
RESEARCH ARTICLE

Gaussian curvature and the budding kinetics

of enveloped viruses

Sanjay Dharmavaram1, Selene Baochen SheID
2, Guillermo LázaroID

3, Michael

Francis HaganID
3, Robijn BruinsmaID

2,4*

1 Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania, United States of America,

2 Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California,

United States of America, 3 Martin A. Fisher School of Physics, Brandeis University, Waltham,

Massachusetts, United States of America, 4 Department of Chemistry and Biochemistry, University of

California, Los Angeles, Los Angeles, California, United States of America

* bruinsma@physics.ucla.edu

Abstract

The formation of a membrane-enveloped virus starts with the assembly of a curved layer

of capsid proteins lining the interior of the plasma membrane (PM) of the host cell. This

layer develops into a spherical shell (capsid) enveloped by a lipid-rich membrane. In many

cases, the budding process stalls prior to the release of the virus. Recently, Brownian

dynamics simulations of a coarse-grained model system reproduced protracted pausing

and stalling, which suggests that the origin of pausing/stalling is to be found in the physics

of the budding process. Here, we propose that the pausing/stalling observed in the simula-

tions can be understood as a purely kinetic phenomenon associated with the neck geome-

try. A geometrical potential energy barrier develops during the budding that must be

overcome by capsid proteins diffusing along the membrane prior to incorporation into the

capsid. The barrier is generated by a conflict between the positive Gauss curvature of the

assembling capsid and the negative Gauss curvature of the neck region. A continuum the-

ory description is proposed and is compared with the Brownian simulations of the budding

of enveloped viruses.

Author summary

Despite intense study, the life-cycle of the HIV-1 virus continues to pose mysteries. One

of these is the fact that the assembly of an HIV-1 virus along the plasma membrane (PM)

of the host cell—the budding process—stalls prior to release of the virus. Many other

important viral pathogens with a surrounding lipid membrane envelope display similar

stalling. Combining numerical and analytical methods, we demonstrate that the neck-

like shape of the membrane that forms prior to release of the virus creates a barrier that

blocks the proteins required for the assembly process from reaching the budding virus.

An improved understanding of the physics of the blocking process could enable new strat-

egies to combat enveloped viruses.
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Introduction

Many viruses that infect animals, including many human pathogens, are surrounded by a lipid

membrane. This membrane allows the viral genome molecules to enter a host cell by mem-

brane fusion [2] and it also prevents attack by the host immune system. Well-known examples

are the retroviruses, like HIV-1, the Herpesviruses, and the Filoviruses (e.g. Ebola virus). The

enveloping membrane forms during the budding process when a curved layer of viral proteins

(“capsid proteins”) line the interior of the PM of the host cell [3–5]. For single-stranded RNA

viruses (like HIV-1), the assembly is initiated by viral RNA genome molecules associating with

capsid proteins [6]. The capsid grows by transport of proteins from the cytosol, where capsid

proteins are being synthesized, to the growing protein shell. The capsid proteins evolve into

a spherical-cap shape covered by a membrane that is connected to the PM via a curved neck.

Fig 1 shows a sketch of the image of a late-stage bud of an HIV-1 viral particle (“virion”) as

obtained by cryo-EM tomography [3]. Up to this point, the budding is a spontaneous process

driven by attractive interactions between the capsid proteins with each other and with the viral

RNA molecules. For many—but not all—enveloped viruses the final scission of the membrane

neck is not a spontaneous process but involves recuitment of the ESCRT machinery of the cell

[7, 8]. ESCRT is a complex of proteins that plays a role in cellular processes that require mem-

brane scission, such as the formation of multi-vesicular bodies and cytokinesis [9]. Scission of

HIV-1 buds does take place in the absence of the ESCRT machinery but with a delay [10, 11].

This suggests that ESCRT recruitment is necessary to assure that scission takes place on time.
For the case of HIV-1, scission of the neck has to take place before inititation of a spontaneous

autocatalytic protease maturation process that breaks up the capsid polyproteins [12]. More-

over, the existence of a large hole at the pinch-off site (Fig 1) suggests that the ESCRT machin-

ery does not continue the shell assembly process, but instead enables scission before the

assembly process completes.

The fact that ESCRT recruitment takes place across so many different families of enveloped

viruses suggests that the origin of the pausing/halting kinetics must be found among basic

properties of the budding process shared among different families of enveloped viruses. In this

paper we propose a physical mechanism as the cause for the pausing/stalling.

Fig 1. Sketch of a budding HIV-1 virion just prior to pinch-off. The lipid bilayer covering the capsid is connected to

the plasma membrane by a highly curved neck. The large hole surrounding the pinch-off site is also a feature of the

completed virion.

https://doi.org/10.1371/journal.pcbi.1006602.g001
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Results and discussion

Fig 1, showing a sketch of an HIV-1 bud, provides clues. The lattice of capsid proteins of an

HIV-1 bud has a large hole surrounding the pinch-off site. The boundary of the hole represents

the growth interface separating the part of the PM that is covered by capsid proteins and the

part that is not. Because of hole formation, only about 2/3 of the membrane of the completed

immature HIV-1 virus is covered by proteins. Hole formation is observed also for a number of

other enveloped viruses, though not for all. Fig 1 suggests that the transport current supplying

proteins to the growth interface somehow has “dried-up” before the spontaneous part of the

assembly could complete. While the neck of the membrane is too large for spontaneous scis-

sion to occur in such a configuration, the ESCRT machinery could drive scission at that point,

resulting in a budded virion with a large hole in its shell.

This notion is supported by numerical simulations. Fig 2 shows snapshots of a Brownian

Dynamics simulation of a simple, coarse-grained model of the budding of the enveloped pro-

tein shell of the alphavirus, which is composed of transmembrane glycoproteins (GPs) [1]. The

GPs were modeled as rigid trimers of truncated cones, with each cone comprising a linear

array of six beads of increasing diameter. The cone angle was set so that in the absence of a

membrane, the GPs assembled into hollow, roughly icosahedral shells containing 80 trimers,

though they form larger shells in the presence of a membrane [1]. The membrane was repre-

sented by the implicit solvent model of Cooke and Deserno [13]. As the assembly proceeded,

the aggregate of GPs adopted the shape of a spherical cap that gradually closed. For high values

of the protein-protein binding energy �gg, complete closure was achieved and pinch-off was

spontaneous. The resulting spherical shells were highly defected. The growth rate was non-

uniform: the assembly rate started to slow down when the shells reached approximately 2/3

completion. Slow-down became more pronounced with decreasing �gg while the final spherical

shells were less defected. A critical value was reached for �gg about 1.7kBT. Below this value, the

assembly process stalled before closure could be achieved. The diameter of the remaining neck

grew larger as �gg was further decreased.

Figs 1 and 2 suggest a physical mechanism for the stalling: the part of the membrane linking

the bud to the PM has a very different geometry from the part of the membrane covering the

proteins shell: the latter has a spherical curvature, while the neck was a highly curved hyper-

bolic shape. Could the curved neck region be energetically costly, delaying or preventing scis-

sion? From the viewpoint of the physics of membranes, this seems less likely. Simple lipid

bliayer vesicles develop freely from multi-component lipid bilayers through the formation of a

neck. The stalling that characterizes the formation of enveloped viruses has not been reported

Fig 2. Brownian Dynamics simulation of the budding of an enveloped virus using a coarse-grained model of the

lipid molecules and capsid proteins of the alpha virus (square inset). The strength �gg of the interaction between the

capsid proteins was 2kB T. A) Snapshot of the simulation at an early stage of the bud. B) Snapshot of the bud during

pausing.

https://doi.org/10.1371/journal.pcbi.1006602.g002

Gaussian curvature and the budding kinetics of enveloped viruses

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006602 August 21, 2019 3 / 22

https://doi.org/10.1371/journal.pcbi.1006602.g002
https://doi.org/10.1371/journal.pcbi.1006602


for vesicle budding. In the following, we extend the continuum theory of vesicle formation

from multi-component lipid bilayers [14–18] to the case of enveloped viruses to see whether

or not there is an energy barrier that inhibits scission.

Continuum theory: Mechanical equilibrium

The continuum theory of the budding of vesicles from multi-component lipid bilayers [14–18]

is based on the Helfrich bending energy. The latter has been used extensively to describe lipid

bilayers and deformable surfaces in general [19]. It has been applied to the budding of viruses

[20–22] and to the formation of clathrin cages [23]. For a recent review of the application of

the bending energy concept to biomembranes, see ref. [24]. Within Helfrich theory, the bend-

ing free energy FB of a deformable, inhomogenerous surface is expressed as

FB ¼
Z

A
2kðsÞðH �

1

R0ðsÞ
Þ

2
þ �kðsÞK

� �

dA: ð1Þ

The first term describes the energy cost for deviations of the mean curvature H ¼ ð1=2Þ�

ð 1

R1
þ 1

R2
Þ of a surface from the mean curvature 1/R0(s) that corresponds to the free energy

minimum of the local molecular structure. Here, R1,2 are the principle curvature radii at a

given point s on the surface of the disk. For a bare lipid bilayer, 1/R0(s) is zero while for the

membrane-covered protein layer of a budding spherical virus, 1/R0(s) corresponds to the

inverse of the radius of the capsid. The coefficient κ(s), the local bending modulus, is always

positive. For lipid bilayers, the bending modulus κL has been measured to be of the order of

20 kBT. Values for the bending modulus κC for a layer of capsid proteins are not as well estab-

lished but micromechanical studies indicate that it is significantly larger than that of a lipid

bilayer.

In the second term of the bending free energy, K = 1/(R1 R2) is the Gauss curvature. K is

positive for a spherical surface and negative for a hyperbolic or saddle-shaped surface. The

membrane of the neck region of a budding virus has a negative Gauss curvature. According to

the Gauss-Bonnet Theorem (GBT), the integral of the Gaussian curvature K over a surface A

with boundary S obeys
R

AKdA þ
R

Skgds ¼ 2pw with κg the geodesic curvature of the boundary

and with χ a topological invariant (know as the “Euler characteristic”). For a closed membrane

without a boundary that has a uniform Gauss curvature modulus, the area integral of the

Gauss curvature is an invariant equal to 4π. As a result, if a spherical bud with positive Gauss

curvature is developing along a uniform membrane, then that has to be “paid for” by a section

of negative Gauss curvature, such as the neck. If the Gauss modulus is not a constant, as in the

present case, then the second term of the GBT is non-zero. Consider a closed membrane com-

posed of two different parts that are joined along a closed boundary line S. One part has Gauss

modulus �kðsÞ ¼ �kC while the other part has Gauss modulus �kðsÞ ¼ �kL. Application of the

GBT leads to
Z

A
�kðsÞKdA ¼ ½�kC þ �kL�2p � ½�kC � �kL�

Z

S
kgds: ð2Þ

For such a non-uniform surface, the Gaussian curvature energy
R

A�kðsÞKdA is dependent on

the geometry of the boundary line and no longer a topological invariant. In the context of

multi-component lipid bilayers, this term has been shown to contribute to the formation of

vesicles [14–18]. A Gaussian curvature modulus can in principle have either sign. For lipid

bilayers �kL is known to be negative and of the order of the bending modulus −κL [25]. In order

for the minimum of the Helfrich bending energy to correspond to a mechanically stable
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spherical cap, the Gaussian curvature modulus �kC of the capsid also should be negative and in

the range � 2kC < �kC < 0 (in the limit that �kC ¼ 0, the spherical cap shape is marginally

stable).

Under conditions of mechanical equilibrium, the Helfrich energy must be minimized. A

budding geometry that minimizes the Helfrich bending energy is shown in Fig 3. A spherical

cap shape, which represents the partially assembled capsid, is attached to a minimal surface
shape (i.e., a surface with H = 0) in the form of a catenoid of revolution. This represents the

protein-free lipid bilayer. The interfacial boundary joining the two parts is a circle. The aper-

ture angle of the cone subtended by the center of the sphere and the boundary line will be

denoted by α. If the area A of the spherical cap equals A = πρ2 then there is a geometrical rela-

tion between ρ and the aperture angle given by ρ = 2R cos α/2. Fig 4 compares the shape of

the profile obtained from the simulations with this shape, with α treated as a fitting parameter.

The agreement is reasonable but the theory does not reproduce a certain amount of large-scale

warping of the membrane that was observed during the early stages of budding.

The total continuum energy is the sum of the Helfrich bending energy of the capsid and the

membrane, an interfacial free energy τP, with P the length of the interfacial boundary with τ
the interfacial energy per unit length. The last term is the cohesion energy −σA, with σ the free

energy gain per unit area for capsid assembly. One can show that, for given area A, the total

continuum energy can be expressed as a dimensionless function of the aperture angle α:

FðaÞ=kC ¼ 2p 2 cos
a

2
� r

� �2

� 4p�g cos2
a

2
þ 2ptr sin a=2 � psr2 ð3Þ

We redefined ρ as ρ/R0, a dimensionless growth parameter; τ as τR0/κC, a dimensionless line

energy per unit length; and σ as sR2
0
=kC, a dimensionless cohesion energy per unit area. The

first term corresponds to the mean or “extrinsic” curvature term of the Helfrich free energy

while the second second term, with �g ¼ ðj�kC j� j�kLjÞ

kC
, corresponds to the Gaussian or “intrinsic”

Fig 3. Shape of a bud that minimizes the Helfrich bending energy. The blue line, which represents the bare lipid

bilayer membrane, has the shape of catenoid of revolution. The heavy red line, which represents the lipid bilayer

attached to a curved layer of capsid proteins, has the shape of spherical cap. The interface is a circle. The boundary

between the two bilayers and the center of the sphere spans a cone with aperture angle 2α. For purposes of illustration,

RNA genome molecules associated with the bud are indicated by a black line. Two capsid proteins diffusing along the

lipid bilayer are indicated as two red bars associated both with the membrane and an RNA genome molecule. A

curvilinear coordinate system (s, φ) is indicated where s measures the shortest arc distance between a point and the

cross-section with minimum diameter (s = 0). The value of s ranges from sM> 0 to sm< 0. Finally, φ is the azimuthal

angle of the circle on the surface perpendicular to the central axis on which the point is located.

https://doi.org/10.1371/journal.pcbi.1006602.g003
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curvature energy. Note that �g vanishes when the Gaussian curvature moduli of the capsid and

the bare lipid bilayer are the same. It is expected that �g is positive because the bending moduli

of the capsid are expected to be larger in magnitude than those of the lipid bilayer. The form

for the Gaussian curvature energy follows from an application of the Gauss-Bonnet Theorem.

The last two terms are the cohesion and interfacial line energy terms respectively.

The next step depends on whether the capsid shell is to be treated as an ordered particle

array or as a fluid (or visco-elastic) system. First consider the fluid case. If the capsid shell is

fluid, then α can be treated as a variational parameter to be determined by free energy minimi-

zation. The function F(α) has two minima: one at a non-zero α = α�(ρ) that corresponds to

an open spherical cap and one at α = 0 that corresponds to a closed shell. A typical example of

the dependence α�(ρ) is shown in Fig 5. As ρ increases from zero, α�(ρ) decreases monotoni-

cally from α�(0) = π. Initially, the spherical cap state is the minimum free energy state, but at

a point ρ = ρ�, the energy of the α = 0 closed shell state drops below that of the α = α�(ρ) spher-

ical cap state. At that point, the spherical cap state is connected via a neck to the membrane.

At a slightly larger value of ρ, the spherical cap state becomes locally unstable and abruptly

transforms at fixed ρ to a closed shell state. Within continuum theory, no energy barrier pre-

vents this transformation.

If, on the other hand, a capsid shell is a positionally ordered solid then an elastic strain
energy term must be included in the free energy. A local change of the Gaussian curvature of

an ordered layer generates large elastic stresses [26–28]. In consequence, if a growing bud

always has the shape of a spherical cap then the radius of curvature must stay the same during

the growth process (or nearly so) since changing the curvature radius means changing the

Gauss curvature. In particular, a discontinuous transformation from an open to a closed shell

at fixed total area, such as encountered for the fluid shell, is not possible for a positionally

ordered shell. Assuming thus the curvature radius R to be a fixed quantity, the aperture α and

Fig 4. Comparison between the shape of the bud obtained from the simulations (open circles) and the one that

minimizes the Helfrich bending energy. The latter is composed of a spherical cap (black line) joined to a catenoid of

revolution (red line). Vertical axis: height Z in arbitrary units. Horizontal axis: radial distance r in arbitrary units. The

aperture angle α is treated as a fitting parameter.

https://doi.org/10.1371/journal.pcbi.1006602.g004
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the growth parameter ρ are related by the condition ρ = 2R cos α/2 so α is no longer a varia-

tional parameter. A plot of F for fixed R as a function of ρ is shown in Fig 6. In the first part of

the curve an activation barrier can be seen but this barrier is a standard feature of the nucle-

ation and growth process. In the second part of the plot, where the neck is forming, the free

energy decreases monotonically for increasing growth parameter. Increasing the cohesion

energy from zero only facilitates the budding.

This way of including the elastic energy is only heuristic. In order to verify it, we again used

our Brownian dynamics simulations of alphavirus budding. The proteins of the shell were, in

this case, positionally ordered and had a curvature radius that did not change significantly dur-

ing budding. The elastic shell description is then the appropriate one. In order to check for the

effects of strain, the simulations were repeated in the absence of a lipid bilayer, with monomers

in solution freely diffusing to the edge of the growing shell. The capsid shape and the degree of

positional ordering remained similar, so the elastic strains presumably also were not much

affected by the removal of the bilayer. Yet the pausing and stalling effects completely disap-

peared. We conclude that pausing/stalling is a feature of the membrane geometry that it is not

related to curvature-induced elastic stresses.

One important caveat is that the the Helfrich description is not a good description of the

membrane during the scission process itself, when the connection between the virus and the

membrane has reduced to an elongated stalk. At the very least, a continuum description of

scission needs to include the bilayer nature of the membrane along the lines of the continuum

theory for stalk formation during membrane fusion [29]. It is certainly possible that an energy

barrier could appear in such a theory. However, the stalling observed in the simulations hap-

pened when the opening in the membrane still was quite large compared to the thickness of a

lipid bilayer so the growth of an energy barrier associated with stalk formation is not the expla-

nation for the stalling observed in the simulations.

Fig 5. Example of the dependence of the aperture angle α� that minimizes the free energy on the growth

parameter ρ for the case of a fluyid shell. The partial shell in the shape of a spherical cap with α� > 0 is locally stable

along the black line and unstable along the red dashed line. The completed capsid with α� = 0 is stable along the blue

line. The black dashed lines mark limits of local stability. Parameter values: κC = 0.5, σ = 0, �g ¼ 1:4, and τ = 0.5.

https://doi.org/10.1371/journal.pcbi.1006602.g005
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Continuum theory: Surface diffusion

Since we could find no energy barrier preventing scission within equilibrium continuum the-

ory, could the stalling and pausing be a purely kinetic effect? In other words, could it be an

effect involving the transport of capsid proteins to the growing shell? For the case of the alpha-

virus simulations, the transmembrane capsid glycoproteins were localized to the PM. In order

to construct a continuum theory for the dynamics, we will focus on the case that the transport

of capsid proteins to the growing bud proceeds by surface diffusion along the PM to the grow-

ing bud. The proteins are incorporated along the growth interface, which acts as a protein

absorber.

The theory of diffusive transport of membrane inclusions along nearly flat membranes has

been extensively studied (see ref. [30] and references therein), which has been extended to

Fig 6. Example of the dependence of the free energy minimum on the growth parameter ρ for the case of a solid shell. The parameters were the same as for Fig 5

while the cohesion energy parameter σ was set to zero. The dot indicates the point where the neck diameter has shrunk to zero. Note that there is an activation barrier

for low values of the growth parameter but not at the point of pinch-off.

https://doi.org/10.1371/journal.pcbi.1006602.g006
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diffusive transport on curved surfaces [31–33]. What is relevant for the present case is the

fact that the diffusion coefficient on surfaces with negative Gauss curvature is larger than the

diffusion coefficient of the same inclusion on a corresponding flat surface [31], which hardly

seems encouraging. However, these references focused on membrane inclusions that did not

couple to the curvature of the membrane. As discussed earlier, stability of the spherical caps

shape requires that the capsid proteins must be coupled to Gauss curvature. In fact, their

chemical potential should be minimized for positive Gauss curvature. In the following, we

will explore how curvature coupling alters the physics of membrane diffusive transport of

proteins.

To develop a continuum description for diffusive transport, introduce a low concentration

ϕ of membrane-associated capsid protein monomers or oligomers that are diffusing in to the

partial shell. We retain the geometry of Fig 3 with R = R0. The first step in computing the

steady-state diffusion current from infinity to the circular interface between the capsid and the

lipid bilayer is to introduce a curvilinear coordinate system (s, φ) along the catenoid of revolu-

tion shown in Fig 3. Here, s measures the arc distance of a point on the surface to the mini-

mum cross-section of the neck (at s = 0) while φ measures the azimuthal angle. Assuming that

the steady-state current has rotational symmetry, the surface protein concentration ϕ(s) in the

neck region should only depend on s. Far from the neck area, the capsid protein concentration

is set equal to a constant value ϕ0. When a diffusing capsid protein arrives at the circular inter-

face, it is assumed to be immediately absorbed into the shell, which means that ϕ = 0 at the

growth interface (“absorber” boundary condition).

According to the principles of non-equilibrium thermodynamics, if interaction between

the capsid proteins is neglected then the current density Ji of the capsid proteins, with i a com-

ponent of the curvilinear coordinate system of Fig 3, is proportional to the gradient of the

chemical potential along the curved surface. In the limit of low concentrations, this chemical

potential gradient can be expressed as

Ji ¼ � Dri� � m�ri� ð4Þ

The first term is the gradient of the contribution to the chemical potential coming from trans-

lational entropy with D the surface diffusion coefficient. In the second term, the drift term,

the mobility μ is related to the diffusion coefficient through Einstein’s relation μ = D/kBT. The

second term is the gradient of the enthalpic contribution �(s) to the chemical potential. This

quantity can be obtained from the relation � ¼
dEð½�Þ�
d�

where E([ϕ)] is the enthalpic part of the

free energy of the lipid bilayer. By repeating the symmetry arguments that are used to obtain

the Helfrich bending energy for a curved membrane [19], it follows that E([ϕ)] must have the

general form

Eð½��Þ ¼ E0ð½��Þ þ

Z

A
½2kð�ÞðH � Cð�ÞÞ2 þ �kð�ÞK�dA; ð5Þ

where E0([ϕ]) is the protein-membrane interaction energy of a flat membrane while κ(ϕ) and

�kð�Þ are the concentration-dependent curvature moduli. Finally, C(ϕ) is the concentration-

dependent spontaneous curvature. In the Materials and Methods section we show that in the

small ϕ limit, �ðsÞ ¼ �k 0KðsÞ where �k 0, the derivative of �kð�Þ with respect to ϕ at ϕ = 0, is a neg-

ative quantity.

The steady-state current is the solution of the continuity equation

riJi ¼
1
ffiffiffigp
@ið

ffiffiffi
g
p

JiÞ ¼ 0 ð6Þ
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where g is the determinant of the metric tensor of the surface. The solution must obey the con-

dition that the capsid protein concentration is zero just outside the circular interface (absorber

boundary condition) while far from the interface it should approach the prescribed surface

area concentration. The mathematical method that was used in solving the continuity equa-

tions is straightforward and discussed in Materials and Methods. The current will be expressed

in terms of the maximum current and while the growth parameter ρ will be expressed in terms

of the maximum value ρM. This maximum value is defined by the condition that the area

πρM2 of a flat disk of protein material equals the surface area 4pR2
0

of the capsid. The relation

between current and growth parameter is controlled by the single dimensionless quantity

g ¼ bj�k 0j=R2
0
.

Fig 7 shows a comparison between a plot of the relation between current and growth

parameter with the outcome of the simulations of Fig 2. The γ parameter was used as a

fitting parameter. Eq 17 (red line) is reasonably consistent with the data, but it underesti-

mates the current across the neck just prior to pinch-off. A key feature is the maximum of

both the computed data and Eq 17. The presence of a maximum in the I − ρ profile is a fea-

ture of conventional diffusive transport with γ = 0 on a flat surface, as was noted by a

Fig 7. Solid red line: Diffusion current I from the exterior to the growing bud versus relative size ρ/ρM of the bud computed from Eq 17. γ = 0.9 was

the sole fitting parameter. The current and the growth parameter were normalized with respect to their maximum values. Black dots: assembly current

obtained from the Brownian Dynamics simulation of Fig 2. Error bars were obtained by averaging over three runs. The strength �gg of the interaction

between the capsid proteins was 6kBT. The black arrow indicates the location of the maximum of the current profile predicted by conventional diffusive

transport theory (i.e. γ = 0 in Eq 11).

https://doi.org/10.1371/journal.pcbi.1006602.g007
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number of authors [34–37]). However, for γ = 0 the maximum is at r=rM ¼ 1=
ffiffiffi
2
p

when the

partial shell has the shape of a hemisphere. This point is denoted by an arrow in the figure.

The position of that maximum disagrees strongly with the maximum in data of Fig 7, so we

definitely can rule out conventional diffusive transport theory. An important difference

between the measured data and Eq 17 is that the measured assembly current actually does

not go to zero: the theory appears to overestimate the geometrical barrier for small neck

widths.

While the theory is consistent with the data, the comparison is not conclusive. We com-

pared the concentration profiles of the theory and the simulations in the neck region, to obtain

additional verification, but the statistical error due to the small number of proteins in the neck

region and the out-of-equilibrium nature of the simulations was too large for a meaningful

comparison.

Conclusions

In summary, the physics of diffusion of Gaussian curvature-sensing proteins provides us with

a mechanism that could explain the pausing and stalling that is observed during the late-stage

budding of many enveloped viruses. This mechanism is based on the fact that capsid proteins

diffusing in from infinity towards the growth interface of a viral bud necessarily must pass

through a neck region with negative Gauss curvature. The chemical potential of the capsid

proteins is increased in the neck region since capsid proteins intrinsically impose positive

Gauss curvature on the PM of the host cell. Within a simple continuum theory, the importance

of this geometrical barrier effect is determined by a dimensionless parameter, g ¼ bj�k 0j=R2
0
. If

γ is of the order of one or larger, then the suppression of the current by the geometrical barrier

shows up already at relatively large aperture angles while for smaller γ, the effect appears only

for increasingly smaller apertures. One can estimate γ if one assumes that �k 0�M is of the order

of the Gauss curvature modulus �kC of the capsid. Here, ϕM’ 1/a2 is the protein concentration

of the capsid with a of the order of a nanometer. Next, numerical estimates of Gauss moduli

typically produce �k ’ � k [38, 39]. Assuming a curvature modulus of viral capsids in the range

of 100 kBT, one finds γ values in the range of 0.1. The dependence of the growth rate on the

amount of capsid material measured for numerical simulations of the assembly of the alpha-

virus indeed can be fitted by values of γ in this range.

There are however also disagreements between theory and simulations. Within the contin-

uum theory, the budding process should actually come to a complete halt but the numerical

simulations demonstrate that in general this is not the case. There appears to be a critical

point in terms of the protein-protein interaction strength �gg below which assembly indeed

stalls but above which budding completes in a spontaneous scission event. A continuum the-

ory that takes into account the bilayer nature of the membrane and the nature of the interac-

tion between the lipid bilayer and capsid proteins may be required to explain the fact that

scission eventually does take place.

If scission is spontaneous for sufficiently large values of �gg, then why do enveloped viruses

not adopt this route? It would avoid the necessity of having to recruit the ESCRT machinery.

One reason could be that, according to the numerical simulations, the capsid becomes increas-

ingly defected for large �gg, which could interfere with other functions of the virus. Another

manner in which the geometrical barrier could be suppressed would be if capsid proteins cou-

pled only to the mean curvature and not to the Gaussian curvature. Because the spherical cap

shape becomes mechanically unstable when �k goes to zero, this also may not be an option. The

opportunistic recruitment of the ESCRT cell machinery—which has been referred to as a “Tro-

jan Horse” strategy [40]– avoids these problems.
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Next, we have assumed in this paper that the pausing is not caused by the ESCRT machin-

ery. A reconstruction of the formation of the ESCRT machinery during HIV budding [8]

shows that the ESCRT machinery occupies a significant amount of space in the neck region,

which suggests the possibility that the ESCRT machinery prevents diffusing capsid proteins

from reaching the growth surface. To us this explanation appears to be less likely. First, the

immature capsid of HIV has holes in multiple locations [3] while templated self-assembly

of Gag proteins in the absence of ESCRT [41] produces capsids with holes. The tendency to

form holes is thus an intrinsic feature of the HIV capsid instead of a by-product of the ESCRT

machinery. Next, the ESCRT machinery is recruited also during the budding of enveloped

viruses that have completely closed proteins shells, such as Herpes Simplex. In those cases

apparently, ESCRT is not blocking protein transport completion of the protein shell. Finally,

if the ESCRT machinery causes stalling then why would it be recruited in the first place? It is

more parsimonious to assume that the ESCRT machinery does not block assembly and that

pausing/stalling has a separate cause. The striking difference between the HIV and Herpes

capsids is interesting in its own right. It will have to be understood in terms of differences

between the interactions between the respective capsid proteins. The capsid proteins of

Herpes—and those of the related bacteriophage viruses such HK97—are highly evolved

“molecular machines” that weave together ordered and robust shells [42]. On the other hand,

the defected nature of the immature HIV capsid [3] suggest that the interactions are relatively

weak in that case. Within our model simulations, the strength of the attractive interactions

between the model proteins would be the only handle to account for such differences. Interest-

ingly, though, increasing the strength of the attractive interactions does cause the holes to

disappear.

An important limitation of the transport theory that we presented is that it assumes that

the diffusing capsid proteins are non-interacting. It is in fact known that there are long-range,

membrane-mediated interactions between membrane-associated proteins that apply a bend-

ing moment to the membrane [43]. These interactions can stimulate aggregation and also pro-

duce multiple budding events in a concerted fashion as discussed by Auth and Gompper [44]

and by Reynwar et al. [45]. The model proteins of our simulations do apply such a bending

moment but only when they form oligomers. It would be interesting to investigate how such

interactions affect the geometrical kinetic barrier that is causing the stalling (see ref. [30]).

Finally, it is interesting to compare the budding of enveloped viruses with cellular endocy-

totic processes that involve a member of the BAR-domain familiy of membrane-associating

proteins, which are banana-shaped curvature-sensing proteins. At high densities, BAR-

domain proteins are able to control membrane shape by inducing membrane curvature. This

can lead to the formation of membrane tubules [46]. Tubular membranes surrounded by

BAR-domain proteins associate with dynamin [47], which produces scission. Like the BAR-

domain proteins, the capsid proteins of enveloped viruses have an affinity for membranes, but

exclusively for membranes with positive Gauss curvature and, unlike BAR-domain proteins,

capsid proteins avoid membrane section with negative Gauss curvature, which is what led to

the geometrical barrier. Replacing capsid proteins by BAR-proteins, presumably tranforms the

neck to a potential well. It would be interesting to explore the effects of BAR-proteins on the

budding of enveloped viruses.

Materials and methods

Our simulations employ a coarse-grained model that was designed to capture the essential

physical features of the membrane and alphavirus transmembrane glycoproteins (GPs) (see

Fig 8). Although the GPs are transmembrane proteins, their assembly is described by the same
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continuum model as HIV capsid proteins adsorbed to the membrane. Moreover, in our model

the conical regions which drive curvature of the model subunit oligomers are located within

and below the plane of the membrane, as we found that this arrangement facilitated comple-

tion of assembly [1]. We note that the stalling described in the main text was observed for all

subunit interaction geometries that we have considered for the alphavirus model [1], as well

as in another model for proteins that adsorb onto the membrane [48], suggesting that the bar-

rier is a generic feature of assembly and budding on a membrane. We note that the stalling

described in the main text was not observed in some previous budding simulations because

they only considered early stages of budding [49–51]. While Refs. [52, 53] did consider the

entire budding process, their model represented the capsid proteins as patchy spheres and the

membrane as a triangulated monolayer, which likely eliminated or minimized coupling of the

proteins to membrane Gaussian curvature.

We begin with an overview of each component of the model, and then give the full set of

interaction potentials in section.

Glycoproteins and capsid

Our model GPs are designed to roughly match the triangular shape, dimensions and aspect

ratio of trimers-of-heterodimers of E1 and E2 GPs in the Sindbis virion [1, 54, 55]. There are

80 of these trimers arranged with T = 4 icosahedral symmetry in the virion structure. On the

capsid surface each trimer forms a roughly equilateral triangle with edge-length� 8nm. In the

radial direction, each E1-E2 heterodimer spans the entire lipid membrane and the ectodomain

spike, totaling� 12nm in length.

Our GP trimer subunit comprises three cones, which are fused together and simulated as a

rigid body. Each cone is represented by an array of 6 beads of increasing diameter, following

the model described by Chen et al. [56]. However, our cones are truncated, so that they form a

shell with an empty interior, as shown in Fig 8. The cones experience lateral interactions, with

a preferred angle that, in the absence of a membrane, drives assembly into shells with a typical

size of 80 trimers, with fluctuations in the range 79 − 82 trimers. The attractions are mediated

by the four interior pseudoatoms within each cone (A2-A5 in Fig 8), while the innermost and

outermost pseudoatoms (B1 and B6) experience only excluded volume.

Fig 8. (A) (left) Image of a trimer subunit, with attractors (‘A2’-‘A5’) in green and excluders (‘B1’ and ‘B6’) in red.

(right) Schematic of the subunit geometry, with views from directly above the plane of the membrane and within the

plane of the membrane. Membrane excluders are not shown in these schematics to aid visual clarity. (B) Image of a

subunit trimer, showing attractors (green, type ‘A’), excluders (red, type ‘B’), and membrane excluders (magenta, type

‘VX’).

https://doi.org/10.1371/journal.pcbi.1006602.g008
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Lipid membrane

The lipid membrane is represented by the implicit solvent model from Cooke and Deserno

[13]. This model enables, on computationally accessible timescales, the formation and reshap-

ing of bilayers with physical properties such as rigidity, fluidity, and diffusivity that can be

tuned across the range of biologically relevant values. Each lipid is modeled by a linear polymer

of three beads connected by FENE bonds; one bead accounts for the lipid head and two beads

for the lipid tail. An attractive potential between the tail beads represents the hydrophobic

forces that drive lipid self-assembly. For the simulations described here, the membrane bend-

ing modulus was set to κmem� 12.5kBT.

Glycoprotein-membrane interactions

We use a minimal model for the GP-membrane interaction. We add six membrane excluder

beads (type ‘VX’) to our subunit, three at the top and three at the bottom of the subunit, with

top and bottom beads separated by 7nm (magenta beads in Fig 8B). These excluder beads

interact through a repulsive Lennard-Jones potential with all membrane beads, whereas all the

other cone beads do not interact with the membrane pseudoatoms. In a simulation, the sub-

units are initialized with membrane located between the top and bottom layer of excluders.

The excluded volume interactions thus trap the subunits in the membrane throughout the

length of the simulation, but allow them to tilt and diffuse laterally.

GP conformational changes and implementation of constant GP

concentration

Experiments suggest that viral proteins from many families interconvert between ‘assembly-

active’ and ‘assembly-inactive’ conformations, which are respectively compatible or incompat-

ible with assembly into the virion [57–59]. Experiments suggest similar conformational

changes for the alphavirus GPs E1 and E2 [59, 60]. Computational modeling suggests that

such conformational dynamics can suppress kinetic traps [61, 62]. Based on these consider-

ations, our GP model includes interconversion between assembly-active and assembly-inactive

conformations. The two conformations have identical geometries, but only assembly-active

conformations experience attractive interactions to neighboring subunits. I.e., there are no

attractive interactions (Eq 12 below) for subunit pairs in which one or both of the subunits is

in the inactive conformation.

We adopt the ‘Induced-Fit’ model of Ref. [61], meaning that interaction with an assembling

GP shell or the NC favors the assembly-active conformation. For simplicity, we consider the

limit of infinite activation energy. In particular, with a periodicity of τc all the inactive subunits

found within a distance 1.0σ of the capsid are switched to the active conformation, while any

active subunits further than this distance from an assembling shell convert to the inactive con-

formation. Results were unchanged when we performed simulations at finite activation ener-

gies larger than 4kBT.

To maintain a constant subunit concentration within the membrane (outside of the region

where an assembling shell is located) we include a third subunit type called ‘reservoir subunits’,

which effectively acts as a reservoir of inactive subunits. These subunits interact with mem-

brane beads but experience no interactions with the other two types of GP subunits. With a

periodicity of τc, reservoir subunits located in a local region free of active or inactive subunits

(corresponding to a circumference of 1.5 times the radius of the largest subunit bead) are

switched to the assembly-inactive state.
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Subunit geometry

The geometry of the model GP trimer subunit is schematically shown in Fig 8. As explained

above, the subunit consists of three cones symmetrically placed around the subunit axis. Each

cone contains six pseudoatoms. Only the inner four pseudoatoms (denoted as A) experience

attrative interactions. The outer two pseudoatoms, B, interact with the rest through excluded

volume. The pseudoatoms are placed at heights hi = [16.0, 17.5, 19.0, 20.5, 22.0, 23.5]σ. At

each plane z = hi there are three identical pseudoatoms forming an equilateral triangle of

radius li = hi tan αl, where αl can be tuned. Since assembly in bulk is slightly more robust for

smaller αl, we choose an optimal value αl = 7˚. The radius of each pseudoatom is then given by

reqi ¼ li cosc, with ψψ = 94.9˚ the parameter that controls the preferred curvature of the sub-

units. Finally, to embed the subunits in the membrane we add two layers of three membrane

excluders ‘VX’, consistent with the cone geometry, at height hin = 19.0σ (inner domain) and

hout = 26.0σ (outer domain). The sequence of pseudoatoms across the shell reads [B1,A2,A3,

VXin,A4,A5,B6,VXout].

Simulations

We perform simulations in HOOMD-blue [63], version 1.3.1. Both the subunits and the

NC are simulated using the Brownian dynamics algorithm for rigid bodies. The membrane

dynamics is integrated using the NPT algorithm, a modified implementation of the Martina-

Tobias-Klein thermostat-barostat. The box size changes in the membrane plane, to allow

membrane relaxation and maintain a constant lateral pressure. The out-of-plane dimension is

fixed at 200σ.

Our simulations use a membrane patch with size 170 × 170nm2 (A� 28,900nm2), which

contains 51,842 lipids. We compare membrane deformations, capsid size and organization

from these simulations against a set of simulations on a larger membrane (210 × 210nm2,

A� 44,100nm2) and observed no significant differences, suggesting that finite size effects were

minimal. Simulations are initialized with 160 subunits uniformly distributed on the mem-

brane, including 4 active-binding subunits (located at the center of the membrane) with the

remainder in the assembly-inactive conformation. In addition, there are 156 subunits in the

reservoir conformation uniformly distributed.

The membrane is then equilibrated to relax any unphysical effects from subunit placement

by integrating the dynamics for 1,500 τ0 without attractive interactions between GPs. Simula-

tions are then performed for 4,200 τ0 with all interactions turned on. The timestep is set to

Δt = 0.0015, and the thermostat and barostat coupling constants were τT = 0.4 and τP = 0.5,

respectively. Since the tension within the cell membrane during alphavirus budding is

unknown, we set the reference pressure to P0 = 0 to simulate a tensionless membrane. The

conformational switching timescale is set to τc = 3τ0, sufficiently frequent that the dynamics

are insensitive to changes in this parameter.

Interaction potentials

The total interaction energy Utot is separated into two contributions,

Utot ¼ Umem þ Ugg ð7Þ

where Umem represents the interaction energy between the membrane beads and Ugg accounts

for the interaction of between subunits as well as with the membrane.
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Membrane interactions. The membrane lipids consist of three beads, the first represent-

ing the lipid head and the other two connected through two finite extensible nonlinear elastic

(FENE) bonds with maximum length rcut = 1.5σ,

UbondðrÞ ¼ �
1

2
kbondr

2

cut log ½1 � ðr=rcutÞ
2
�: ð8Þ

with kbond = 30�0/σ2. A harmonic spring links the two outer beads, to ensure that the lipids

maintain a cylindrical shape,

UbendðrÞ ¼
1

2
kbendðr � 4sÞ

2
: ð9Þ

All membrane beads interact via a Weeks-Chandler-Andersen potential,

UrepðrÞ ¼
X

4�rep
bi;j
r

� �12

�
bi;j
r

� �6

þ
1

4

" #

; ð10Þ

with �rep = 1 and cutoff rcut = 21/6 bi,j. The parameter bi,j depends on the identities of the inter-

acting beads: bh,h = bh,t = 0.95σ and bt,t = 1.0σ, with the subscripts ‘h’ and ‘t’ denoting head

and tail beads, respectively. The hydrophobic nature of the lipid tails is accounted for by an

attractive interaction between all pairs of tail beads:

UhydroðrÞ ¼

� �0; r < rc

� �0 cos ½pðr � rcÞ=2oc�; rc � r � rc þ oc

0; r > rc þ oc

8
>>><

>>>:

ð11Þ

with �0 = 1.0, rc = 21/6σ. The potential width ωc is a control parameter that determines, among

other properties, the membrane rigidity. Unless otherwise specified, ωc = 1.6.

GP-GP interactions. The interaction potential between pairs of GP subunits, Ugg, consists

of two terms. If both subunits are in the active conformation, there is an attractive interaction

between pairs of attractor pseudoatoms ‘A’, modeled by a Morse potential. Beads interact only

with those of the same kind on a neighboring cone, Ai-Ai, i = 2,.., 5, and the equilibrium dis-

tance of the potential depends on the pseudoatom radius, reqi :

UM
gg ¼

X5

i¼2

UM
i ¼

X5

i¼2

�ggðe
� 2aiðr� 2reqi ÞÞ � 2e� aiðr� 2reqi ÞÞ ð12Þ

with ai ¼ ð3:0=r
eq
i Þ. The cutoff of this interaction was set at rcut ¼ 2reqi þ 3:5. All subunit beads

of type ‘A’ and ‘B’ experience excluded volume interactions regardless of whether subunits are

in the active or inactive conformations, according to:

Uex
g� gðrÞ ¼

X

i

X

j

4�ex
bi;j
r

� �12

�
bi;j
r

� �6
" #

ð13Þ

with �ex = 1.0 and cutoff radius rcut ¼ bij ¼ reqi þ reqj . The sum extends to all the subunit beads

of type ‘A’ and ‘B’.

In the subunits, only the pseudoatoms ‘VX’ interact with the membrane beads; there is no

interaction between membrane beads and ‘A’ or ‘B’ pseudoatoms. The interaction between

subunit excluders and membrane beads corresponds to the repulsive part of the Lennard-

Gaussian curvature and the budding kinetics of enveloped viruses

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006602 August 21, 2019 16 / 22

https://doi.org/10.1371/journal.pcbi.1006602


Jones potential,

Uex
g� mðrÞ ¼

X

i

X

j

4�ex
bg-mi;j

r

� �12

�
bg-mi;j

r

� �6
" #

; ð14Þ

where i runs over all lipid beads and j over all ‘VX’ pseudoatoms, and bg� mi;j ¼ 0:5þ rin for the

inner excluders VXin and bi,j = 0.5 + rin for the outer excluders VXout.

Modulus values

The mean curvature modulus for this model was calculated in Ref. [1] to be κ� 25.66�gg, and

the calculation in Ref. [39] for a related model shows that �k � � k. However, there is an addi-

tional energetic penalty (not present in the Helfrich hamiltonian) for regions in which the two

principle curvature are mismatched, so the continuum description of the bending energy goes

as [39].

Ubend=A ¼ k
1

2
ð2H � 2=R0Þ

2
þ ðH2 � KÞ

� �

: ð15Þ

Solution of the continuity equation

For a catenoid surface of revolution, the determinant g of the metric tensor obeys
ffiffiffiffiffiffiffiffi
gðsÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðaÞ2 þ s2

q

with c(α) = R0 sin2(α) the minimum radius of the neck. The current conservation

equation then reduces to

�
0
ðsÞ þ �ðsÞbU 0ðsÞ ¼

IðaÞ=2pD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðaÞ2 þ s2
q ð16Þ

where I(α) is the total incoming current that we need to determine. This equation is solved by

the Ansatz ϕ(s) = p(s)e−βU(s) where p0ðsÞ ¼ ðIðaÞ=2pDÞ ebUðsÞffiffiffiffiffiffiffiffiffiffiffi
s2þcðaÞ2
p . Impose absorber boundary

conditions ϕ(sm) = 0 along the growth interface at s = sm and set ϕ(sM) = ϕ0 far outside the

neck area at s = sM, where we also place the zero of the potential energy (so U(sM) = 0). This

gives for the current:

IðaÞ=I0 ¼
1

R sM
sm

ebUðsÞffiffiffiffiffiffiffiffiffiffiffi
s2þcðaÞ2
p ds ð17Þ

with I0 = 2πDϕ0. If the metric factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ cðaÞ2
q

is set to one in Eq 17, then it reduces to a

form similar to the Kramers expression for steady-state diffusion in a potential [64]. The non-

entropic contribution to the chemical potential of a protein is given by U ¼ dEð½�Þ�
d�

where E([ϕ)]

is the internal energy of the lipid bilayer outside the capsid but with a low concentration of

proteins. By repeating the symmetry arguments that are used to obtain the Helfrich bending

energy for a curved membrane [19], one finds that E([ϕ)] must have the general form

Eð½��Þ ¼ E0ð½��Þ þ

Z

A
½2kð�ÞðH � Cð�ÞÞ2 þ �kð�ÞK�dA; ð18Þ

Here, E0([ϕ]) is the protein-membrane interaction energy of a flat membrane while κ(ϕ) and
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�kð�Þ are the concentration-dependent curvature moduli. Finally, C(ϕ) is the concentration-

dependent spontaneous curvature. In the limit ϕ = 0, all these quantities should reduce to the

values appropriate for a pure lipid bilayer with capsid proteins. Expanding to lowest order in ϕ
around this state gives

E0ð½��Þ ¼ E0
Z

A
�dAþ :::

kð�Þ ¼ kL þ k
0�þ :::

�kð�Þ ¼ �kL þ �k0�þ :::

Cð�Þ ¼ C0�þ :::

ð19Þ

It follows that

Uð�! 0Þ ¼
dEð½� ¼ 0�Þ

d�

¼ 2k0H2 � 4kLC0H þ �k 0K

ð20Þ

In the last step we assumed that at s = sM, where U = 0, the membrane is flat so H = K = 0,

which means that E0
0
¼ 0. Finally, since H = 0 for a minimal surface, we arrive at the simple

result that UðsÞ ¼ �k 0KðsÞ to first order in ϕ. Since we saw earlier that �kC must be negative for a

stable spherical cap state, we conclude that �k 0 < 0. For a catenoid of revolution the Gaussian

curvature is given by KðsÞ ¼ � cðaÞ2

ðs2þcðaÞ2Þ2
so UðsÞ ¼ �k 0KðsÞ has a maximum at the center of the

neck (s = 0). There is thus a “geometrical” energy barrier that the diffusing proteins need to

overcome before they can be absorbed at the growth interface.

For reference, consider first the case where coupling to the Gaussian curvature is neglected.

In that case, Eq 17 for U = 0 reduces to

IðaÞ�k 0¼0
=I0 ’ 1= ln ðsM=cðaÞÞ

’ 1= ln ðsM=ðR0½ðr=2R0Þ
2
ð1 � ðr=2R0Þ

2
Þ�ÞÞ

ð21Þ

In the last step we used the fact that ρ/R0 = 2 cos α/2. The appearance of a logarithmic depen-

dence on the system size sM is typical of two-dimensional diffusion problems. The current first

increases with ρ until the capsid has the shape of hemisphere at the point (ρ/2R0)2 = 1/2. After-

wards, the current decreases back to zero. A plot of the current I as a function of ρ2 is symmet-

rical around the midpoint maximum r2 ¼ 2R2
0
.

Now consider the case that bj�k 0j=ðR0 sin aÞ
2

is comparable to, or larger than, one. Using the

steepest descent method around the maximum of U(s) at s = 0 leads to

IðaÞ=I0 ’

ffiffiffiffiffiffiffiffi
bj�k 0

p
j

cðaÞ
e� bj�k 0 j=cðaÞ

2

’

ffiffiffiffiffiffiffiffiffiffi
bj�k 0j

p

R0 sin
2 a

e� bj�k 0 j=ðR0 sin2 aÞ2

ð22Þ

The current as a function of the aperture angle has an essential singularity at the pinch-off

point α = 0 and ρ/R0 = 2, where it precipitously drops to zero.
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