusive.

ZIKV infection of microglia up-regulated STAT1/p-STAT1 and STAT2/p-STAT2 expression

(Fig 6). Inhibition of p-STAT1 by Abrocitinib or knockdown of STAT2 increased viral replica-

tion (Fig 7), which is consistent with Martinez Viedma’s findings [13]-ZIKV infection upregu-

lated the expression of STAT2 in microglia cells, and knockdown of STAT2 elevated ZIKV

replication. However, Abrocitinib or knockdown of STAT2 did not completely remove the

antiviral effect of NS4A. Aborting the expression of NS4A protein eliminated its antiviral activ-

ity effectively (Fig 9), indicating that it is the NS4A protein, not RNA, that stimulates the anti-

viral activities and affects the viral replication. Thus, NS4A may function as a unique type of

PAMP to stimulate IFN response signaling, or through other mechanisms including its impact

on viral entry. Annette von dem Bussche reported that NS2 of HCV triggered endoplasmic

Fig 8. The ISGs expression induced by NS4A in U251 or HeLa cells. (a) U251 cells with or without NS4A expression were

cultured by DMEM with 2% FBS for 24 h. Total RNA was prepared from the cells for ISG transcription by qRT-PCR. (b)

HeLa cells were transfected with plasmids expressing NS4A or empty vector for 24 h. After the cells were cultured in

DMEM with 2% FBS for 24 h, total RNA was prepared from the cells for ISG transcription by qRT-PCR. The differences

between groups of control and NS4A were evaluated by two-tailed Student’s t test. Data are means ± SEM triplicate

experiments; �, P< 0.05; ��, P< 0.01; ���, p< 0.001.

https://doi.org/10.1371/journal.pntd.0010366.g008
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reticulum stress and suppressed its own viral replication [52]. The expression of NS2A and

NS4A is mainly in ER [53], which is likely to activate ER stress and thus inhibit RNA transcrip-

tion and protein expression. Host factors interacting with NS2A and NS4A may also partici-

pate in the mechanism, which warrants further investigations.

Numerous studies have shown that ISGs are effective inhibitors of viral infections. In this

report we showed that NS4A significantly induced the expression of 13 ISGs, including MX1/

2, OAS1/2/3, IFITM1, IFIT1, IFI6, IFI27, XAF1, BST2, ISG15, and USP18 (Fig 6B and 6C) in

microglial cells, but NS4A only up-regulated the expression of IFI27 and BST2 in U251 or

MX1 and ISG15 in HeLa cells (Fig 8). IFI27 significantly inhibited the replication of HCV

[54], while BST2 inhibited the release of DENV [55]. Both HCV and DENV are members of

Fig 9. Aborting NS4A protein expression rescued ZIKV RNA replication and protein expression. (a & c) RNA replication of ZIKV E and

HA-NS4A in HMC3 (Fig 9A) or U251 (Fig 9C) cells expressing HA-NS4A or NS4A-X. (b & d) Protein expression of ZIKV E and HA-NS4A in

HMC3 (Fig 9B) or U251 (Fig 9D) cells expressingHA-NS4A or NS4A-X. Cells expressing HA-NS4A or NS4A-X were infected with 0.1 MOI of

ZIKV/SZ01 for 24 or 48 h. Viral RNA copies and HA-NS4A in the cell lysates were determined by TB Green qRT-PCR. Protein expression of

ZIKV E and HA- NS4A were detected by western blot analyses. NS4A-X: The cells were transfected with plasmids expressing HA-NS4A, which

has a stop codon introduced to abort the translation of NS4A. The differences between groups of control and HA- NS4A or NS4A-X were

evaluated by two-tailed Student’s t test. Data are means ± SEM triplicate experiments; �, P< 0.05; ��, P< 0.01; ���, p< 0.001.

https://doi.org/10.1371/journal.pntd.0010366.g009
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the family Flaviviridae. Knockdown of MX1 significantly inhibited anti-ZIKV activity by IFN-

λ in a human trophoblast line (JEG3) [56]. Silencing of ISG15 enhanced ZIKV infectivity,

while supplementation with recombinant ISG15 inhibited ZIKV infection of primary human

corneal epithelial cells [57]. We speculate that IFI27, BST2, MX1 and ISG15 may play an

important role in the suppression of ZIKV and other viral infections rendered by NS4A.

NS4A may up-regulate ISGs in a cell type-dependent manner. Microglial cells have a

unique RNA expression profile and even are heterogeneous in different locations in the brain

[58]. ZIKV induces type I IFN in primary human placental macrophages (Hofbauer cells) [59]

and type III IFN in human placental trophoblasts [60]. OAS2, ISG15, and MX1 are expressed

in human skin cells [61], while ISG15, HERC5, and USP18 are expressed in brain microvascu-

lar endothelial cells [62]. ZIKV inhibits type-I IFN production and downstream signaling in

A549 cells [26]. It is imaginable that ZIKV infection induces different host responses in differ-

ent tissues and cells.

In conclusion, we observed that the expression of ZIKV NS2A and NS4A inhibited ZIKV

infection in microglia and astrocytes probably through activation of antiviral mechanisms for

suppression of viral RNA replication. NS4A enhanced ISGs expression by activating ISGF3

signaling pathway, and blocking the ISGF3 pathway could partially repress the antiviral activ-

ity of NS4A. Aborting the expression of NS4A protein eliminates its antiviral activity effec-

tively. NS4A protein occurred later than NS2B, NS3 and NS5 during ZIKV infection. We

hypothesize that ZIKV NS4A may regulate viral replication by inducing an innate immune

response, working as a PAMP, or functioning with other mechanisms, to help maintain a sta-

tus of viral persistent infection. Our study will be helpful in further characterizing and under-

standing viral neuropathogenesis in ZIKV infection.

Supporting information

S1 Fig. ZIKV infected and replicated in HMC3 or U251 cells. (a & d) ZIKV/SZ01 infection

of HMC3 or U251 cells was detected by IFA. ZIKV E was stained by an anti-E mouse antibody

4G2 (green); cell nuclei were stained by 4,6-diamidino-2-phenylindole (DAPI, blue). Scale bar,

50 μm. (b) Cell death induced by ZIKV infection in HMC3 cells was analyzed by flow cytome-

try and Annexin V/PI apoptosis Kit. (c & f) ZIKV replication in HMC3 or U251 cells was

determined by a viral plaque formation unit assay. (e) Cytopathic effect was observed under a

light microscope after ZIKV infection in U251 cells. Scale bar, 50 μm.

(TIF)

S2 Fig. Generation of HMC3 cells expressing ZIKV NS proteins by a lentivirus vector. (a)

The expression of ZIKV NS proteins in HMC3 cells was analyzed by IFA. HA-tagged ZIKV

NS proteins were detected by staining with anti-HA rabbit antibodies (green); cell nuclei were

stained by DAPI (blue). Scale bar, 20 μm. (b) The expression of ZIKV NS proteins in HMC3

cells was analyzed by western blot. HA-tagged ZIKV NS proteins were detected by anti-HA

rabbit antibodies. The red box indicates the targeted band.

(TIF)

S3 Fig. Generation of U251 cells expressing ZIKV NS proteins by a lentivirus vector. (a)

The expression of ZIKV NS proteins in U251 cells was analyzed by IFA. HA-tagged ZIKV NS

proteins were detected by anti-HA rabbit antibodies (green); Cell nuclei were stained by DAPI

(blue). Scale bar, 20 μm. (b) The expression of ZIKV NS proteins in U251 cells was analyzed

by western blot. HA-tagged ZIKV NS proteins were detected by anti-HA rabbit antibodies.

The red box indicates the targeted band.

(TIF)
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S4 Fig. NS2A and NS4A protected HMC3 and U251 cells against ZIKV infection. (a-b)

HMC3 or U251 cell death was determined by flow cytometry and Annexin V/PI apoptosis kit

at 48 (U251) or 72 h (HMC3) post ZIKV/SZ01 (0.1 MOI) infection.

(TIF)

S5 Fig. Inhibition of ZIKV dsRNA production by NS2A and NS4A. DsRNA production was

analyzed by IFA in HMC3 cells infected with 0.1 MOI of ZIKV for 48 h. DsRNA was probed

by the J2 mouse monoclonal anti-dsRNA antibody (green) with cell nuclei stained by 4,6-dia-

midino-2-phenylindole (DAPI, blue). Magnification: 60X.

(TIF)

S1 Table. Skyline analysis of the data of parallel reaction monitoring (PRM) mass spec-

trometry assay for target peptides of ZIKV non-structural proteins.
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