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Abstract: Background: the endocannabinoid 2-arachidonoylglycerol (2-AG) plays a pivotal role in
immune cells regulation. The plasma levels of 2-AG are increased in patients with systemic lupus
erythematosus (SLE) and correlate with disease activity. Moreover, in plasmacytoid dendritic cells
from SLE patients, 2-AG is able to control the production of type 1 interferon (IFN) through CB2

activation. The aim of this study was to evaluate the potential role of 2-AG on T lymphocytes
from SLE patients. Methods: peripheral blood mononuclear cells (PBMCs) from SLE participants
and age- and sex-matched healthy donors (HD) were isolated by Ficoll–Hypaque density-gradient
centrifugation. The PBMCs were treated with increasing concentrations of 2-AG, and AM251 and
AM630 were used to antagonize CB1 and CB2, respectively. Flow cytometry was used to assess the
expression of CD3, CD4, CD8, CD25, IFN-G, IL-4, and IL-17A. Results: 2-AG (1 µM) decreased IFN-G
expression (p = 0.0005) in the Th1 lymphocytes of SLE patients. 2-AG did not modulate the cytokine
expression of any other T lymphocyte population from either SLE or HD. Treatment with both 2-AG
and AM630 increased the IFN-G expression in Th1 lymphocytes of SLE patients (p = 0.03). Discussion:
2-AG is able to modulate type 2 IFN production from CD4+ T lymphocytes from SLE patients through
CB2 activation.

Keywords: systemic lupus erythematosus; endocannabinoids; 2-arachidonoylglycerol; T cell;
inflammation; interferon-G

1. Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease potentially
involving multiple organs [1]. SLE treatment is still a challenge for clinicians, and patient-
tailored interventions to manage disease activity and slowing damage accrual are not
completely established [2–5]. Despite the advances in understanding the role of genetic
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polymorphisms, alterations in the innate and adaptive immunity, together with environ-
mental factors, may also contribute to disease initiation and progression. Yet, this complex
interplay has not been completely understood [6].

In this arena, growing evidence has shown that alterations in lipid mediators’ balance
and metabolism may play a pivotal role in the pathogenesis of SLE [7]. Higher blood levels
of low-density lipoproteins (LDL) and high-density lipoproteins (HDL) are common in
SLE patients when compared to the population at large and, along with chronic inflamma-
tion, disease activity, and sedentary behavior, represent a causative factor of accelerated
atherosclerosis [8–12]. Furthermore, lipids play several important roles during immune
response in SLE, switching or alternatively turning off inflammation, and modulating
macrophages’ activation, leading to pro-inflammatory cytokines production [7,12,13].

Furthermore, T and B cell membranes of SLE patients are richer in cholesterol and
glycosphingolipids, leading to alterations in lipid rafts and dysregulation regarding cell
signaling, thus influencing the normal regulatory T (Treg) lymphocytes/T helper 17 (Th17)
lymphocytes ratio [14–20].

Endocannabinoids (eCBs) seem to play an important role in this lipidomic dysregula-
tion found in SLE. eCBs, of which the main representatives are N-arachidonoylethanolamine
(or anandamide, AEA) and 2-arachidonoylglycerol (2-AG), are the more representative
lipidic molecules of this family, which interact with type-1 (CB1) and/or type-2 (CB2)
cannabinoid receptors [13,21]. These receptor targets, eCBs and their metabolic enzymes,
form the so-called endocannabinoid system [22,23], which has manifold actions within the
immune system, mainly expounding an anti-inflammatory effect [24]. Recently, it has been
shown that 2-AG plasma levels are higher in SLE patients, compared to the general popula-
tion, and correlate with a low disease activity, although this relationship has not been con-
firmed either for AEA nor for endocannabinoid-like molecules N-palmitoylethanolamine
(PEA) and N-oleoylethanolamine (OEA). Moreover, the expression of diacylglycerol lipase
(DAGL), the biosynthetic enzyme for 2-AG, is increased in peripheral blood mononuclear
cells (PBMCs) from SLE patients compared to HD, thus suggesting that PBMCs are at
least in part responsible for the production of this eCB [25]. Furthermore, in plasmacy-
toid dendritic cells (pDCs) of SLE patients, 2-AG is able to control the production of type
1 interferon (IFN) through CB2 activation [26].

The aim of the present study was to elucidate the potential role of 2-AG in modulating
Th lymphocytes’ balance and cytokine production in SLE patients and matched healthy
donors (HD).

2. Materials and Methods
2.1. Participants’ Characteristics

Participants with SLE and age- and sex-matched HD were consecutively recruited
from the immuno-rheumatology outpatients clinic of Fondazione Policlinico Campus Bio-
Medico, Rome, Italy. All the participants filled in and signed the informed consent. The
study protocol was approved by the Internal Review Board (IRB) of Campus Bio-Medico
University of Rome, protocol number 5416 oss. The study was conducted in compli-
ance with International Conference on Harmonization Good Clinical Practice guidelines
and the Declaration of Helsinki. Inclusion criteria included: (i) diagnosis of SLE accord-
ing to the 2012 Systemic Lupus International Collaborating Cohort (SLICC) criteria [27];
(ii) serological disease activity, defined by anti-double strand DNA (anti-dsDNA) positivity
and/or low plasma levels of complement, such as complement component 3 (C3) and/or
C4 [28]; (iii) signed informed consent. Exclusion criteria were: (i) concomitant biological
treatment (i.e., belimumab and rituximab) or in the last 12 months, (ii) cancer at enrolment
or in the past five years, (iii) infectious disease at recruitment, (iv) corticosteroid pulse
therapy in the last 6 months, (v) pregnancy or lactation, (vi) use of phyto-cannabinoids or
synthetic cannabinoids in the 2 months before the enrolment. All the patients underwent
rheumatological assessment, including systemic lupus erythematosus disease activity index
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(SLEDAI)-2k [29], and routine blood sampling, including autoantibodies and C3 and C4
levels measurements.

2.2. Peripheral Blood Mononuclear Cells (PBMCs) Isolation and Culture Conditions

Peripheral blood mononuclear cells (PBMCs) samples were collected from bloodstream
from HD and SLE participants by Ficoll–Hypaque density-gradient centrifugation. The
layer of mononuclear cells was collected, counted, and cultured in RPMI 1640 medium
with 10% FBS supplemented with 2 mM glutamine and 50 mg/mL gentamycin. PBMCs
were left untreated or were pretreated with 2-AG, purchased from Cayman Chemical
Company, at increasing concentrations (0.01, 0.1, 1, and 10 µM) for 30 min, as reported
elsewhere [30]. Cells were then stimulated with phorbol-12-myristate-13-acetate (50 ng/mL)
and ionomycin (1 µg/mL) for 4 h. Brefeldin A (10 µg/mL) was also added. Where indicated,
cells were pretreated for 30 min with selective antagonists of CB1 and CB2, AM251 and
AM630, respectively, both used at a concentration of 200 nM. At the end of the treatments,
samples were analyzed by flow cytometry.

2.3. Intracellular Cytokine Assay, CB Receptors Inhibition, and Flow Cytometry

To evaluate the percentage of lymphocytes producing IFN-G and interleukin (IL-)4,
cells were washed and stained with conjugated mAbs against human CD4, CD8, and CD3
(all from Miltenyi Biotec, Bergisch Gladbach, Germany) at +4 ◦C for 30 min. Cells were then
fixed with 4% paraformaldehyde for 10 min and permeabilized by adding 0.5% saponin
at room temperature for 30 min. Afterwards, cells were stained with cytokine-specific
antibodies, as shown in Supplementary Table S1. For Treg and Th17 analysis, cells were first
stained with conjugated mAbs against human CD4 and CD25 (Miltenyi Biotec, Miltenyi
Biotec, Bergisch Gladbach, Germany) at +4 ◦C for 30 min. Cells were then fixed and
permeabilized with the Foxp3 Fix/Perm kit (eBioscience, San Diego, CA, USA) according
to manufacturer instructions, and additionally stained with mAbs against FoxP3 and IL-17
(Miltenyi Biotec, Miltenyi Biotec, Bergisch Gladbach, Germany, Supplementary Table S1).
Acquisition was performed on CytoFLEX cytometer (Beckman Coulter, Brea, CA, USA),
and data were analyzed using CytExpert software. Th17 cells were defined as CD4+ T
cells producing IL-17, and Treg cells as CD4+CD25+FoxP3+ T cells. The gating strategy
used to identify Treg cells, Th17 cells, and CD4+ lymphocytes expressing IL-4 is shown
in Supplementary Figure S1. he vitality of CD4+ T lymphocytes was analyzed by flow
cytometry using Viobility 488/520 Fixable dyes (Miltenyi Biotec). Briefly, PBMCs treated
with 2AG and AM630 as previously described were collected and incubated with Viobility
dye (1:100 diluition) for 15 min. After washing step, cells were stained with CD4 APC
antibody (Miltenyi Biotec) for 30 min, and then samples were run on cytometer.

2.4. Cell Sorting

For the separation of CD4+ and CD8+ T lymphocytes, PBMCs from patients with SLE
(N = 5) and HD (N = 5) were stained with CD4 APC and CD8 PE antibodies (Miltenyi
Biotec), and cell sorting was performed with Cell Sorter MoFlo Astrios (Beckman Coulter).
Purity of the enriched populations was greater than 98% in all experiments.

2.5. Total RNA Isolation and Quantitative Reverse Transcription Polymerase Chain Reaction
(RT-qPCR) Analysis

The total mRNA was extracted using Relia Prep RNA cell Mini Prep System (Promega)
according to the manufacturer’s protocol, and 200 ng of each RNA sample was reverse-
transcribed using the SensiFast cDNA synthesis kit (BioLine).

Quantitative real-time PCR was performed on 7900HT Fast Real-Time PCR System
(Applied Biosystems™) using specific 6-carboxyfluorescein (FAM)-labeled TaqMan assays
for CB1 (Hs01038522_s1), CB2 (Hs00275635_m1) ribosomal protein L34 (Hs00241560_m1)
as housekeeping genes. Each sample was loaded in duplicate with 5 ng of cDNA per
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well. Data were analyzed using the 2ˆ-DCt method and reported as mean fold change in
gene expression.

2.6. Statistical Analysis

Continuous variables are expressed as median (25th–75th percentile) or percentage, as
appropriate. Normality of continuous variables has been assessed using the Shapiro–Wilk
test, whereas differences between continuous variables have been analyzed using Wilcoxon
test for paired data and Mann–Whitney test for unpaired data. Statistical analysis was
performed using GraphPad Prism 7 (GraphPad Software, Inc., San Diego, Ca, USA).

3. Results

Twelve participants with SLE and twelve HD have been enrolled. The participants’
characteristics are summarized in Table 1.

Table 1. Participants’ characteristics. SLEDAI: systemic lupus erythematosus disease activity index;
dsDNA: double strand DNA; Sm: Smith; RNP: ribonucleoprotein; C: complement.

Variable SLE Participants
(n = 12)

Healthy Donors
(n = 12)

Age (years) 42 (34.5–54.25) 44 (33–57.5)
Disease duration (months) 123 (38.25–144.5) NA

SLEDAI-2k 2 (2–2.75) NA
Antinuclear antibodies positivity (n) 12 0
Anti-dsDNA antibodies positivity (n) 6 0

Anti-Sm antibodies positivity (n) 6 0
Anti-phospholipids antibodies positivity (n) 4 0

Anti-RNP antibodies positivity (n) 4 0
Low C3 or C4 levels (n) 10 0

All the SLE participants reported anti-nuclear antibodies positivity, ten of them showed
low C3 and/or low C4 levels, six of them had anti-dsDNA antibodies or anti-Sm antibodies
positivity, and four of them presented anti-phospholipids or anti-RNP antibodies positivity.
None of the HD reported autoantibodies positivity or hypocomplementemia.

As reported in Figure 1, the SLE participants showed a higher percentage of CD3+CD4+

IFN-G + (namely Th1 lymphocytes) compared with HD (p = 0.01).
No statistically significant changes in the percentage of CD3+CD8+IFN-G+ were found

between the two groups (Figure 1B).
Moreover, in the SLE patients, the addition of 1 µM of 2-AG induced a decrease in IFN-

G expression compared to untreated (p = 0.0005), whilst HD treatment with increasing doses
of 2-AG did not provide any difference in IFN-G expression from PBMCs compared to the
untreated condition (Figure 1C,D). Regarding the CD8+ T lymphocyte subset, 2-AG had no
effect on the percentage of cells producing IFN-G in both HD and SLE patients (Figure 1C,D).
To explore the differential response to 2-AG treatment between HD and SLE patients, we
assessed the expression of CB receptors by real-time PCR. In freshly isolated CD4+ T
lymphocytes and CD8+ T lymphocytes from HD and SLE patients, the gene expression of
CB1 and CB2 did not change in a statistically significant manner (Supplementary Figure S2).

As reported in Figure 2, the SLE participants showed a higher percentage of CD3+CD4+

IL17A+ (namely Th17 lymphocytes) compared with HD (p = 0.008, Figure 2A).
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Analysis of the percentage of CD4+ and CD8+ T lymphocytes expressing IFN-ɣ after treatment with 
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Figure 1. Effect of 2-Arachidonoylglycerol (2-AG) on Th lymphocytes expressing IFN-G. (A) Rep-
resentative dot plots of flow cytometry gating strategy used to identify IFN-G-positive CD4+ T
lymphocytes. (B) Statistical analysis of the percentage of CD4+ and CD8+ T lymphocytes expressing
IFN-G in healthy donors (HD) and SLE patients (n = 12 for each group). HD vs. SLE, * p = 0.01.
(C,D) Analysis of the percentage of CD4+ and CD8+ T lymphocytes expressing IFN-G after treatment
with 2-AG at concentrations of 0.01, 0.1, 1 and 10 µM in HD (C) and SLE patients (D). Data are
represented as box plots displaying medians, 25th and 75th percentiles as boxes, and 10th and 90th
percentiles as whiskers. § = data obtained from 5 HD and SLE patients representative of entire
population. *** p = 0.0005.

On the contrary, no difference in the CD3+CD4+FoxP3+ (namely Treg lymphocytes)
between the two groups has been reported (Figure 2C). The percentage of Th2 lymphocytes
(CD3+CD4+IL4+ cells) was increased in patients affected by SLE compared to HD (p = 0.04,
Figure 2E). Furthermore, treatment with increased concentrations of 2-AG did not induce
any modification in IL-17A, FoxP3, or IL-4 expression in Th17, Treg, and Th2 lymphocytes,
respectively, from both SLE participants and HD (Figure 2).

In order to elucidate which cannabinoid receptor might be involved in the modulation
of IFN-G expression, PBMCs have been exposed to 2-AG in the presence of AM251 (a CB1
antagonist) or AM630 (a CB2 antagonist, Figure 3). For this latter experiment, a subset of
six patients were randomly selected from the twelve overall patients.

Our results show that treatment with 1 µM of 2-AG+AM630 significantly increased
IFN-G expression in Th1 lymphocytes of SLE patients compared to Th1 lymphocytes treated
only with 2-AG (p = 0.03, Figure 3B), confirming the involvement of CB2 antagonist. On
the contrary, IFN-G expression in Th1 lymphocytes of SLE patients does not significantly
differ between untreated cells and cells treated with 1 µM of 2-AG+AM251.

Furthermore, the analysis of dead cells by flow cytometry showed that 2-AG alone
or in combination with AM630 did not affect the vitality of CD4+ lymphocytes from SLE
patients (Supplementary Figure S3).
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Figure 2. Effect of 2-Arachidonoylglycerol (2-AG) on Th17, Treg, and Th2 lymphocytes.
(A,C,E) Percentage of Th17, Treg, and Th2 lymphocytes in HD and SLE patients analyzed by flow
cytometry (n = 12 for each group). p < 0.05. (B,D,F) Percentage of Treg/Th17 cells and lymphocytes
expressing IL-4 after treatment with 2-AG at concentrations of 0.01, 0.1, 1 and 10 µM in HD and SLE
patients. § = data obtained from 5 HD and SLE patients representative of entire population.
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Figure 3. Effect of CB1/2 antagonists on Th1 lymphocytes expressing IFN-G in SLE patients.
(A) Experimental design. PBMCs isolated from 6 SLE patients were pretreated for 30 min with
selective antagonists of CB1 and CB2 receptors, AM251 and AM630, respectively (200 nM). Then,
2-AG (1 µM) was added to the culture and cells were analyzed by flow cytometry as previously
described. (B) Flow cytometry analysis of the percentage of Th1 lymphocytes expressing IFN-G after
treatment with AM251 and AM630 CB antagonists and 2-AG in SLE patients (n = 6). * p < 0.05.

4. Discussion

To the best of our knowledge, it is the first time that the ability of 2-AG in actively modu-
lating the production of IFN-G from Th1 lymphocytes of SLE patients has been documented.

This observation extends the previous knowledge on the effects of 2-AG on IFN
production in SLE. Indeed, it has already been demonstrated that 2-AG may modulate the
production of type 1 IFN in pDCs from SLE patients [26], but no information was as yet
available about its potential effect on type 2 IFN (namely IFN-G). Here, it has been shown
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analogously to pDCs, in which 2-AG activity reduces interferon-related genes expression
and 2-AG modulates IFN-G production in lymphocytes, thus reflecting its broader range of
action on the immune system and IFN types. The functional and epigenetic commitment
of the different immune cell lines may be the reason behind these different IFN effects of
2-AG. IFNs, in fact, underpin important immunologic activities against viral infections
and tumors and in modulating adaptive immune responses, playing a key role in many
autoimmune diseases [31,32]. Furthermore, the degradation of 2-AG by monoacylglycerol
lipases might present inter-individual variability, as shown in pDCs. This difference in
the activity of these enzymes, namely ABHD6 and ABHD12, might entail a difference in
the amplitude on the IFN-G modulation of 2-AG between patients. In addition, one of the
degradation products of 2-AG is COX; therefore, a high rate of enzymatic activity might
further counteract the immune modulatory effects of 2-AG through the production of this
pro-inflammatory molecule and possibly explain the limited effects of higher concentrations
of 2-AG in our experimental setting.

2-AG is a major endocannabinoid that primarily acts as a ligand at CB1 and CB2
receptors, thus modulating immune cells activation and effector functions. 2-AG was found
in the synovial fluid of patients with osteoarthritis and rheumatoid arthritis (RA), while
the presence of this molecule was not detected in healthy donors [33]. Moreover, in vitro
studies on the effect of synthetic cannabinoids CP55,940 and WIN55,212-2 in RA synovial
fibroblast showed that these compounds reduced the production of pro-inflammatory
cytokines, as well as the release of matrix metalloproteinases [34]. Additionally, a neu-
roprotective function of 2-AG in experimental autoimmune encephalomyelitis (EAE), an
animal model of multiple sclerosis (MS), has been proposed [35]. In 2-AG-treated animals,
a shift to M2 macrophages differentiation has been documented, suggesting possible in-
volvement of 2-AG in the regulation of the inflammatory milieu, an issue that deserves
further investigation.

Our results showed that 2-AG did not influence the Treg/Th17 axis. However, it
has been found that 2-AG treatment decreased Th17-associated cytokines expression in
mice [36]. Furthermore, Chiurchiù and colleagues showed that bioactive lipids belonging
to the ALIAmides family enhanced de novo generation of regulatory T cells from CD4-naive
T cells [37]. It is possible that an in vitro expansion of Treg and Th17 cells is needed to
better explore the effect of 2-AG on these cell subsets’ distribution.

There is growing evidence that IFN-G production is a critical step in SLE pathogenesis.
The relationship between IFN-G and autoimmunity development is still poorly understood,
but it is well established that type 2 IFN production is able to promote T cell differentiation
and, in B cells, class switch towards more pathogenetic autoantibodies [38]. Unsurprisingly,
the mutation in the Roquinsan/san lupus mice model, with increased IFN-G signaling, is char-
acterized by follicular Th (fTh) cells and enhanced autoantibodies secretion [39]. Moreover,
in another mouse model of SLE, deficiency in IFN-G receptors leads to the reduction in
antinuclear antibodies reactivity and lowered IgG2c and IgG2b autoantibodies produc-
tion [40]. Type 2 IFN serum concentrations are increased in SLE patients compared to HD,
and they correlate with disease activity [41]. Furthermore, elevated levels of IFN-γ were
detected in serum from preclinical SLE patients, suggesting a possible early role of this
cytokine in SLE pathogenesis [42].

The increased expression of this cytokine induces the production of soluble B lym-
phocyte stimulator (sBLyS) by monocytes and macrophages, thus indirectly increasing
activation and maturation of B lymphocytes [43]. Furthermore, IFN-G +874 T/A poly-
morphism is associated with an increased risk of SLE development in the Chinese Han
population [44], and IFN-related genes play a pivotal role in SLE pathogenesis, especially
IFN-G and IFN-G inducible GBP1 gene in the early stages of the disease [45]. Moreover,
serum and urine concentrations of IFN- G might be implicated in lupus nephritis and
might represent a promising biomarker of this manifestation [46–48]. IFN-G might also
be implicated in central nervous system alterations observed in SLE [49]. Recently, it has
been demonstrated that IFN-G production by T-bet+ CD4+ cells is regulated by metabolic
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regulators, such as fatty acid synthesis inhibitors [50]. In keeping with our data, Kaplan
and colleagues showed that, in splenocytes derived from CB1

−/−/CB2
−/− mice, treated

in vitro with 2-AG, the IFN-G secretion was reduced [51]. Here, we show that the 2-AG
effect on IFN-G expression in CD4+ cells is strictly related to CB2.

No significant difference in CB1 and CB2 mRNA expression was found in both CD4+
and CD8+ lymphocytes from a subgroup of SLE participants and HD. Nevertheless, further
studies, with a specific enrolment strategy, are required to fully demonstrate possible
differences in CB1 and CB2 protein expression.

CB2 is abundantly expressed by immune cells, where it exerts relevant anti-inflammatory
effects [44,52]. Therefore, our present data seem to support the hypothesis that the pharmaco-
logical modulation of CB2 may represent a new therapeutic strategy to address both type 1
and type 2 IFN responses.

In the last few decades, the possible use of plant-derived or synthetic cannabinoids
in clinical practice for the treatment of several disorders has been proposed. For instance,
rimonabant, the first inverse agonist of CB1 approved for obese patients, was withdrawn
from the market due to adverse effects related to the central nervous system, including
depression and suicidal ideation. However, it has recently been shown that the chronic
administration of rimonabant in rats was not associated with development of adverse
psychiatric phenotypes, suggesting that the analysis of a patient’s comorbidity, such as
obesity, is fundamental to prevent this (and other possible) side effect [53]. Moreover, the
efficacy and safety of lenabasum, a novel oral CB2 agonist, is currently under investigation
in multiple autoimmune and fibrotic diseases, including SLE and systemic sclerosis [54].
Unfortunately, in the latter disease, lenabasum failed to meet the primary endpoint [54].

The present study suffers from some limitations. Firstly, we evaluated only CD4+ and
CD8+ IFN-G-producing cells, but a few other immune cell types may produce this cytokine,
especially natural killer cells. Furthermore, only intracellular production of IFN-G has been
assessed. Finally, in this specific experimental setting, we were unable to fully explain the
observed effect on CD4+ T cells from SLE patients.

Despite these limitations, our work is the first to describe an anti-inflammatory role
of the 2-AG/endocannabinergic axis on T cells, thus expanding our knowledge on the
possibility to target this axis for future therapies of SLE patients.

5. Conclusions

Our data expand the horizons of 2-AG involvement in SLE immunopathogenesis.
2-AG is actually able to affect both type 1 and type 2 IFNs in this disease. These findings
support the important role of bioactive lipids in autoimmune diseases.
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SLE patients (n = 5) after treatment with 2-AG alone and in combination with AM630; Table S1:
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