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Abstract: The association of α-amino-β-methylaminopropionic acid (BMAA) with 

elevated incidence of amyotrophic lateral sclerosis/Parkinson’s disease complex 

(ALS/PDC) was first identified on the island of Guam. BMAA has been shown to be 

produced across the cyanobacterial order and its detection has been reported in a variety of 

aquatic and terrestrial environments worldwide, suggesting that it is ubiquitous. Various  

in vivo studies on rats, mice, chicks and monkeys have shown that it can cause 

neurodegenerative symptoms such as ataxia and convulsions. Zebrafish research has also 

shown disruption to neural development after BMAA exposure. In vitro studies on mice, 

rats and leeches have shown that BMAA acts predominantly on motor neurons. Observed 

increases in the generation of reactive oxygen species (ROS) and Ca2+ influx, coupled with 

disruption to mitochondrial activity and general neuronal death, indicate that the main 

mode of activity is via excitotoxic mechanisms. The current review pertaining to the 

neurotoxicity of BMAA clearly demonstrates its ability to adversely affect neural tissues, 

and implicates it as a potentially significant compound in the aetiology of 

neurodegenerative disease. When considering the potential adverse health effects upon 

exposure to this compound, further research to better understand the modes of toxicity of 

BMAA and the environmental exposure limits is essential. 
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1. The Cycad Hypothesis 

Medical research attention was drawn towards Guam in 1953 when it was reported that the 

incidence of an amyotrophic lateral sclerosis/Parkinson’s disease complex (ALS/PDC) within the local 

Chamorro people was 100 times higher than the rest of the world [1-3]. After failing to identify any 

clear genetic correlation to this observation, attention was turned to environmental/cultural factors that 

might be responsible [2,3]. The use of cycad (Cycas circinalis) flour to make tortillas, soups and 

dumplings by the native Chamorro people [4,5], coupled with various field reports that livestock 

developed progressive and irreversible ataxia after ingesting cycads [6], led to the suggestion that 

cycad consumption could be the cause of the human condition [5], and thus the cycad hypothesis was 

born. In 2007 a group of biostatisticians, led by Borenstein, conducted an in depth population study of 

the Chamorro people, statistically showing that eating cycads presented the highest associated risk of 

developing ALS/PDC [7]. 

2. Proving the BMAA Link 

In 1967 Vega and Bell [8] isolated a non-protein amino acid, α-amino-β-methylaminopropionic 

acid, later renamed BMAA (Figure 1), from cycad seeds. By injecting chemically synthesised BMAA 

into chicks and rats at 3–7 μmoles/g body weight for chicks, and 6–14 μmoles/g body weight for rats, 

and subsequently observing weakness, convulsions and general loss of coordination in both animals 

they determined that BMAA possessed neurotoxic properties [8,9]. 

Figure 1. The chemical structure of β-methylaminoalanine (BMAA). 

 

Despite this observation, little attention was paid to BMAA until 1987, when Spencer et al. 

correlated elevated incidence of ALS in communities in the Kii peninsula of Japan [10] and Irian Jaya 

(West New Guinea) [11] to the traditional use of cycad pulp and sap in medicinal broths and in 

concoctions used to treat wounds. They hypothesised that BMAA was the cycad component that 

caused ALS and possibly Parkinson’s and Alzheimer’s diseases in Guam and elsewhere [12]. The 

group then conducted a major experiment in which they fed BMAA (100 to 250 mg/kg) to macaques 

for up to 12 weeks and observed a variety of symptoms indicating that the animals were suffering from 

neurodegeneration [13]. This was quickly questioned by Duncan et al. [14], who suggested that more 
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than 80% of BMAA was removed from cycad seeds during processing, and by Garruto et al. [15] who 

calculated (based on the knowledge of the time) that the doses used were equivalent to a 70 kg man 

consuming 1500 kg of cycad flour. These claims led many to believe that BMAA could not possibly 

be the causative agent, especially when considering the report that at least 85% of the free BMAA was 

removed from the flour with a single wash, thereby making it impossible to consume toxic quantities [16]. 

In 2002, Cox and Sacks [17] rejuvenated the idea by proposing a biomagnification process of 

BMAA accumulation involving flying foxes that fed on cycads. The flying foxes were part of the 

traditional diet of the Chamorro people, meaning that the concentrations of BMAA actually consumed 

by humans were much higher than previously thought. Monson et al. [18] compiled further evidence 

correlating increases in flying fox consumption with increases in ALS incidence, thereby providing 

support for this idea. Whilst the native species of flying foxes are now almost extinct in Guam, testing 

of dried skin samples from museum specimens revealed BMAA concentrations equivalent (per weight) 

to up to 1014 kg of processed cycad flour [19], supporting the bioaccumulation hypothesis. 

At this point in time the source of BMAA in cycads was unknown. In 2003 Cox et al. [20] revealed 

that BMAA was present in coralloid roots of cycads, but not in roots with normal morphology. It was 

already known that cyanobacteria lived in the coralloid roots of cycad plants, where they exist as 

nitrogen fixing symbionts [21]. Cyanobacteria isolated from coralloidal roots were then found to 

produce BMAA [20]. Subsequent testing of a variety of cyanobacterial species revealed that over 90% 

of all genera tested, encompassing all five sections of this phylum, produced BMAA [22,23].  

The group of Marler et al. [24] have suggested that cycad plants can produce BMAA in normal roots 

lacking symbiotic interaction. While this raises doubts over cyanobacterial involvement, they  

do suggest that inoculation with cyanobacteria may induce increased production of BMAA by the  

cycad roots.  

In 2003, studies conducted by Banack and Cox [25] showed that, within cycad plants, BMAA was 

concentrated in the seeds, which are ground up to make flour, that is then washed and used for 

cooking. Another study conducted by Murch et al. [26] detected BMAA in the brain tissues of six out 

of six Chamorro people who had died of ALS/PDC as well as one asymptomatic Chamorro individual 

(although at lower concentrations). Interestingly the same study also found BMAA at significant 

concentrations in the brain tissue of two Canadians who had died of Alzheimer’s disease (AD), 

suggesting that BMAA may play a role in various types of neurodegenerative disease [26]. These brain 

tissue samples had been fixed in paraformaldehyde prior to storage in a 15% buffered sucrose 

maintenance solution [26]. In this, and an associated study, BMAA was detected in protein 

precipitates, revealing that it can exist in an unknown peptide bound form that had not previously been 

quantified. The concentrations of this bound form were 10–240 fold higher than those of free BMAA, 

showing that the accumulated levels were much higher than was previously thought [27]. HPLC and 

mass spectrometry were used to identify and quantify BMAA in tested samples with a detection limit 

of 100 pmol [26,27]. These findings were brought into question in 2005 when Montine et al. [28] 

conducted their own study and failed to detect any free BMAA in any brain samples taken from the 

Chamorro ALS/PDC victims or US AD victims. The same research group again failed to detect free or 

protein-associated BMAA in similar post mortem brain samples in 2009 [29]. These observations led 

them to conclude that BMAA did not accumulate in brain tissues and therefore could not cause 

neurodegeneration. The tissue samples used in these studies had been flash frozen in liquid nitrogen 
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and stored at −80 °C, without the use of any fixative or preservative. Both groups prepared their 

samples using trichloracetic acid (TCA) protein precipitation techniques, however a different  

HPLC-fluorescence detection (HPLC-FD) method was used by Montine et al. [28] with a claimed 

detection limit of 1 pmol (100 times more sensitive than the method of Murch et al. [26]). The 

different methods used by the group of Montine et al. [28,29] have been suggested by some  

parties [30,31] to be responsible for a lack of detection, rather than an actual lack of BMAA  

presence in tested samples. The 6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate method used by  

Murch et al. [26] is more stable than the other methods [32], and is the preferred method for analysis 

of amino acids [33]. Instability of the method used by Montine et al. might explain the lack  

of detection. 

In 2006 Banack et al. [4] tested various organs, including the brain and muscle samples of flying 

foxes from Guam as well as the nearby islands of Yap and Samoa, finding significant levels of BMAA 

contained in all Guamanian samples, as well as detectable levels in most samples from Yap. They also 

proposed that consumption of other cycad foraging animals, such as wild deer and boars, could 

increase BMAA ingestion in the Chamorros. A study by Pablo et al. [34] detected high concentrations 

of BMAA in 49 out of 50 postmortem brain samples from ALS and AD sufferers in North America, 

and importantly, no BMAA was detected in healthy controls. This provided further evidence that 

bioaccumulation of BMAA in neurodegenerative disease sufferers may be a global concern. 

In 2007, Banack et al. [35] employed five different detection methods to show that laboratory 

cultures of free-living marine Nostoc species produce BMAA, proving that it could be produced 

globally. The ubiquitous nature of cyanobacteria means that given the right conditions, bioaccumulation 

of BMAA could potentially occur in any of the greatly varying environments in which cyanobacteria 

are found [26]. This presumption is supported by the growing number of reports of BMAA detection in 

different environments. Bioaccumulation of BMAA has been shown in aquatic species such  

as zooplankton, fish, mussels and oysters in the Baltic Sea [36], as well as in food chains in  

South Florida [37]. BMAA has also been detected in fresh water lakes in China [38], and in desert dust 

from the Middle East [39]. The potential for bioaccumulation is supported by the in vivo uptake of 

BMAA by the aquatic macrophyte Ceratophyllum demersum in an experimental system [40], and 

bioconcentration in the zooplankton Daphnia magna [41]. 

3. Neurodegeneration is Caused by Excitotoxicity 

Excitatory amino acids (EAAs) act as neurotransmitters within the nervous system [42]. Their 

action is performed by binding to EAA receptors that are present on all nerve cells, particularly 

concentrated in the synapses. EAA receptors mediate excitatory synaptic transmission via control of 

the flow of ions, most notably Ca2+, K+, Na+, Mg2+ and Cl− [43]. Malfunctions in this system can lead 

to neurons being damaged and fatally compromised, a process known as excitotoxicity [44]. 

Excitotoxic cell death involves prolonged depolarization of neurons, changes in intracellular calcium  

concentrations, and the activation of enzymatic and nuclear mechanisms of cell death [45]. The  

main EAA receptors are quisqualate/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA),  

N-methyl-D-apartate (NMDA) and metabolic glutamate receptors (mGluR), all of which are activated 

by glutamate and similar substances. A review by Doble [45] explained all these concepts and 
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activities in great detail. The idea that excitotoxicity is a main player in neurodegenerative disease is 

supported by many studies that have shown that there is an increased level of glutamate found in the 

cerebrospinal fluid of ALS patients [46-50]. 

4. Summary of the Multiple Mechanisms of BMAA Activity 

With substantial and ever growing evidence that BMAA does play a role in the onset and 

progression of neurodegenerative diseases, the most important question is; what mode of activity does 

BMAA exert? Although BMAA had not yet been discovered, Dastur [51] fed cycad flour pancakes to 

Rhesus monkeys in 1964, observing various effects including muscle atrophy and neurodegeneration. 

Although given that cycad flour was used rather than pure BMAA, these effects may have potentially 

been influenced by other compounds present in the mixture. Immediately following the discovery of 

BMAA in 1967, Bell et al. [52,53] also conducted some very basic toxicity assays by intraperitoneally 

injecting BMAA into chicks and rats and observing the development of neurological symptoms via 

impairment of normal physical function in both cases. These findings were repeated in 1972 by Polsky 

et al. [54], with addition of mice as test subjects. In all cases all the animals suffered the same 

symptoms, namely weakness, convulsions and general lack of coordination. After this study no 

productive research using BMAA was conducted until 1987, when the revolutionary investigation of  

Spencer et al. [13] was reported. In those studies macaques were fed 100–350 mg/kg BMAA daily for 

up to thirteen weeks, resulting in corticomotoneuronal dysfunction, Parkinsonian features and behavioural 

abnormalities. The 1991 study of Rakonczay et al. [55] and 1993 study of Matsuoka et al. [56] 

produced similar findings, with BMAA injected rats displaying acute physical impairment including 

poor balance, poor coordination and convulsions. Contrary to these observations, the 1989 study of  

Perry et al. [57] fed high doses of BMAA (15.5 g/kg total, 500 mg/kg or 1000 mg/kg doses) to mice 

over an 11 week period, and observed no behavioural abnormalities during the course of the 

experiment. Analysis of brain and liver samples collected post euthanasia failed to find any evidence 

of neurochemical or neuropathological changes in the any of the sample animals [57]. Similarly, in 

2006 the group of Cruz-Aguado et al. [58] fed 28 mg/kg of BMAA, which was an exposure level they 

deemed to be an accurate environmental representation, to mice daily for 30 days. In this study they 

found no indication that neurological damage had occurred [58]. In the critical review by Karamyan 

and Speth [31], the authors raise doubts over the methods used by Perry et al. [57] to observe 

behavioural differences, and over the doses used by Cruz-Aguado et al. [58], as possible explanations 

for their negative observations. It was also suggested by Banack et al. [59] that the mouse model may 

be a poor model to demonstrate the neurotoxicity of BMAA. It is evident that the bulk of early 

research was focused on either detecting BMAA in known (deceased) neurodegenerative sufferers, or 

observing behavioural changes in lab animals fed or injected with BMAA. While this information was 

useful it did nothing to explain the actual mechanisms of BMAA activity. 

The first mechanistic BMAA research was performed in 1988 when Weiss and Choi [60] 

discovered that BMAA only displayed activity in vitro when a physiological concentration (10 mM 

and above) of bicarbonate (HCO3
−) ions were present in the media. This discovery was soon followed 

by Richter and Mena’s [61] observation that BMAA inhibited glutamate binding in the synaptic 

junctions of rat brains at 1 mM, but only in the presence of 20–25 mM bicarbonate ions. The 
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observation that effective inhibition of glutamate receptors was not achieved by BMAA at the 

extremely high level of 10 mM, independent of bicarbonate ions, supported the findings of Weiss and 

Choi [60], that HCO3
− was required for BMAA activity to occur. Follow up experiments showed that 

BMAA could bind to NMDA and non-NMDA receptors on mouse cortical neurons [62]. The 

dependence of BMAA on HCO3
− was a critical discovery as it greatly affected the results of 

experiments conducted using freshly isolated tissues where experimental reagents are generally simple 

and defined, and often did not contain HCO3
−. Using these leads Myers and Nelson [63] identified a β-

carbamate of BMAA (formed in the presence of bicarbonate), that shares structural characteristics with 

glutamic acid (glutamate, see Figure 2). This led to an explanation of a mechanism of activity, as it 

suggested that BMAA may have the ability to inhibit glutamate receptors. From this point on all 

researchers used media and/or buffers supplemented with a minimum of 20 mM bicarbonate in all 

active in vitro assays. 

Figure 2. Comparison of the structure of (A) β-carbamate (BMAA adduct) and  

(B) glutamtic acid (glutamate). 

 

In 1990 Lindström et al. [64] gave intracerebral injections (10 or 400 μg) of BMAA to mice and 

after one week they noticed a decrease in noradrenalin (NA) levels in the hypothalamus, while there 

was no effect on dopamine or serotonin levels. No physical or behavioural effects were observed in the 

exposed animals. They suggested that the decrease in NA levels in the tissue may have been the result 

of BMAA activity on NMDA receptors, causing a release of NA. Copani et al. [65] conducted a 

thorough investigation of BMAA binding capabilities and specificities by performing in vitro assays. 

Brain slices and mixed primary cultures taken from 8-day old rats were exposed to BMAA at 1 mM in 

conjunction with various neural metabolites and antagonists of NMDA. Their results indicated that 

BMAA acts as a mixed agonist of metabotropic and NMDA receptors, and as seen in other studies, 

BMAA activity was enhanced by the presence of bicarbonate ions at 25 mM [65]. The groups of 

Rakonczay et al. [55] and Matsuoka et al. [56] performed a series of binding assays using various 

receptor antagonists after giving intracerebroventricular injections of BMAA (500 μg/day, for up to 60 

days) to rats. Their results indicated that BMAA has a mixed agonistic effect on EAA, NMDA and 

quisqualate/AMPA receptors in the synapse. In 1991–1992 Duncan’s research group conducted a 

number of experiments relating to the body’s ability to take up BMAA after oral exposure and 

transport and accumulate it in the brain. When cynomologous monkeys were orally dosed with 

BMAA, a maximum of 20% of the administered dose was metabolized, and no greater than 2.1% was 

excreted indicating that approximately 80% of orally consumed BMAA was absorbed into systemic 
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circulation [66]. The 1998 study by Kisby et al. [67] reported that BMAA was detected in the 

cerebrospinal fluid of orally dosed monkeys, and in the brain tissue of intraperitoneally dosed rats, 

suggesting that BMAA is able to cross the blood-brain barrier. In a later study, Duncan et al. [68] 

demonstrated in rats that, after intravenous injection, acute BMAA levels in the brain peaked at eight h 

post administration. They also demonstrated that BMAA is taken up into the brain by the large neutral 

amino acid carrier of the blood-brain barrier, which suggests that uptake may be sensitive to the same 

factors that affect neutral amino acid transport such as diet, metabolism, disease and age [69]. In 

essence this means that BMAA uptake into the brain may be increased in times of stress. 

Brownson et al. [70] assayed rat brain cells for changes in the concentration of Ca2+ in the presence 

of BMAA (5 mM) with or without HCO3
– ions. This experiment indicated that there was a small 

increase in intracellular Ca2+ concentration with BMAA only, but a large increase when BMAA  

and HCO3
− were added together. This further supports the belief that BMAA is dependant on HCO3

– 

as a cofactor and that the correspnding β-carbamate is the active compound. It also suggests  

another potential mechanism of activity as impairment to intracellular calcium homeostasis has  

been shown to cause disruptions in Ca2+-dependant cascades that lead to neuronal cell death  

and neurodiseases [71,72]. 

The study of Nedeljkov et al. [73] measured the membrane input resistance of the nerve cells of the 

leech Haemopis sanguisuga after treatment with BMAA (100 μM–10 mM) and HCO3
− (20 mM).  

A significant reduction in input membrane resistance was measured, indicating that BMAA 

depolarizes the cell by increasing membrane permeability and conductance. 

In 2007, Buenz and Howe [74] intracranially injected 10 μL of 100 mM BMAA into mice that were 

then euthanized at 24 h post exposure. This study showed that BMAA caused injury to hippocampal 

neurons. They also demonstrated that BMAA increasingly caused a degree of cell death in NSC-34 

cells (a mouse derived spinal motor neuron-like cell line) as the amount of BMAA administered 

increased from 100 μM up to 1 mM. A study conducted by Lobner et al. in 2007 [75] showed that 

BMAA at concentrations as low as 10 μM can potentiate neuronal injury caused by other known 

neurotoxins such as amyloid-β and MPP+. This observation holds great significance determining that 

very low concentrations of BMAA (orders of magnitude lower than previously thought) can potentially 

cause serious neurological damage if other factors are involved. This study also showed that BMAA 

has three-fold activity by causing excitotoxicity on NMDA and metabotropic glutamate receptor 

subtype 5 (mGluR5) receptors, and via oxidative stress. This supports the notion that BMAA may play 

a role in a variety of different neurodegenerative conditions. Rao et al. [76] concluded that low 

concentrations of BMAA (30 μM) selectively injure motor neurons via excitotoxic activation of 

AMPA/kainite receptors. They also showed that BMAA induces increases in Ca2+ concentrations and 

the generation of selective reactive oxygen species (ROS) in motor neurons, with minimal effect on 

other spinal neurons. Liu et al. [77] validated the three-fold activity of BMAA described by  

Lobner et al. [75], as well as suggesting that the mechanism BMAA uses to induce oxidative stress is 

through inhibition of the cystine/glutamate antiporter system Xc−, leading to glutathione depletion and 

oxidative stress [77]. In 2009, Nunn and Ponnusamy [78] found that 2,3-diaminopropionic acid, the 

dimethylated product of BMAA, and methylamine were formed in liver and kidney preparations from 

rats exposed to 10 mM BMAA for 24 h in vitro. It is worth noting that this product was not formed in 

brain tissues in this study. This provides evidence of yet another method of toxicity by BMAA, 
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although the test dose is potentially too high for the result to be environmentally significant. 

Production of methylamine is significant as it has been shown to produce a state of oxidative stress in 

rats [79]. In 2009, Karlsson et al. [80] injected radioactively labelled BMAA into frogs and mice, then 

euthanized the animals at 30 min, 1 h, 3 h, 24 h and 12 days post injection. The results showed that 

BMAA interacts/binds with melanin, particularly during its synthesis, and increasingly bioaccumulates 

in melanin and neuromelanin-containing cells over time. The authors proposed that this may  

provide a link between BMAA and the PDC symptom of pigmentary retinopathy [80]. Also in 2009,  

Lopicic et al. [81] showed that 1 mM BMAA (with 20 mM bicarbonate) causes in vitro membrane 

potential depolarization of leech nerve cells by action on non-NMDA ionotropic glutamate receptors. 

A concomitant increase in cell membrane input conductance, as well as an increase in Na+ activity and 

a decrease in K+ activity was noted. This indicated that, in addition to AMPA/kainite receptors, BMAA 

could initiate excitotoxicity through the activation of other non-NMDA ionotropic glutamate receptors. 

In 2009, Santucci et al. [82] injected 5–10 nM BMAA into the eyes of mice, that were then euthanized 

between 4 and 24 h post administration. Increases in retinal neuron death and the production of ROS 

were observed in this study. Also in 2009, Purdie et al. [83] exposed zebrafish embryos to BMAA at 

up to 50,000 μg/L (approx. 300 μM) for 5 days. This exposure resulted in a range of neuromuscular 

and developmental abnormalities, which could be directly related to disruptions to the glutamatergic 

signalling pathways. 

In 2010, Cucchiaroni et al. [84] found rat neurons exposed to 1 or 3 mM BMAA displayed 

increases in the production of ROS, influx of Ca2+ and a massive release of cytochrome-c (cyt-c) into 

the cytosol. This study also demonstrated that activity was predominantly mediated via mGluR1 

receptors. These observations indicate disruption to mitochondrial activity, excitotoxicity, and 

induction of apoptosis induced by exposure to BMAA. More recently Karlsson et al. [85] injected 50 

and 200 mg/kg BMAA into neonatal rats and found that it inhibited neural development leading to 

long-term cognitive impairment and supporting the zebrafish data implicating BMAA as a 

developmental neurotoxin [83]. Most recently, Lee and McGeer [86] exposed three different neuron-

derived human cancer cell lines to BMAA. Interestingly they observed that BMAA did not cause 

damage to human neurons and concluded that the hypothesis of BMAA causing neurodegeneration in 

humans was not tenable [86]. It should however be noted, that the cell lines they used were highly 

proliferative immortalized cells that differ significantly in physiological characteristics from normal 

neurons in vivo. Summaries of both in vivo and in vitro investigations into the bioactivity of BMAA 

are presented in Tables 1 and 2 respectively. 

When reviewing BMAA literature it quickly becomes clear that there are large differences  

in opinion. When Borenstein et al. [7] proposed their correlation supporting the role of cycads 

(potential involvement of BMAA), Steele and McGeer [87] raised doubt over the statistics. When 

Duncan et al. [14] indicated that greater than 80% of BMAA is removed from cycad flour during 

processing (washing), Cheng and Banack [88] claimed that due to sampling methods, the amount of 

BMAA detected by Duncan et al. [14] has been underestimated by 7- to 30-fold and based on the 

assumption that BMAA is washed away, another candidate compound such as β-sitosterol  

β-D-glucoside (BSSG) is suggested to play the same proposed role [89]. Various studies have been 

conducted to indicate that BSSG does display neurotoxic properties [90,91]. Interestingly despite 
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suggestion that BMAA and BSSG are alternatives for each other, involvement of either or both, would 

support the same cycad hypothesis. 

Table 1. A chronological summary of mechanisms of BMAA activity determined by  

in vivo research. 

Route of exposure Species 
Dose level, 

exposure time 
Research group 

and date 
Observations 

Intraperitoneal 
injections 

Rat 
Chicken 

6–14 μmoles/g 
body weight 

3–7 μmoles/g body 
weight 

Vega and Bell. 
1967 

Weakness, convulsions and 
uncoordination 

Intraperitoneal 
injections 

Rat 
Chicken 
Mouse 

6–14 μmoles/g 
body weight 

3–7 μmoles/g body 
weight 

6–14 μmoles/g 
body weight 

Polski et al. 
1972 

Weakness, convulsions and 
uncoordination 

Perorally 
Intraperitoneal 

injections 

Monkey 
Rat 

100–350 mg/kg, 
12 months 

500 mg/kg daily, 
14 days 

Kisby et al.  
1988 

BMAA can cross from gut 
to blood 

BMAA can cross the blood 
brain barrier 

Gavage Monkey 
100–350 mg/kg 

daily, up to  
10 weeks 

Spencer  
et al. 1987 

Corticomotoneuronal 
dysfunction, Parkinsonian 
features and behavioural 

abnormalities 

Gavage 
Cynomologous 

monkey 

500 mg/kg daily, 
18 days, then 

500 mg/kg 2 daily, 
28 days, then 

100mg/kg 2 daily, 
30 days 

Perry et al. 1989 
No behavioral or 

physiological effects 
observed 

Intracerebral  
injections 

Rat  
10 μg or 400 μg/ 

150–200 g rat 
Lindström  
et al. 1990 

Activation of NMDA 
receptor, release 

noradrenalin from cells 

Intracerebroventricular 
injections 

Rat  

500 μg/day  
200–250 g body 

weight,  
10–60 days 

Rakonczay  
et al. 1990 
Matsuoka  
et al. 1993 

Agonistic effects on 
NMDA, EAA and AMPA 

receptors in synapse 
Physical impairment. 

Mixed agonistic receptor 
activity 

Gavage and 
intravenous injections 

Cynomologous 
monkey, rat 

2 mg/kg gavage; 
1 mg/kg iv 

100 mg/kg gavage; 
24–400 mg/kg iv 

Duncan et al. 
1991–1992 

80% of ingested BMAA 
enters systemic circulation. 
BMAA can cross the blood 

brain barrier. 
BMAA is transported by 

neutral amino acid carriers 
so uptake can be influenced 

by diet, metabolism, 
disease and age 

Dosed feed pellets Mouse 
28 mg/kg daily,  

30 days 
Cruz-Aguado  

et al. 2006 

No motor, cognitive or 
neuropathological effect 

observed 
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Table 1. Cont. 

Route of exposure Species 
Dose level, 

exposure time 

Research group 

and date 
Observations 

Intracranial injections Mouse  
10 μL of 100 mM, 

24 h 

Buenz and 

Howe. 2007 

Injury to hippocampal 

neurons 

Intravenous and 

subcutaneous injections 

Mouse and 

frog  

7.3 μg/kg, 30 min, 

1 h, 3 h, 24 h,  

12 days 

Karlsson  

et al. 2009 

BMAA interacts/binds 

melanin, particularly during 

synthesis, and accumulates 

in melanin and 

neuromelanin containing 

cells increasingly over time 

Ocular injections Mouse 
5–10 nmol,  

4, 8 and 24 h 

Santucci  

et al. 2009 

Retinal neuron death and 

production of ROS 

Table 2. A chronological summary of mechanisms of BMAA activity determined by  

in vitro research. 

Experimental 

model 
Species 

Dose level, 

exposure time 

Research group 

and date 
Conclusion 

Primary cortical 

neurons 
Mouse 

3 mM, 1 h 

With and without 

10–24 mM HCO3
– 

Weiss and Choi, 

1988 

BMAA activity is dependent on 

bicarbonate at a min. of 20mM 

Primary cortical 

neurons 
Mouse 

300 μM–3 mM,  

24 h 
Weiss et al. 1989 

BMAA has activity on NMDA and  

non-NMDA receptors 

Primary cortical 

neurons 
Rat 1 mM 

Richter and 

Mena, 1989 

Inhibition of glutamate binding in 

synapse, impaired neuron function 

Chemical assay  - 
Myers and 

Nelson, 1990 

Formation of bicarbonate adduct with 

structural similarity to glutamate 

Brain slices Rat 1 mM, acute 
Copani et al. 

1991 

BMAA acts as a mixed agonist of 

metabotropic and NMDA receptors 

Minced brain Rat 5 mM, acute 
Brownson et al. 

2002 

Impairment of intracellular calcium ion 

homeostasis. 

Possible neuronal death. 

Effects on calcium dependent cascades 

Primary nerve 

cells 
Leech 1–10 mM, acute 

Nedeljkov et al. 

2005 

Depolarisation of cell, impaired nerve 

function. 

Membrane permeabilisation. 

Activity via glutamate receptors 

Primary 

embryonic spinal 

cord culture 

Mouse 
30–1000 μM,  

20–24 h 
Rao et al. 2006 

Increase on calcium ion concentration 

and ROS. 

Selective damage to motor neurons 

Primary mixed 

cortical cells 
Mouse 

0.1–10 mM, 24 h 

3 mM, 3 h 

(DCFDA) 

Lobner et al. 

2007 

Potentiation of other insults, makes cells 

more sensitive to other compounds. 

Increase in ROS 

NSC-34 cells Mouse 50–1000 μM, 18 h 
Buenz and Howe 

2007 
Dose dependent death of NSC-34 cells 

Primary mixed 

cortical cell 

cultures 

Mouse 3 mM, 3 h Liu et al. 2009 

Induction of oxidative stress is through 

inhibition of the cystine/glutamate 

antiporter system Xc− 
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Table 2. Cont. 

Experimental 

model 
Species 

Dose level, 

exposure time 

Research group 

and date 
Conclusion 

Brain slices. 

Brain, liver, 

kidney 

homogenates 

Rat 

10 mM, 30 min for 

slices 

1 h for 

homogenates 

Nunn and 

Ponnusamy, 

2009 

The dimethylated product of BMAA, 

2,3-diaminopropionic acid was formed 

in liver and kidney (but not brain) 

preparations 

Nerve cells Leech 
100–3000 μM, 

acute 

Lopicic et al. 

2009 

Action on non-NMDA ionotropic 

glutamate receptors, with a concomitant 

increase in cell membrane input 

conductance, as well as an increase in 

Na+ activity and a decrease in K+ 

activity. 

Possible initiation of excitotoxicity 

through activation of non-NMDA 

ionotropic glutamate receptors 

Brain slices Rat 
100–10000 μM, 

acute 

Cucchiaroni  

et al. 2010 

BMAA activates mGluR1 receptors to 

cause neuronal degeneration 

Massive release of cyt-c into cytosol 

5. A Summary of the Mode of Action of BMAA based on the Current Literature 

The studies listed in Tables 1 and 2, while executed on vastly different test models with varying 

measurement parameters, can be combined to generate an image of the mechanisms of action of 

BMAA on a primary motor neuron as illustrated in Figure 3. After being orally consumed, 80% of 

ingested BMAA passes from the gut into the blood stream [66]. BMAA then crosses the blood-brain 

barrier via large neutral amino acid carriers [68]. The physiological concentrations of bicarbonate ions 

(10 mM and above) reacts with BMAA to form a β-carbamate [60]. In this form, BMAA can compete 

in binding various glutamate receptors, such as NMDA receptors [55,56,64,65], AMPA receptors [55,56], 

and metabotropic and ionotropic glutamate receptors [65,73,81,84] (Figure 3i). Activation of the 

various glutamate receptors leads to shifts in cellular ion concentrations resulting in increases in  

Na+ [81] and Ca2+ [70,76,84], and a decrease in K+ [81] concentrations (Figure 3ii). Activation also 

causes the cell to become depolarised [73] leading to permeabilisation of the cell membrane, resulting 

in the release of noradrenalin [64] (Figure 3iii). BMAA also inhibits the cysteine/glutamate antiporter 

system Xc− [77] (Figure 3iv), preventing the uptake of cysteine, resulting in glutathione depletion, 

which contributes to increases in oxidative stress. At the same time the system Xc− increases the 

release of glutamate from the cell (Figure 3v), which can then bind to glutamate receptors increasing 

damage by excitotoxicity [77] (Figure 3vi). Increases in intracellular Ca2+ concentrations disrupt 

normal mitochondrial function leading to the release of ROS into the cytoplasm, thereby contributing 

to the observed increases in ROS [75,76,82,84] (Figure 3vii). In addition, cytochrome-c is released 

from the mitochondria [84] (Figure 3viii) resulting in the induction of apoptosis. 



Int. J. Environ. Res. Public Health 2011, 8         

 

 

3739

Figure 3. Illustrative summary of the modes of action of BMAA on neurons. In vivo, 

BMAA is present as a β-carbamate (represented by the blue dots), which binds to NMDA, 

AMPA and mGlu receptors (i). Activation of glutamate receptors results in an increase in 

the levels of Na+ and Ca2+ in the cell, accompanied by a reduction in K+ (ii). The cell 

becomes depolarised and the membrane becomes permeable, as illustrated by the dotted 

line, and combined with NMDA receptor activity, noradrenalin is released from the cell as 

a result (iii). The cysteine/glutamate antiporter system Xc− is inhibited, as indicated by the 

red X (iv), leading to intracellular depletion of glutathione and an increase in ROS. This 

inhibition also causes an increase in the release of glutamate (v), which then binds to 

receptors to induce further excitotoxicity (vi). All these mechanisms combine to cause an 

increase in the generation of ROS (vii). The elevation of Ca2+ leads to overload of the 

mitochondria resulting in a massive release of cyt-c into the cytosol (viii). 

 

6. Concluding Remarks 

Whilst the incidence of ALS-PDC on Guam was 100 times that of the world average, it peaked at 

120 cases per 100,000 people, meaning that the majority of individuals thought to be exposed to 

BMAA still escaped disease. Clearly there is still much to learn about the role(s) that BMAA plays in 

neurodegeneration. Karamyan and Speth have reviewed the available literature on the evidence for and 

against the involvement of BMAA in the development of ALS/PDC [31]. They concluded that the 

majority of studies indicate that BMAA is toxic. It is worth noting that the two studies [57,58] that 

observed no effect both utilized oral administration methods, perhaps implying reduced toxicity via 

this delivery method. One must also consider that the severe effects observed by Spencer et al. [13] 

were also obtained with oral dosing. 

When considering all the published data, it appears certain that BMAA can contribute to the onset 

and progression of neurodegenerative disease in certain susceptible individuals. It would be useful to 
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focus on better understanding the proposed mechanisms of BMAA activity, as well as identifying new 

as yet undescribed mechanisms that might play an important role in the overall potency of BMAA. 

Without a sound understanding of how BMAA truly works, it is impossible to predict the level of risk 

it poses with any significant degree of confidence. One question posed in the review by Karamyan and 

Speth [31] that is likely to be answered in the affirmative was “are there interactions between BMAA 

and other exogenous substances with possible synergetic toxicity?”. The potential dangers of BMAA 

acting as an accessory or combinatorial toxin, rather than being highly toxic as a sole entity, were 

indicated by Lobner et al. [75] when they demonstrated that BMAA can potentiate the activity of other 

insults. As BMAA has been shown to be co-present with other cyanotoxins, such as microcystin, 

anatoxin-a, nodularin and saxitoxin [92], this potentiation capability, may implicate BMAA as an 

important factor when considering the management strategies of these other toxins. The debate 

between BSSG and BMAA appears to be very polarized, with acceptance of one causative agent 

completely ruling out the significance of the other. It may however be more logical to consider the idea 

that as the two compounds were isolated from the same source, they are likely to be present together 

environmentally, and could therefore act in a combination, potentially far more potent than either agent 

alone, to induce neurological damage. There is little doubt that if present in sufficient concentrations, 

BMAA exerts multiple modes of neurotoxic activity, with perhaps further modes yet to be defined. 

With growing reports of its presence in varied environments it is important that research to understand 

the complete nature of BMAA toxicity continue. Equipped with a greater knowledge and 

understanding of the mechanisms of BMAA toxicity, we will be able to more accurately evaluate and 

assess the human health risks posed by exposure to this cyanotoxin.  
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