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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most com-
mon chronic hepatopathy and a global health issue.1–3 
NAFLD is characterized by the presence of pathologic accu-
mulation of fat in the liver with >5% of hepatocytes contain-
ing visible intracellular triglycerides (TGs), or steatosis 
affecting at least 5% of the liver volume or weight, in the 
absence of significant alcohol consumption and other spe-
cific causes of fatty liver disease, including hepatitis C, lipo-
dystrophy, medications and inherited metabolic disorders.4 
The longitudinal risk of cirrhosis and hepatocellular carci-
noma is rather low in NAFLD that is mostly an asympto-
matic condition, progressing to nonalcoholic steatohepatitis 
(NASH) in about 15% of cases.5

Cardiovascular disease (CVD) is the leading contributory 
cause of death in subjects with NAFLD, and more severe 
forms of liver disease were associated with increased risk of 
CV morbidity and mortality.6

Nevertheless, current knowledge on the relationship 
between NAFLD and cardiac metabolism, structure, and 

function is still incomplete, and the most effective strategies 
to reduce the burden of CVD associated with NAFLD remain 
to be defined.

In this review, we aim to provide an updated overview of 
emerging CVD phenotypes associated with NAFLD and 
deliver a translational outlook spanning from the biological 
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foundations of NAFLD down to CV implications and risk 
assessment.

Epidemiology

It is estimated that a billion people worldwide suffer from 
NAFLD,2,7 with a global prevalence of approximately 
25%.8,9 The highest prevalence has been reported in the 
Middle East (32%) and South America (31%), followed by 
Asia (27%), the United States (24%), Europe (23%), and far 
less common in Africa (14%).8 Ethnicity plays a significant 
role in the prevalence of the disease, which is significantly 
higher among Hispanic Americans than in other Americans 
of European descent, or in African Americans who display 
the lowest risk despite the relevant burden of essential 
comorbidities, such as obesity and hypertension.10,11 Finally, 
genetics and environmental factors are likely to explain most 
of the residual disparities.

Genetics of NAFLD

Evidence of heritable components in NAFLD arises from 
studies of twins, familial aggregation, and interethnic differ-
ences in disease susceptibility.12 According to genome-wide 
association studies (GWAS), susceptibility to NAFLD is 
linked to heritable components accounting for approximately 
50% of the relative risk of disease.13 Several genes were 
associated with NAFLD onset and outcomes, which will be 
presented below according to their effects on CV risk.

PNPLA3

A genetic variant of the PNPLA3 gene (encoding for patatin-
like phospholipase domain-containing protein 3, or adiponu-
trin) was first linked to NAFLD in an analysis of data from 
the Dallas Heart Study in 2008;14 this variant allele (I148M; 
rs738409) has been associated with increased liver fat con-
tent and inflammation, as well as to NAFLD severity15 and 
NAFLD-related hepatocellular carcinoma.16 A meta-analysis 
of data collected in the CARDIoGRAMplusC4D consortium 
showed a protective effect of PNPLA3 I148M with respect 
to coronary artery disease (CAD);17 these results were repli-
cated in a prospective study on patients undergoing coronary 
angiography, where PNPLA3 I148M was associated with 
lower levels of total serum cholesterol and low-density lipo-
proteins (LDL).18 Conversely, in a Mendelian randomization 
study including 279,013 Danish individuals, the I148M vari-
ant was not significantly associated with higher risk of inci-
dent CAD. In a cross-sectional study of two different Italian 
cohorts, the I148M variant was associated with higher risk of 
subclinical atherosclerosis in young individuals. Finally, cur-
rent evidence indicates that patients carrying the PNPLA3 
I148M allele are at risk of developing NAFLD and its liver-
related outcomes, but their CV risk may not be higher than in 
the general population.

TM6SF2

A variant of the TM6SF2 gene (encoding for transmembrane 6 
superfamily member 2), known as E167K or rs58542926, con-
fers a significant risk of NAFLD onset19 and progression to 
NASH.20 An additive effect was found between PNPLA3 and 
TM6SF2 variants in NAFLD risk prediction in a recent cohort 
study from China.21 Regarding CV implications, a meta-analy-
sis investigating CV risk in NAFLD patients showed a protec-
tive effect of the E167K variant,22 which accounts for lower 
levels of total cholesterol, LDL-cholesterol (LDL-C), and TGs; 
this result has been confirmed in other studies.23–25

Other genes

A risk locus located in the TMC4 gene (encoding for trans-
membrane channel-like 4 protein; variant rs641738) was 
associated with a more severe NAFLD phenotype in patients 
of European ancestry;26 however, subsequent investigations 
did not confirm such an association27 and to date, this variant 
has not been demonstrated to modify CV risk.17

A meta-analysis found an increased risk of NAFLD in 
patients carrying the rs7046 A (V175M) allele of PEMT 
gene,28 also associated with increased CV risk.29

Furthermore, GWAS and Mendelian randomization stud-
ies are needed to better clarify the role of genetics in the 
complex relationship between NAFLD and CVD.

Epigenetic factors

Discordance of NAFLD phenotypic expression and severity 
of disease in twins can be explained by microRNA epige-
netic regulation.30 Epigenetics might also explain how cer-
tain environmental factors may exert heritable effects on 
disease expression. Accordingly, DNA methylation remode-
ling has been associated with a lower fibrotic burden in mice 
models.31 Furthermore, an epigenetic signature on circulat-
ing cell-free DNA is under investigation as a potential bio-
marker of disease severity.32

Environmental factors

Genetic predisposition and epigenetics cannot fully explain 
the disease onset or the rise in NAFLD prevalence observed 
in Western countries over the last decades. Environmental 
factors, such as dietary habits and physical activity, have 
been shown to play a significant pathophysiological role in 
NAFLD1,2,8 and CVD (Figure 1).

The role of dietary composition in modifying the onset 
and severity of NAFLD has been shown in population-level 
studies, where NAFLD patients were commonly presenting 
with unhealthy eating habits (i.e. eating processed foods, fre-
quently eating at restaurants), shallow levels of physical 
activity and higher sedentary behavior,33 thus implying that 
risk factors are similar between NAFLD and CVD.34
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Conversely, active lifestyle and higher consumption of 
fruits and vegetables were linked to lower risk of 
NAFLD35,36 and CVD.34 Moreover, lifestyle-induced 
weight loss was found to improve liver histology and func-
tion, as well as cardiometabolic profile, among NAFLD 
patients.37,38

Smoking is an established CV risk factor, but its associa-
tion with NAFLD is controversial. On pathophysiological 
basis, nicotine is known to trigger hepatic steatosis in the 
context of high-fat diet.39 In 2018, a meta-analysis of 20,149 
subjects reported a significant association between NAFLD 
and both active and passive smoking.40 In two large cohort 
studies, current smoking was associated with NAFLD 
onset.41,42

The large overlap of risk factors between NAFLD and 
CVD depicts a complex framework of interactions between 
the two conditions, suggesting a redundant network of 
underlying biological mechanisms. Implementation of tar-
geted prevention strategies is needed to reduce the growing 
burden of NAFLD and CVD.

NAFLD beyond the liver: a systemic 
threat

Patients with histologic NASH, and particularly those with 
overt fibrosis, show a higher risk of progression to cirrhosis 
and higher liver-related and all-cause mortality compared 
with less severe NAFLD phenotypes.43–45 Importantly, 

evidence from longitudinal observational studies on NAFLD 
from different cohorts (Table 1) shows that CVD is one of 
the most important causes of death in the NAFLD/NASH 
population.

Metabolic comorbidities in NAFLD 
patients: chance or causality?

The majority of NAFLD patients have metabolic comorbidi-
ties, such as diabetes, obesity, and dyslipidemia.1 NAFLD 
prevalence ranges from 50% to 75% in subjects with type 2 
diabetes mellitus (T2DM),54,55 from 80% to 90% in obese 
subjects,56,57 and estimated around 50% in patients with met-
abolic syndrome,58 while the prevalence of metabolic syn-
drome in NAFLD and NASH patients is reported at 43% and 
71%, respectively.3

Most studies addressing the association between NAFLD 
and T2DM are observational in nature, and do not allow test-
ing causality. However, a recent Mendelian randomization 
study59 has shown evidence that genetically driven NAFLD 
phenotypes may be causally responsible for the onset of an 
atypical form of T2DM—late onset, type-1-like T2DM—
characterized by deficient insulin secretion. In the same 
study, “genetic” NAFLD represented as well a causal factor 
for abdominal—but not central—obesity. Previous work had 
provided similar findings for genetically raised alanine 
transaminase (ALT) and aspartate aminotransferase (AST) 
levels.

Figure 1.  Geographical distribution of NAFLD and CVD prevalence. CVD prevalence is represented on each country’s territory; 
NAFLD prevalence is represented as a pie chart for each world region. NAFLD and CVD prevalences were obtained from Younossi 
et al.3 and the Global Burden of Disease Results tool (http://ghdx.healthdata.org/gbd-results-tool), respectively. Information from GBD 
Results Tool is made available under the ODC Attribution License (https://opendatacommons.org/licenses/by/1-0/index.html).

http://ghdx.healthdata.org/gbd-results-tool
https://opendatacommons.org/licenses/by/1-0/index.html
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Lean NAFLD

Lean NAFLD is defined as NAFLD in the absence of obe-
sity. This condition is common in areas where the risk of 
developing NAFLD is associated with ethnicity and genetic 
variation (PNPLA-3 gene), particularly in rural Asia, where 
prevalence reaches 25%.3,61,62

It has been suggested that the majority of lean NAFLD 
patients belong to the “metabolically obese–normal weight” 
phenotype,63 described in about 5% of the Western popula-
tion8 and comprising non-obese, physically inactive individ-
uals who have an increased CV risk, dyslipidemia, and 
impaired insulin sensitivity.

Lean NAFLD patients are generally young, usually insu-
lin-resistant, presenting with increased plasma TG levels and 
by no means protected from liver fibrosis progression.64

Genetic predisposition and dietary composition are linked 
to the development of lean NAFLD. Current data suggest 
that a metabolic milieu like that of obese NAFLD patients is 
present in lean NAFLD patients, but the absence of obesity 
suggests they may hold for a distinct disease phenotype. 
Interestingly, lean NAFLD was associated with a greater vis-
ceral adiposity,64 which corresponds to an ectopic fat distri-
bution pattern characterized by higher values of neck and 
waist circumference. Visceral adipocytes, although smaller, 
are known to have a higher pro-inflammatory potential than 
subcutaneous adipocytes.63

Lean NAFLD diagnosis is challenging. CV risk assessment 
is crucial in patients with lean NAFLD,53 as they are at increased 
risk of all-cause and CV mortality, and normal weight may be a 
relevant confounder. Management of lean NAFLD patients 
should follow the same principles used for obese NAFLD 
patients, requiring physical activity and good dietary habits.61

Sex differences and CV risk in NAFLD

NAFLD is a sexually dimorphic disease.65 Epidemiological 
data confirm a higher prevalence in men than women; 

however, prevalence of NAFLD in menopausal women is 
comparable with that of age-matched men, and two-fold 
higher than in premenopause.66

The main commonalities in sexual dimorphism of NAFLD 
and CVD concern hormonal regulation of metabolism, energy 
storage, immunity, and inflammation. Estrogens have been 
shown to confer protection from NAFLD in menopausal 
women receiving hormone replacement therapy;66 con-
versely, a longer duration of estrogen deficiency has been 
associated with more severe liver fibrosis. Estrogens promote 
the gynoid phenotype of body fat distribution, limiting vis-
ceral fat accumulation (i.e. in the liver and the myocardium), 
and stimulating subcutaneous fat depots.67 Moreover, estro-
gens trigger sex-specific immune responses and have a role in 
modulating inflammation and tumorigenesis in the liver. 
Accordingly, estrogens may represent a major contributor of 
NAFLD phenotype disparities between sexes. In a survey 
conducted on Australian adolescents with NAFLD,68 males 
presented with worse cardiometabolic profile than females 
and larger visceral adipose tissue thickness, possibly indicat-
ing a higher degree of systemic inflammation and subsequent 
increased risk of CVD.

The overall higher prevalence of steatosis in men has 
been thoroughly investigated in a small study of 22 meta-
bolically healthy men and women of comparable age, 
body mass index (BMI), and liver fat content recruited 
from the UKBiobank cohort.69 In this subset, men pre-
sented with higher fasting and postprandial TG and very 
low-density lipoprotein (VLDL) levels than women. 
Moreover, after a test meal and subsequent metabolic 
tracing of ingested fatty acids, it was shown that women 
tended to favor oxidation pathways, whereas men favored 
synthetic pathways. This could partially explain the 
greater prevalence of NAFLD, and account for a possibly 
increased CV risk, in men. Interestingly, these results 
were confirmed in a study on 15,753 Chinese workers, 
which pointed out that in women, diabetes exerts a much 
greater effect on CV risk than NAFLD.70 The authors 

Table 1.  All-cause and CV mortality in NAFLD/NASH populations.

Study Year Country Study group Age 
(years)

Male sex 
(%)

Follow up 
(years)

Sample 
size (n)

All-cause mortality 
(1000 person-years)

CV mortality (1000 
person-years)

Powell et al.46 1990 Australia NASH 49 17 4 42 10.6 5.3
Adams et al.47 2005 USA NAFLD 49 8 420 16.6 4.7
Ekstedt et al.48 2006 Sweden NAFLD 46 87 14 58 8.8 6.3

NASH 54 71 19.5 11.3
Rafiq et al.49 2009 USA NAFLD 50 40 13 173 34.7 9.9
Lazo et al.50 2011 USA NAFLD 47 53 14 2515 14.4 5.7

Control 48 46 8856 10.2 4.0
Kim et al.51 2013 USA NAFLD 45 50 14 4081 13.1 4.9

Control 42 46 7012 10.0 3.8
Wild et al.52 2018 UK T2DM–NAFLD 59 47 5 1452 31.2 5.8
Golabi et al.53 2019 USA NAFLD 67 52 16 973 38.9 14.8

Control 39 1122 34.7 13.2

NAFLD: non-alcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; CV: cardiovascular; T2DM: type-2 diabetes mellitus.
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advocated sex disparities to be due to the greater amount 
of visceral adiposity typical of men.

NAFLD and CVD: biological 
foundations

The pathophysiology underlying the association of NAFLD 
and CVD is still not completely understood. NAFLD is now 
considered a systemic disease71 sharing common pathways 
with other conditions, such as T2DM and atherosclerosis.

The development of a pro-inflammatory, pro-atherogenic, 
and pro-thrombotic milieu is essential for CV damage to take 
place in NAFLD patients.72 The biological foundations of 
this milieu include endothelial dysfunction, altered lipid 
metabolism, systemic insulin resistance, oxidative stress, 
and systemic inflammation.1,73

Vascular alterations and endothelial dysfunction

NAFLD is associated with hepatic microvasculature altera-
tions, with loss of the typical sinusoidal pattern and of 
fenestrae;74 such changes occur in the liver early before 
inflammation and fibrosis.

Systemic endothelial dysfunction, an early step toward 
atherosclerosis, is present in NAFLD and NASH;75 asym-
metric dimethylarginine (ADMA) is an endogenous antago-
nist of nitric oxide synthase. The breakdown of ADMA is 
mainly driven by liver function, thus explaining the increas-
ing ADMA levels observed in NAFLD patients, which may 
suffer from alterations in vasodilation.76

Vascular remodeling also happens in NAFLD patients. 
Indeed, histologic findings of active angiogenesis (such as 
centrizonal arteries and microvessels) are common in 
NAFLD, even in the absence of advanced fibrosis. These 
findings relate to other studies showing an increase in vascu-
lar endothelial growth factor (VEGF) serum levels in 
NAFLD and NASH77 and to mouse models where anti-vas-
cular endothelial growth factor receptor 2 (VEGFR2) treat-
ment improved steatosis and inflammation.78

Members of the VEGF family, particularly VEGF-A, are 
established atherogenic factors and play a significant role in 
plaque instability.79

Altered lipid metabolism

The liver is the hub of lipid metabolic network, operating de 
novo lipogenesis and fat breakdown, as well as uptake and 
secretion of serum lipoproteins.80 In NAFLD, serum lipid 
profile is significantly altered, leading to increased levels of 
TGs and LDL and decreased high-density lipoproteins 
(HDL). Resulting ratios (TG/HDL; cholesterol/HDL; and 
LDL/HDL) are considered pro-atherogenic, and were dem-
onstrated to be altered along the severity spectrum of 
NAFLD.81 The most detrimental lipid profile occurs during 
postprandial periods, when chylomicron remnants and LDL 
increase, and HDL decrease.81,82

Systemic insulin resistance

High blood levels of diacylglycerol determine activation of 
protein kinase C, which depresses hepatic insulin signaling,1 
inducing lipolysis, and alterations in glucose metabolism.83 
This also leads to a net effect of hepatic lipid accumulation 
(steatosis) and lipotoxicity, which further impairs insulin 
signaling, causes inflammation and oxidative damage, and 
promotes progression to NASH.

High levels of saturated fatty acids also trigger insulin 
resistance by de novo ceramide synthesis and subsequent 
inhibition of Akt phosphorylation.84

Several liver-specific cytokines—hepatokines—have 
been showed to influence insulin sensitivity,85,86 and some of 
them have been shown to exert CV effects. Among others, 
Fetuin-A causes insulin resistance by inhibiting insulin 
receptor tyrosine kinase in the liver and skeletal muscle. 
Serum levels of Fetuin-A are increased in NAFLD,87 even 
higher in NASH,88 and have been linked to a higher risk of 
myocardial infarction and stroke.89

Other hepatokines linked to insulin resistance in NAFLD 
are fibroblast growth factor 21 and selenoprotein P; both 
were associated with CV outcomes.90–92

Notably, CV risk in NAFLD patients with T2DM is 
greater than in T2DM non-NAFLD patients, and the associa-
tion of NAFLD with CVD has been shown to be independent 
from T2DM and other cardiometabolic risk factors.93

Oxidative stress

Serum homocysteine, a marker of hepatic oxidative stress, is 
frequently reported to be elevated in NAFLD.94–96 Oxidative 
stress is thought to contribute to disease progression to 
NASH. Intriguingly, NASH patients have lower homocyst-
eine levels than NAFLD patients,96,97 probably indicating a 
more severe liver dysfunction in NASH, where high oxida-
tive stress is present,98,99 but not correlated with serum 
homocysteine level.

Serum homocysteine is regarded as an independent CV 
risk factor.100,101 It causes endothelial dysfunction, platelet 
activation, and redox status impairment, eventually leading 
to CVD.101 Interestingly, the pioglitazone versus vitamin E 
versus placebo for the treatment of non-diabetic patients 
with nonalcoholic steatohepatitis (PIVENS) trial showed 
that levels of homocysteine in NASH patients lowered after 
treatment with vitamin E.102

Systemic inflammation

CV effects of NAFLD have been thought to be the result of 
inflammatory cytokines, released by the liver in the blood-
stream, leading to systemic inflammation and CVD.103 
Inflammation triggers CVD by causing alterations in 
endothelial function, vascular tone, and coagulation, and 
by enhancing plaque formation.104 Among serum markers 
of systemic inflammation, several are associated with 
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NAFLD; these include interleukin-6 (IL-6),105,106 C-reactive 
protein (CRP), and tumor necrosis factor alpha (TNF-
alpha).107,108 In particular, high-sensitivity CRP was found 
to be higher in NASH patients compared with milder stea-
tosis, possibly representing a marker of advanced dis-
ease.109 Similar findings have been published about 
neutrophil-to-lymphocyte ratio110 and the Th17/Treg lym-
phocyte ratio.111 Of note, neutrophils, not just Th17 lym-
phocytes, were found to be themselves a source of IL-17, 
which is considered an essential initiator of liver disease. 
Moreover, in a mouse model, it has been demonstrated that 
spleen, bone marrow, and mesenteric lymph nodes were 
the primary source for liver-migrated lymphocytes.112 This 
supports the idea that dysbiosis and gut-microbiota inter-
actions may be responsible for low-grade systemic inflam-
mation in NAFLD patients.113

Influence of NAFLD on cardiac function 
and metabolism

NAFLD has been linked to cardiac dysfunction. In particu-
lar, ultrasonographic findings of NAFLD have been associ-
ated with a three-fold increased risk of left ventricular 
diastolic dysfunction, independent of other cardiometabolic 
risk factors;72 these findings were also confirmed in pediatric 
studies. Both liver stiffness and hepatic steatosis were inde-
pendently associated with larger left atrial volume and left 
ventricular dysfunction in NAFLD patients.114 Initial data 
showed impaired right ventricular function in NAFLD 
patients compared with age- and sex-matched healthy con-
trols, and also in patients with hepatic fibrosis compared 
with those without.115

As for influences of NAFLD on cardiac metabolism, a 
study on NAFLD patients demonstrated that higher degrees 
of steatosis are related to lower myocardial insulin-stimu-
lated glucose uptake and overall glucose extraction rate.116

Furthermore, cardiac magnetic resonance (MR) spec-
troscopy data117 showed that phosphocreatine/adenosine 
triphosphate (PCr/ATP) ratio—a surrogate marker of 
cardiac energy metabolism118—was significantly reduced 
in NAFLD patients compared with controls. This may 
suggest that abnormalities in cardiac metabolism may 
precede the structural and functional changes induced by 
NAFLD. In another study on T2DM patients in which 
liver fat content was assessed using MR spectroscopy, 
the high liver fat group had slower cardiac metabolism 
compared with low liver fat group.119 Patients with fatty 
liver were also found to have lower myocardial perfu-
sion, even though values of cardiac mass and function 
were comparable between the two groups. Further 
research about the role of multimodality CV imaging, 
namely cardiac MR, could allow for early detection of 
subtle metabolic and tissue changes of the myocardium, 
even before the onset of overt structural and functional 
abnormalities.

Cholecardia

Bile acids dysregulation is currently recognized in NAFLD 
pathogenesis. Bile acids have been shown to act as gene reg-
ulators120 and are thought to modulate glucose and lipid 
metabolism, enhance energy consumption in muscle tissue, 
and, most importantly, improve insulin resistance in healthy 
subjects.121 In NAFLD, bile homeostasis is disrupted, and 
serum bile acid levels are higher with disease progression to 
NASH.122 Elevated bile acid level is known to be associated 
with cirrhotic cardiomyopathy. Bile acids are well-known 
cardiotoxic agents, impairing ventricular function, and asso-
ciated with increased risk of atrial fibrillation.123 Accordingly, 
the term cholecardia was proposed to describe the cardio-
myopathy phenotype associated with pathological levels of 
bile acids.124

Moreover, in a mouse model, it has been demonstrated 
that cardiac mitochondria do suffer from chemically induced 
cholestasis by exhibiting a reduction in calcium loading 
capacity—secondary to the activation of the mitochondrial 
permeability transition pore125—which is known to cause 
uncoupling of oxidative phosphorylation, accumulation of 
reactive oxygen species, and eventually cell death.126

Cardiac steatosis

The idea that liver fat accumulation may trigger cardiac stea-
tosis has made its way in the last years.127 Hepatic fat content 
might be considered an indicator of systemic TG deposition, 
also accounting for fat accumulation within the myocardium. 
Subsequently, cardiac steatosis could trigger myocardial 
dysmetabolism and dysfunction. The presence of epicardial 
adipose tissue (EAT) is independently associated with 
NAFLD,128,129 with a graded linear relationship between the 
severity of hepatic steatosis and EAT thickness. Importantly, 
thicker EAT is also a harbinger of coronary artery calcifica-
tion.130 Moreover, in a cohort of patients with metabolic syn-
drome, the severity of EAT and NAFLD was found to be 
highly correlated.131,132 EAT is known as a source of pro-
inflammatory cytokines (IL-1, IL-6, and TNF), which have 
an established role in the pathogenesis of atrial fibrillation 
and CV autonomic dysfunction (CVAD).133–135 Unlike skel-
etal muscle where perimuscular fat is separated from myo-
cytes through specific structures of connective tissue, within 
the heart, adipocytes are in close contact with both cardio-
myocytes and nervous system and directly influencing their 
function.136–138

Clinical assessment of NAFLD

Diagnosis

Liver biopsy is considered the gold standard technique to 
diagnose NAFLD; however, current guidelines do not rec-
ommend to perform invasive tests for diagnostic pur-
poses.2,139–141 Liver biopsy should only be considered in 
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patients with suspected NASH or advanced fibrosis, basing 
on the presence of metabolic syndrome and/or potential 
competing liver failure etiologies.

NAFLD patients are often asymptomatic, and diagnosis is 
usually suspected in the presence of obesity, diabetes, and 
obstructive sleep apnea. Accurate alcohol history is neces-
sary for diagnosis since histology does not accurately distin-
guish NAFLD from alcoholic FLD.141

NAFLD patients are usually identified by the presence of 
hepatic steatosis at abdomen ultrasonography or elevated 
transaminases in blood tests. Liver chemistry tests are found 
to be normal in more than two-thirds of cases, and usually do 
not predict histological severity of liver disease.2,141 
Nevertheless, an AST/ALT ratio of above 1.0 is highly sug-
gestive of advanced disease.142

According to the latest guidelines,2,140 asymptomatic or 
paucisymptomatic patients with non-harmful drinking habits 
(males < 21 standard drinks/week; females < 14 standard 
drinks/week), and known risk factors for metabolic syndrome, 
should undergo blood tests and first-level hepatic imaging 
(ultrasound) to confirm or rule-out the diagnosis of NAFLD.

Staging of liver disease

The purpose of staging liver steatosis is the distinction 
between low-risk NAFLD, in which lifestyle correction is 
sufficient for disease control, and high-risk NASH, where 
close follow-up and pharmacological therapy are required. 
NASH patients are indeed at a higher risk of extrahepatic 
morbidity and mortality, including CVD.48

Staging of liver disease is key for CV risk assessment and 
does include both invasive and noninvasive techniques, yet 
the gold standard is still represented by histological exami-
nation from liver biopsy.1,2,141 Simple steatosis is character-
ized by a microvesicular accumulation of TGs in hepatocytes, 
whereas steatohepatitis includes signs of hepatocellular 
injury, mitochondrial changes, cell ballooning, and fibro-
sis.141 Disease severity at histology can be evaluated through 
the NAFLD activity score,143 based on the degree of steato-
sis, lobular inflammation, and hepatocyte ballooning, by 
which a score > 5 is highly suggestive of NASH.

Although biopsy remains the gold standard for diagnosis 
and staging of disease, it is an invasive procedure not free of 
risks and sampling errors, also yielding high costs.2 Non-
invasive staging methods based on serum biomarkers, clini-
cal scores, and imaging techniques are promising alternatives 
to invasive biopsy.2,141

Proposed serum markers include biomarkers of inflam-
mation (CRP, IL-6), oxidative stress (vitamin E, thiore-
doxin), and apoptosis (cytokeratins 8–18),5 although their 
prognostic yield is yet to be proven. Clinical scores—such as 
the NAFLD fibrosis score (NFS)—have successfully entered 
the clinical practice.144 NFS is calculated based on the com-
bination of the following parameters: age, BMI, altered glu-
cose metabolism, AST/ALT ratio, platelet count, and albumin 

levels. Significant liver fibrosis (F3F4 fibrosis) is highly sus-
pected when the NFS is > 0.675.141

Ultrasound and MR are established noninvasive imaging 
modalities for the assessment of NAFLD. Transient elastogra-
phy (FibroScan)2,5 is an ultrasound-based test measuring liver 
stiffness as a surrogate of fibrosis. Beyond fibrosis quantifica-
tion, FibroScan can also detect steatosis by measuring the con-
trolled attenuation parameter (CAP).145 MR elastography is an 
alternative technique to transient elastography for fibrosis 
assessment. However, although associated with higher diag-
nostic yield than FibroScan, MR elastography has not yet 
entered the clinical practice.146 MR-based techniques are also 
highly accurate for the assessment of liver steatosis.145

CV risk assessment in NAFLD

Over the last decade, international scientific societies for the 
study of liver, diabetes, and obesity recommend routine CV 
risk assessment in NAFLD patients.140 The American 
Association for the Study of Liver Diseases (AASLD) fur-
ther recommends aggressive modification of CV risk factors 
in NAFLD patients.147 Guidelines issued in 2018 by the 
Asia-Pacific Working Party on NAFLD state that all patients 
should receive advice and support for lifestyle interventions 
to reduce the risk of onset of CVD.148 Similarly, Chinese 
guidelines confirm the importance of CV and cerebrovascu-
lar risk assessment in patients with NAFLD.149 Importantly, 
the 2019 European Society of Cardiology/European 
Atherosclerosis Society (ESC/EAS) guidelines for the man-
agement of dyslipidemias recommend NAFLD assessment 
after systematic coronary risk evaluation (SCORE)150 and 
consider NAFLD as a risk modifier in patients with low or 
moderate CV risk.

Several CV risk scoring systems specific to NAFLD popu-
lation have been considered over the years. The Framingham 
risk score (FRS) was proposed as an accurate predictor of 
coronary heart disease in NAFLD patients,151 and has been 
shown to be significantly associated with severity of liver 
fibrosis152 and to NAFLD Fibrosis Score as well.153 However, 
the FRS has been shown to overestimate CV risk in European154 
and Asian155 cohorts. The Italian National Institute of Health 
developed a CV risk assessment tool156 which has been pro-
posed for use in NAFLD patients from Southern Europe.157

A number of CV risk scores, including PROCAM, Qrisk2, 
and ASCVD, have been tested in NAFLD,158–160 and in 2019, 
a risk score evaluating age, mean platelet volume, and diabe-
tes has been proposed.160 However, to date, no single model 
has demonstrated superior performance, clinical utility, or 
widespread global uptake.

NAFLD and CVD: from biological 
foundations to the evidence

Different long-term studies suggest that histologically 
defined NAFLD or NASH is associated with increased CV 
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mortality.43,48,161 A meta-analysis of 16 observational stud-
ies162 found that NAFLD is indeed associated with increased 
risk of fatal and non-fatal CVD events in a graded fashion, 
even though the observational nature of the studies did not 
allow to establish causality. Interestingly, even after liver 
transplantation, CV complications were more frequent in 
NASH patients.163

Subclinical and clinical CVD 
phenotypes in NAFLD

CV morbidity and mortality

An association between NAFLD or NASH and CV events 
has been demonstrated in various observational studies and 
meta-analyses, regardless of different diagnostic modalities 
and statistical methods (Figure 2).1,162 Ultrasound-diagnosed 
NAFLD was found to be associated with a nearly two-fold 
higher risk of symptomatic CVD events.164 Such results were 
confirmed in a meta-analysis, also demonstrating that 
NAFLD severity was associated with an increase in CV 
events, even though no association between NAFLD and all-
cause mortality was reported.165

NAFLD and atherosclerotic CVD

NAFLD increases both the risk of subclinical and clinically 
significant atherosclerosis.166,167 Patients with NAFLD show 
impaired vasodilator response, increased carotid intima–
media thickness (IMT), and carotid atherosclerotic dis-
ease.168 Furthermore, NAFLD was associated with a 13% 

increase in IMT.169 In a meta-analysis of 16 cross-sectional 
studies pooling 16,433 NAFLD patients and 41,717 control 
subjects,170 NAFLD was associated with increased coronary 
artery calcification independent of traditional risk factors. 
The assessment of coronary artery calcium may be useful in 
identifying NAFLD patients at risk of future CV events.

Moreover, in a recent cohort of 455 patients without 
known CVD, heightened hepatic metabolism was associated 
with coronary artery calcium and arterial inflammation171 
and was also found to be an independent predictor of CV 
events.

NAFLD has also been shown to be associated with an 
increased risk of adverse outcomes in the setting of primary 
percutaneous coronary intervention.72 Notably, high-risk 
plaque features were shown to be more common at CT angi-
ography in NAFLD patients,172 and higher severity patients 
had a higher risk of death.173

Cardiomyopathies

NAFLD has been associated with morphological and struc-
tural changes in the myocardium. This was reported in the 
Coronary Artery Risk Development in Young Adults 
(CARDIA) study,174,175 where NAFLD patients showed sig-
nificant subclinical myocardial remodeling and dysfunction, 
possibly linking NAFLD to the onset of heart failure. Left 
atrium enlargement was also highly frequent in patients with 
an ultrasonographic diagnosis of NAFLD.175 In small studies 
where NAFLD was diagnosed using liver biopsy, the exist-
ence of a significant relationship between the severity of 

Figure 2.  NAFLD and CVD phenotypes.
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liver histology and abnormality in left ventricular morphol-
ogy and function was demonstrated, suggesting the impor-
tance and of the heart–liver axis in this pathology.176

According to MR spectroscopy data, overt structural and 
functional abnormalities of the myocardium in NAFLD 
patients are most likely to be preceded by depression of car-
diac metabolism due to cardiotoxic effect exerted by high 
levels of serum bile acids.117

Valvular heart disease

Beyond myocardial disease, NAFLD was also linked to val-
vular heart disease, particularly aortic stenosis (AS)177,178 
and mitral annulus calcification (MAC).178 AS has become 
the most common valvular heart disease in developed coun-
tries.179 Compared with the general population, the preva-
lence of AS and MAC was three-fold higher in a cohort of 
NAFLD patients, regardless of traditional risk factors.177 
Steatosis was responsible for an additional 33% increased 
risk of AS and associated with an odds ratio of 2.70 for inci-
dent AS or MAC.178 Pooled AS prevalence has been reported 
to be 41.3% (95% CI: 32.0%, 51.4%) among NAFLD 
patients versus 24.6% (95% CI: 18.4%, 32.0%) in non-
NAFLD patients.180

CV autonomic dysfunction

NAFLD has been linked to CVAD. The first recognition of 
CVAD in NAFLD derives from a cohort of NAFLD patients 
with overrepresented nocturnal hypotension, orthostatic 
hypotension, and susceptibility to vasovagal syncope.181 The 
same authors later confirmed a broader connection of 
NAFLD to CAVD symptoms, such as syncope and falls.182 
NAFLD has also been associated with deterioration in heart 
rate recovery (HRR), a marker of decreased parasympathetic 
activity,183 and higher mortality.184,185 Furthermore, a reduced 
standard deviation of beat-to-beat intervals (SDNN) was 
found to be associated with NAFLD-related risk of falls.186 A 
graded relationship between HRR reduction and NAFLD 
severity has also been confirmed in the diabetic popula-
tion.187 Finally, a recent study demonstrated an association 
between NAFLD severity and reduced diastolic and systolic 
variability, increased baroreceptor sensitivity, and impaired 
cardiac function,188 promoting the hypothesis that NAFLD 
patients might be exposed to pathologically sustained sym-
pathetic activity and resistance to parasympathetic stimuli.

Atrial fibrillation and ventricular arrhythmias

The literature on the association between NAFLD and the 
risk of cardiac arrhythmias is still scarce. Data from the 
Framingham Heart Study showed that high serum transami-
nase levels and NAFLD are both independently associated 
with an increased incidence of atrial fibrillation.189,190 A pilot 

case-control study found a significant association between 
NAFLD and impaired atrial conduction properties, particu-
larly P-wave dispersion and electromechanical delay, as 
assessed by 12-lead electrocardiogram (ECG) and 
echocardiography.191

A number of studies focused on QTc prolongation also 
suggest a potential link between NAFLD and ventricular 
arrhythmias.72,192,193 In both community-dwelling individu-
als and diabetic patients, NAFLD was associated with a sig-
nificant increase in QTc duration.194,195

Further research on the impact of NAFLD on cardiac 
electrical properties and other biological phenomena may 
provide novel insights about NAFLD and risk of arrhythmias 
and sudden cardiac death.1

Review methodology and limitations

Authors performed a narrative review and searched Medline, 
the Clinical Trials Registry, the Cochrane Library, Web of 
Science, ResearchGate, as well as reference lists of all identi-
fied articles and previous reviews and meta-analyses, from 
January 1966 through March 2020 for potentially relevant arti-
cles; ultimately, a selection of most relevant papers was finally 
included in the current review according to authors’ opinion.

We acknowledge the lack of dedicated sections covering 
the fundamentals and state-of-the-art of imaging techniques 
in NAFLD, and the therapeutical aspects of NAFLD and 
related CV risk; however, this was beyond the scope of the 
current review.

Conclusion

NAFLD plays a major role in the pathogenesis and progres-
sion of CVD. NAFLD management should be focused on 
both specific lifestyle modifications and aggressive risk fac-
tors modification, which would not only reduce the risk of 
liver disease progression but may also provide benefit by 
reducing the risk of developing CV complications. Future 
prospective multimodality CV imaging studies aiming at the 
early detection of metabolic, structural, and functional alter-
ations of the CV system may help refine current strategies of 
CV risk assessment in NAFLD and determine the impact of 
the full histologic spectrum of NAFLD on subsequent risk 
for clinical heart failure. Randomized controlled trials are 
also needed to test whether effective NAFLD treatment will 
translate into better CV outcomes.
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