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Abstract

Differences in disease outcome between the highly neurovirulent MHV-JHM and mildly neurovirulent MHV-A59 have been attributed to

variations within the spike (S) glycoprotein. Previously, we found that MHV-JHM neurovirulence was marked by diminished expression of

interferon-g (IFN-g) mRNA and a reduced presence of CD8 T cells in the CNS concomitant with heightened macrophage inflammatory

protein (MIP)-1 transcript levels and greater macrophage infiltration relative to MHV-A59 infection. Here, the ability of the S and non-spike

genes to regulate these immune responses was evaluated using chimeric viruses. Chimeric viruses WTR13 and S4R22 were made on MHV-

A59 variant backgrounds and, respectively, contained the S gene of MHV-A59 and MHV-JHM. Unexpectedly, genes other than S appeared to

modulate events critical to viral replication and survival. Unlike unresolving MHV-JHM infections, the clearance of WTR13 and S4R22

infections coincided with strong IFN-g transcription and an increase in the number of CD8 T cells infiltrating into the CNS. However, despite

the absence of detectable viral titers, approximately 40% of S4R22-infected mice succumbed within 3 weeks, indicating that the enhanced

mortality following S4R22 infection was not associated with high viral titers. Instead, similar to the MHV-JHM infection, reduced survival

following S4R22 infection was observed in the presence of elevated MIP-1a and MIP-1h mRNA accumulation and enhanced macrophage

numbers within infected brains. These observations suggest that the S protein of MHV-JHM influences neurovirulence through the induction

of MIP-1a- and MIP-1h-driven macrophage immunopathology.

D 2003 Elsevier Inc. All rights reserved.
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Introduction
Viral pathogenesis can be viewed as the intersection of

viral genetics and host responses. This is particularly evident

in the contrasting virulence of mouse hepatitis virus (MHV)

strains -JHM and -A59. Depending upon the protocol, MHV-

JHM and MHV-A59 can be used as models for either acute

encephalitis or chronic demyelination (Haring and Perlman,

2001; Stohlman et al., 1998). In the absence of administered

or maternal antibodies, intracranial inoculation ofMHV-JHM

results in fatal encephalitis even at low doses (Fleming et al.,

1986; Perlman et al., 1987; Phillips et al., 1999). Similarly

administered, MHV-A59-infected mice develop a mild en-

cephalomyelitis followed by chronic demyelination (Fleming

et al., 1987; Lavi et al., 1984). These differences in neuro-
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virulence between MHV-JHM and MHV-A59 have been

attributed to variations in their spike glycoprotein (S) (Phil-

lips et al., 1999).

Although the course of a viral infection involves the

interaction of numerous viral components, the initial host-

viral responses depend on viral structural proteins binding to

host receptors. In the case of the S protein, two subunits S1

and S2, respectively mediate receptor binding and cell fusion

(Kubo et al., 1994; Luo and Weiss, 1998; Taguchi and

Shimazaki, 2000). The S protein of MHV-JHM (SMHV-JHM

protein) is 1376 amino acids long, making up roughly 12% of

the 32-kb MHV genome (Parker et al., 1989). The SMHV-JHM

protein also contains the two known CD8 T-cell epitopes:

S510-518 and S598-605 (Castro and Perlman, 1995). How-

ever, a 52-amino acid deletion within hypervariable region of

the S1 subunit of MHV-A59 eliminates the immunodominant

H-2b cytotoxic CD8 T-cell epitope S510; whereas the sub-

dominant MHV-JHM epitope S598 is retained (Parker et al.,

1989). In addition, the S protein possesses a number of B-cell

epitopes (Talbot and Buchmeier, 1985; Talbot et al., 1984).
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Previous studies have shown that the fatal encephalitis

resulting from MHV-JHM infection can be ameliorated by

antibodies directed against S, indicating that S is a critical

component in neurovirulence (Buchmeier et al., 1984; Flem-

ing et al., 1986; Perlman et al., 1987).

Recently, Phillips et al. (1999) used chimeric viruses to

demonstrate that differences in the SMHV-A59 and SMHV-JHM

proteins directly affected neurovirulence. Chimeric viruses

WTR13 and S4R22 were made by targeted recombination

with Albany 4 (Alb4), a MHV-A59 variant, and respectively

contained the SMHV-A59 and SMHV-JHM proteins. They found

that the intracranial inoculation of S4R22 resulted in greater

mortality compared to MHV-A59 and WTR13, concluding

that the SMHV-JHM protein modulates neurovirulence.

Previous studies in our laboratory demonstrated that the

difference in neurovirulence between MHV-JHM and MHV-

A59 was associated with the induction of differential

immune responses within the CNS (Rempel et al., 2004).

The inability of mice to resolve MHV-JHM infection was

linked to delayed accumulation of interferon-g (IFN-g)

mRNA transcripts and limited CD8 T-cell infiltration com-

pared to MHV-A59 infection. IFN-g production and CD8 T

cells have been established as the two elements essential for

MHV clearance (reviewed in Marten et al., 2001). Instead,

MHV-JHM encephalitis was marked by early and sustained

accumulation of interleukin (IL)-6, IFN-h, and macrophage

inflammatory protein (MIP)-1a and MIP-1h mRNA tran-

scripts that coincided with a macrophage dominant infiltrate.

Here, the capacity of the SMHV-A59 and SMHV-JHM proteins

to influence immune responses was evaluated using viral

chimeras WTR13 and S4R22. We found that viral clearance

and neurovirulence could be segregated on the basis of the

non-spike and S genes. Infections with viruses containing the

MHV-A59/Alb4 background (WTR13 and S4R22) were

resolved, coincident with stronger IFN-g mRNA expression

and a greater number of CD8 T cells within the brain,

regardless of the origin of the S gene. The kinetics and level

of the IFN-h and IL-6 mRNA accumulation also co-segre-

gated with genes other than SMHV-A59 or SMHV-JHM. Despite

the impaired viral replication, S4R22-infected mice

exhibited enhanced mortality compared to MHV-A59 and

WTR13 infections. However, critically morbid S4R22-

infected mice had increased MIP-1a and MIP-1h mRNA

accumulation and elevated macrophage levels within the

brain reflective of MHV-JHM infection. Thus, it appears

that the SMHV-JHM protein influenced neurovirulence through

the induction of macrophage-driven immunopathology, not

through enhanced viral replication in the CNS.
Results

Viral replication and disease

It has long been thought, and more recently confirmed,

that the difference in MHV-JHM and MHV-A59 neuro-
virulence could be attributed to variations in the SMHV-JHM

and SMHV-A59 proteins (Phillips et al., 1999). Therefore, the

effect of the SMHV-JHM and SMHV-A59 proteins on mortality

was evaluated in mice infected with MHV-JHM, WTR13,

and S4R22 (Fig. 1A). MHV-JHM infection resulted in high

mortality beginning the first week of infection. In S4R22

infection, mice did not begin to succumb to infection until

the second week, but by the third week, approximately 40%

of animals had perished. In contrast, all of the mice infected

with an equivalent dose of WTR13 survived. The similarity

in pathological and immunological outcomes of WTR13

infection to MHV-A59 infection (Rempel et al., 2004)

argued that these chimeras accurately reflect the combined

nature of their individual components.

Clinical disease was evaluated as an external measure of

the extent of acute encephalitis. Since clinical signs were not

reliably evident at day 5, mice were scored at day 7. Infection

with 10 PFU of MHV-JHM resulted in severe clinical disease

(Fig. 1B). Mice infected with an equivalent dose of WTR13

exhibited limited clinical disease, such that inoculations of

1000 PFU were needed to result in disease scores similar to

that induced by 10 PFU of MHV-JHM. In contrast, following

inoculation with 10 PFU of S4R22, approximately 60% of

the mice exhibited high disease scores (HDS), of which

approximately 80% succumbed to infection. To obtain a

more precise understanding of immunological events during

S4R22 infection, mice with high disease scores were treated

as a separate group from mice with low disease scores

(LDS). S4R22 infections that resulted in high disease scores

demonstrated about a threefold increase in the numbers of

mononuclear cells isolated per brain compared to S4R22

infections that produced low disease scores (Fig. 1B).

MHV-JHM mortality correlated with elevated viral titers

at day 5 and 7 (Fig. 1C). In contrast, WTR13 infection was

characterized by elevated viral titers at day 5 that were

significantly reduced by day 7 (Fig. 1C). Notably, CNS titers

from S4R22 infections were almost an order of magnitude

lower than other viral titers on day 5 and diminished to near

the threshold of detection by day 7 (Fig. 1C). This was

observed independent of whether clinical signs were evident

in S4R22-infected mice on day 7. Even in the absence of

detectable viral growth within the CNS after day 7 (data not

shown), approximately 40% of mice infected with 10 PFU of

S4R22 still died within 3 weeks (Fig. 1A).

Genes other than S modulate immune elements that control

viral replication

CD8 T cells and IFN-g are considered the two elements

essential in controlling MHV replication (Marten et al.,

2001; Schijns et al., 1996). Based on our previous work,

MHV-JHM infection resulted in diminished CD8 T-cell

responses within the CNS relative to MHV-A59 (submit-

ted). To evaluate the impact of SMHV-JHM protein on CD8 T-

cell infiltration, mice were infected with MHV-JHM,

WTR13, and S4R22. Mononuclear cells were isolated from



Fig. 1. Mice succumbed to S4R22 infection after apparent viral clearance. (A) S4R22 infection resulted in enhanced mortality compared to WTR13. Mice were

infected with viruses at 10 PFU and survival was determined (S4R22, n = 22 mice/group; MHV-JHM and WTR13, n = 12 mice/group). (B) Disease scores.

Mice were infected as indicated. Disease scores (bars) were assessed as per Materials and methods on day 7, the height of acute encephalitis. Following S4R22

inoculation, infections resulting in high and low disease scores were treated as separate groups. The total number of cells isolated per brain (line graph) was

determined by counting viable cells (trypan blue exclusion). Mean disease scores and cell numbers F SE are shown (n = 4–6 mice/experiment; three to seven

experiments per group). HDS, high disease score; LDS, low disease score. (C) Resolution of viral infections is associated with genes other than S. Mice were

infected as indicated. Brains were harvested from perfused mice on days 5 and 7. Viral loads were determined by plaque assay. Mean PFU/ml F SE are shown

(n = 4–8 mice for MHV-JHM and WTR13 infections; 8–10 mice for S4R22 groups day 5, day 7 HDS, and day 7 LDS).
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infected brains and stained with CyC-anti-CD8. Cell prep-

arations from WTR13- or S4R22-infected brains indicated

that there was at least a twofold increase in the proportion of

CD8 T cells infiltrating into the CNS relative to MHV-JHM-

infected brains (Fig. 2). When the estimated number of CD8

T cells was calculated (refer to Fig. 2 legend), WTR13- and

S4R22-infected brains were estimated to yield 3-fold and

10-fold more CD8 T cells, respectively, compared to MHV-

JHM-infected brains. Thus, the SMHV-JHM does not appear

responsible for the restricted CD8 T-cell infiltration in

MHV-JHM-infected brains.

However, as the S protein contains the only known H-2b

CD8 epitopes, S510 and S598, we evaluated the contribution
of these epitopes to the quality of the CD8 T-cell response

induced by each virus using intracellular IFN-g staining.

Together the immunodominant S510 epitope (12.4%) and

the subdominant S598 epitope (9.2%) stimulated IFN-g

production in approximately 21.6% of the CD8 T cells

isolated from MHV-JHM-infected brain (Fig. 3). The stim-

ulation of cohort cells from WTR13-infected brains with the

S598 peptide resulted in values consistently lower than

corresponding values from MHV-JHM-infected brains, in-

dicating that it is still subdominant in WTR13 infection.

Stimulation of the S510 epitope, absent on the SMHV-A59

protein on WTR13, resulted in negligible IFN-g production

(data not shown). In S4R22 infection, the pattern of epitope



Fig. 2. Genes other than S influenced the infiltration of CD8 T cells into the CNS. Mice were infected with viral doses that resulted in high disease scores as

indicated in Fig. 1. Cells were isolated from infected brains on day 7 and stained with anti-CD8. In some experiments, cells were first stimulated in the presence

of brefeldin A and an irrelevant peptide, then co-stained with anti-IFN-g. Intracellular IFN-g staining of CD8 T cells upon stimulation with an irrelevant peptide

is represented in upper-right hand quadrant. The lower- and upper-right hand quadrants of the graphs represent the percentage of CD8 cells within the

mononuclear gate. The corresponding estimates of the number of CD8 cells per brain were determined as: (CD8+ FACS events/Total live FACS events) � total

number of live cells/brain = number of CD8 cells/brain. The means of the values used for the equation variables are shown. Note, the estimated number of CD8

cells per brain was calculated independently for each experiment and not from mean values of equation variables. Means F SE are shown for a total of n

experiments (4–6 mice/group/experiment).
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dominance was similar to MHV-JHM infection; however,

the combined percentage of CD8 T cells responding to S598

and S510 was 13.6%, a fraction of that observed for MHV-

JHM infection (21.6%).

The CD8 T-cell response was further characterized by

comparing IFN-g production following stimulation with the

known viral epitopes on the S protein to stimulation with

anti-CD3, which activates all antigen-experienced cells (Fig.

3B). In MHV-JHM infection, a similar proportion of CD8 T

cells was capable of IFN-g synthesis in response to anti-

CD3 (24.2%) and viral peptides (21.6%), resulting in a

response ratio (viral peptide/anti-CD3) of 0.89. This indi-

cated that most of the anti-CD3 response could be accounted

for by the viral epitopes. Independent of the source of S

gene, the presence of the MHV-A59 variant background

reduced this value to 0.29 and 0.45 following WTR13 and

S4R22 infection, respectively. Thus, the majority of the anti-

CD3 response following MHV-JHM infection could be

accounted for by the known viral CD8 epitopes. However,

this was clearly not the case for WTR13 and S4R22, which

possessed the MHV-A59 variant non-spike genes. Further-

more, estimates of the number of IFN-g+ CD8 cells within

infected brains revealed that there were approximately three

to seven times the number of IFN-g+ CD8 cells in WTR13-

and S4R22-infected brains than MHV-JHM-infected brains

(Fig. 3C).

The ability of the S protein to modulate IFN-g transcript

accumulation in whole infected brain was also assessed.
MHV-JHM-infected mice demonstrated limited IFN-g mes-

sage in the presence of strong IFN-h and IL-6 transcripts

(Fig. 4). In contrast, WTR13 and S4R22 infections induced

the early accumulation of IFN-g transcripts, but reduced

levels of IFN-h and IL-6 mRNA transcripts (Fig. 4). This

cytokine pattern was seen independent of disease score in

S4R22 infection (Fig. 4). Thus, the two elements demon-

strated to be critical in MHV clearance, CD8 T-cell and IFN-

g responses, as well as the accumulation of IFN-h and IL-6

transcripts, appeared to be regulated by genes other than S.

Spike gene influences MIP-1 mRNA accumulation and

macrophage infiltration

Previously, we found that MHV-JHM infection induced

enhanced CNS MIP-1a and MIP-1h transcript levels and

macrophage infiltration compared to MHV-A59 infection

(Rempel et al., 2004). To determine whether the SMHV-JHM

protein positively influenced MIP-1a and MIP-1h mRNA

accumulation, total RNAwas extracted from infected brains

on day 7 and analyzed for chemokine message. RANTES

and MCP-1 mRNA transcripts were uniformly elevated in

MHV-JHM-, WTR13-, and S4R22-infected mice. In con-

trast, MIP-1a and MIP-1h messages were up-regulated in

MHV-JHM-infected brains as compared to WTR13-infected

brains (Fig. 5A). MIP-1a and MIP-1h message levels were

near the threshold of detection in WTR13 infections regard-

less of dose and subsequent disease score. Unlike the results



Fig. 4. The kinetics of interferon mRNA expression was directed by genes other than S. Mice were infected at 10 PFU unless otherwise indicated. On days 3, 5,

and 7, perfused brains were harvested. Total RNA was isolated and analyzed by ribonuclease protection assay (RPA). Autoradiographs of two individual

samples from days 3, 5, and 7 are shown. Sham inoculations on day 3 (n = 4 mice) reflected sham responses on subsequent days. Remaining samples are from

four to eight samples per group, assayed two to three times. HDS, high disease score; LDS, low disease score.

Fig. 3. Intracellular IFN-g production of CD8 T cells in response to viral peptides and anti-CD3. Intracellular IFN-g production was assessed after stimulation

with viral peptides, S598 or S510, or anti-CD3. (A) Figures are from one representative experiment. Values within the upper-right hand quadrants are the mean

percents of IFN-g+ CD8 T cells. WTR13 infection resulted in a negligible IFN-g response following stimulation with the S510 peptide (ns, not shown). (B)

Mean percents of IFN-g+ CD8 cells F SE following stimulation with anti-CD3 and viral peptides; sum of S510 and S598 stimulation. The viral epitope

response was normalized against the anti-CD3 response. Anti-CD3 stimulation estimates the total possible response of antigen-experienced cells. The anti-CD3

response unaccounted for by the known viral epitopes suggested the presence of epitopes on the MHV-A59 variant background. (C) Mean percents of IFN-g+

CD8 cells F SE following anti-CD3 stimulation are shown. The relative number of IFN-g+ CD8 T cells within infected brains was estimated from the median

total cells per brain from the above experiments. All treatment combinations were assayed three to five times, except for anti-CD3 stimulation of cells from

WTR13-infected brain (n = 2 experiments).
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Fig. 5. The S gene of MHV-JHM enhanced macrophage inflammatory protein mRNA levels and macrophage infiltration into the CNS. Mice were infected with

10 PFU MHV-JHM, WTR13, and S4R22 unless otherwise indicated. (A) On day 7, brains were harvested and total RNAwas isolated. Samples (4–10/group)

were analyzed by RPA. Means F SE of band intensities normalized against L32 are shown. Sham infections resulted in background levels of chemokines,

indicated by dashed line. (B) Mononuclear cells isolated from infected brains were co-stained for CD45/FcgR or CD45/CD11b. Percents shown indicate the

percent of either CD45 high/FcgR high or CD45 high/CD11b high cells depicted in the upper-right hand quadrants of graphs. (C) The numbers of macrophages

per brain were estimated as in Fig. 3. Means F SE of indicated number of experiments are shown. HDS, high disease score; LDS, low disease score. Statistical

differences ( p < 0.05) between groups as indicated by *, such that groups with * are statistically different from groups without *. The non-statistical value

difference between S4R22 CD45 high/CD11b high and cohort groups most likely reflects the lower n. Statistical analysis was performed by one-way ANOVA.
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seen for IFN-g, IFN-h, and IL-6 transcripts (Fig. 4), S4R22

infections resulting in high disease scores induced MIP-1a

and MIP-1h mRNA levels equal to those during MHV-JHM

infection. Brains from S4R22 infections resulting in low

disease scores exhibited MIP-1a and MIP-1h transcript

accumulation intermediate to the levels observed from

MHV-JHM- and WTR13-infected brains.

To evaluate the ability of the SMHV-JHM protein to mod-

ulate macrophage infiltration, mononuclear cells isolated
from infected brains were stained for detection of macro-

phage phenotypes CD45 high/FcgR high and CD45 high/

CD11b high, enabling identification from microglial cells

(CD45 intermediate/FcgR high and CD45 intermediate/

CD11b high). MHV-JHM-infected animals exhibited a six-

fold increase in the number of macrophages in the brain

compared to WTR13-infected animals (Fig. 5B). Similar to

MHV-JHM infection, S4R22 inoculations resulting in high

disease scores, but not in low disease scores, demonstrated
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high percentages of macrophages within the mononuclear

cell population, suggesting that macrophage responses con-

tributed to the neurovirulence seen in the presence of the

SMHV-JHM. Unlike S4R22 infections, the limited ability of

WTR13 to induce macrophage infiltration into the brain was

observed to be independent of disease scores.
Discussion

The differences in neurovirulence between MHV-JHM

and MHV-A59 are well documented (Lavi et al., 1984; Wege

et al., 1981). This variation in viral pathology has been

attributed to differences in the S protein between the two

viruses. Here, the ability of the S and non-spike proteins to

induce immune elements unique to MHV-JHM and MHV-

A59 infections using viral chimeras WTR13 and S4R22 was

examined. Unexpectedly, it was found that genes other than

S were critical in controlling viral titers and inducing IFN-g

and CD8 responses known to be protective in MHV infection

(Marten et al., 2001). In contrast, the enhanced mortality due

to the presence of the SMHV-JHM protein in MHV-JHM and

S4R22 infections was associated with the up-regulation of

MIP-1a and MIP-1h mRNA transcripts and increased mac-

rophage infiltration into the CNS. Taken together, this

suggests that the SMHV-JHM protein contributes to neuro-

virulence through the induction of macrophage-driven im-

munopathology as opposed to enhanced viral replication in

the CNS.

Several studies indicate that MHV-JHM neurovirulence

can be ascribed to the SMHV-JHM protein expression (Faza-

kerley et al., 1992; Phillips et al., 1999). As expected from

these and other reports, intracranial (i.c.) inoculation of

MHV-JHM was lethal even at 10 PFU (Fig. 1A). Mice

infected a similar dose of S4R22 exhibited a 40% decrease

in survival relative to WTR13 infections (Fig. 1A). This is

supported by a previous report (which also observed im-

paired S4R22 replication on day 5; Phillips et al., 1999).

However, our study demonstrated that, in marked contrast to

MHV-JHM infection, S4R22-infected mice succumbed to

infection in the absence of detectable viral growth by day 7,

suggesting that enhanced S4R22 virulence was not associ-

ated with viral replication (Fig. 1C). Thus, although en-

hanced neurovirulence could be attributed to the presence of

the SMHV-JHM protein, the ability of MHV-JHM to grow to

high titer within the CNS depended on genes other than S.

The magnitude and extent of the induced host immune

response is a critical factor in resolving viral infections.

Therefore, we directly evaluated the influence of the S

protein on the two immunological elements demonstrated to

be required for MHV clearance, CD8 T-cell and IFN-g

responses (Marten et al., 2001). The number of CD8 T cells

in MHV-JHM-infected brains was decreased twofold or

more as compared to WTR13- and S4R22-infected brains

(Fig. 2), indicating that the impaired CD8 infiltration

observed in MHV-JHM-infected brain was independent of
SMHV-JHM. Thus, the reduced CD8 T-cell number following

MHV-JHM infection may reflect a non-spike gene which

actively inhibits or induces apoptosis in CD8 T cells

(Rempel et al., 2004) in a mechanism similar to the

MHV E protein triggering of 17C1-1 cell apoptosis (An

et al., 1999). Mononuclear cells isolated from infected

brains were stimulated with either anti-CD3 which activates

antigen-experienced T cells (Yee et al., 1994), or viral

peptides. CD8 cells from MHV-JHM- and S4R22-infected

brains produced IFN-g in response to the two known CD8

epitopes S510 and S598 on the SMHV-JHM. However, the

CD8 cell response from S4R22-infected brains (13.6%) was

almost half that from MHV-JHM-infected brains (21.6%;

Fig. 3B). As result, independent of SMHV-JHM or SMHV-A59,

but in the presence of the MHV-A59 variant non-spike

genes, the known epitopes accounted for a fraction of the

total potential for IFN-g production seen upon anti-CD3

stimulation (Fig. 3B), enhancing the support for critical

CD8 epitopes on the MHV-A59 background. This greater

number of IFN-g+ CD8 T cells may be responsible for the

lower S4R22 titers at day 5 and the subsequent resolution

of both S4R22 and WTR13 infections (Figs. 3C and 1C).

Therefore, genes other than S appear to have considerable

influence over both the quantity and the quality of the CD8

T-cell response, perhaps involving an immunodominant

epitope or a CD8 T-cell mitogenic element on the MHV-

A59 background.

IFN-g mRNA accumulation within the whole brain was

also affected by non-S genes. In MHV-JHM-infected mice,

the levels of IFN-g transcript were reduced compared to

WTR13 and S4R22 infections. Conversely, IFN-h mRNA

accumulation was sustained only throughout the course of

MHV-JHM infection (Fig. 4), indicating that genes other

than S regulated IFN-g and IFN-h mRNA expression. Many

viruses have components that alter interferon activity in-

cluding hepatitis C and Ebola viruses (Basler et al., 2000;

Song et al., 1999). Swine coronavirus M and E proteins are

able to induce IFN-a synthesis in compatible leukocyte

populations (Baudoux et al., 1998), supporting the potential

ability of non-spike MHV proteins, such as M and E, to

influence interferon gene transcription. Moreover, our find-

ing that non-spike genes appear responsible for the sus-

tained level of IL-6 mRNA in MHV-JHM infection is

collaborated by Zhang et al. (1998), who found that en-

hanced IL-6 mRNA accumulation could be attributed to the

MHV-JHM hemagglutinin–esterase gene. The increase in

IL-6 message was associated with greater survival, not

mortality, indicating that IL-6 transcription was controlled

by specific viral elements like hemagglutinin–esterase as

opposed to being induced by a non-specific pro-inflamma-

tory response resulting from high viral titers.

Unlike the lack of influence on CD8 T cells and IFN-g

responses, the SMHV-JHM protein clearly enhanced macro-

phage-associated responses within the brain (Fig. 5). MIP-

1a and MIP-1h are chemotactic for macrophages and other

leukocytes. The extent of clinical disease in S4R22-infected
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mice positively correlated with MIP-1a and MIP-1h mRNA

levels. RNA samples from S4R22-infected mice with high

disease scores, which mimicked IFN-g, IFN-h, and IL-6

mRNA profiles from WTR13-infected mice (Fig. 4), here

reflected MIP-1a and MIP-1h transcript accumulation in

MHV-JHM-infected brains (Fig. 5A). This ability of discrete

viral elements to specifically induce MIP-1a and MIP-1h
mRNA concomitant with fatal neurologic disease was

previously demonstrated with the insertion of an envelope

gene from a neurovirulent oncornavirus strain into a non-

virulent strain (Askovic et al., 2001). More specifically in

MHV, the gene segment responsible for MIP-1a production

and virulence may be linked to a deletion in the SMHV-JHM

protein found in the neuroattenuated MHV-JHM derivative

V5A13.1, which induces elevated MIP-1h mRNA, without

similar increases in MIP-1a transcript levels (Lane et al.,

1998). A chemotactic target of MIP-1a and MIP-1h, macro-

phages are also critical in the development of CNS disease,

including MHV-induced pathology (Drescher et al., 2000;

Wu and Perlman, 1999; Xiong et al., 1999). The potential

impact of these chemokines on macrophage infiltration was

directly evaluated by flow cytometric analysis (Figs. 5B and

C). Cohort cells from MHV-JHM- and S4R22-infected mice

with high disease scores exhibited an approximately three-

fold increase in the numbers of CD45 high/FcgR high or

CD45 high/CD11b high cells per brain as compared to

WTR13 infections (Fig. 5C). It is unlikely that these

markers describe either NK cells, since NK1.1+ cells were

similarly present in MHV-JHM- and MHV-A59-infected

brains (Rempel et al., 2004), or B cells, since a greater

percentage of B220+ cells were observed in MHV-A59-

infected brains than in MHV-JHM-infected brains (un-

published data, Rempel and Buchmeier). In S4R22 infec-

tions resulting in low disease scores, the proportion of

macrophages is intermediate, confirming the ability of the

SMHV-JHM protein to induce macrophage infiltration. How-

ever, estimates of the numbers of macrophages in these

brains were noticeably lower than those from cohort mice

with high disease scores. In contrast, the limited capacity of

WTR13 to induce MIP-1a and MIP-1h transcripts or mac-

rophage infiltration was not associated with clinical disease.

Thus, the apparent ability of the SMHV-JHM to recruit macro-

phages into the brain, despite the absence of viral replication,

appeared to be a source for the heightened morbidity and

mortality associated with S4R22 infections. Whether the

ability of the SMHV-JHM protein to induce MIP-1a and

MIP-1h results from differences in tropism and/or the active

induction of certain cellular genes within a population is a

focus of future study.

Increasing evidence indicates that particular viral com-

ponents can actively influence different immune events

providing the potential for targeted therapeutics and vac-

cines (Basler et al., 2000; Ito et al., 1994; Song et al.,

1999). Previous studies indicated that MHV elements such

as the hemagglutinin–esterase and the E proteins affect

viral induction of IL-6 message and apoptosis, respectively
(An et al., 1999; Zhang et al., 1998). Here, we found that

MHV genes other than S influence viral clearance, IFN-g,

IFN-h, and IL-6 mRNA accumulation, and CD8 T-cell

infiltration into the brain. The observation that severe

neurovirulence in the presence of the SMHV-JHM protein

occurred simultaneous with elevated MIP-1a and MIP-1h
transcript levels and enhanced macrophage infiltration

expands our understanding of how a virus might influence

neurovirulence by altering immunopathology.
Materials and methods

Mice

Age-matched (5–6 weeks old) male C57Bl/6 mice were

injected i.c. with 30 Al of saline or virus while under

methoxyflurane anesthesia (Pitman-Moore, Washington

Crossing, NJ). Animals were anesthetized with chloral

hydrate (Sigma, St. Louis, MO) and their brains were

perfused with saline before removal.

Viruses

Animals were infected with either MHV-JHM, or chime-

ric viruses, WTR13 or S4R22 (Buchmeier et al., 1984;

Phillips et al., 1999). Chimeric strains, WTR13 and

S4R22, were kindly provided by Dr. Susan Weiss (Univer-

sity of Pennsylvania). Chimeras were made on a MHV-A59

variant background, Alb4. WTR13 contained the SMHV-A59

gene; whereas, S4R22 contained the SMHV-JHM gene (Fig. 6).

Viruses were inoculated at 10 or 1000 PFU as indicated.

Clinical disease

Clinical disease provided an external reference for the

degree of encephalitis. Clinical disease was scored on day 7

as disease signs were not consistently evident at day 5.

Briefly, disease scores ranged as follows: 0, no clinical

signs; 1, ruffled hair; 2, ruffled hair, hunched back, and

slight impairment in mobility; 3, ruffled hair, hunched back,

and extreme impairment of mobility; and 4, mortality.

Animals with scores of 1 or below were designated as

having a low disease score. Animals with disease scores

above 1 were classified as having a high disease score. As

expected, infection with 10 PFU of the highly virulent

MHV-JHM resulted in high disease scores, whereas, clinical

disease was generally not evident when mice were inocu-

lated with 10 PFU of WTR13 (Fig. 1). Therefore, WTR13

was also given at 1000 PFU in the event that the severity of

clinical disease reflected the extent of the immune response.

At 10 PFU, S4R22 infections resulted in either mild or

severe clinical disease. To be able to decipher between

potential differences in immune activity, S4R22-infected

mice were divided into high disease score and low disease

score groups as opposed to averaging all S4R22 results.



Fig. 6. Spike epitopes and chimeric MHV strains. Viral chimeras were made from the MHV-A59 variant Alb4. WTR13 and S4R22 contained the S proteins of

MHV-A59 (SMHV-A59) and MHV-JHM (SMHV-JHM), respectively (Phillips et al., 1999). A 52-amino acid deletion within the SMHV-A59 protein eliminated the

S510 CD8 T cell epitope (Castro and Perlman, 1995; Parker et al., 1989).
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Cell isolation from the brain

Mononuclear cells were isolated from brains as previous-

ly described (Haring et al., 2001). Pooled cells from four to

six mice were used for each group in an experiment. To

obtain single cell suspensions, brains were ground between

frosted slides and triturated with a wide bore pipette in RPMI

(GibcoBRL, Grand Island, NY) containing 10% fetal calf

serum (FCS, HyClone, Logan, UT). Cell suspensions at a

final concentration of 30% percoll (Amersham Pharmacia,

Piscataway, NJ) were centrifuged at 320 � g for 30 min at

4jC. The pellets were washed and resuspended in 10% FCS/

RPMI. Cells were underlayed with Lympholyte M (Cedar-

lane, Hornby, ON) and centrifuged at 1000 � g for 20 min at

room temperature. The resulting interface was collected and

washed. Trypan blue exclusion was used to estimate the total

number of viable cells isolated per brain. The total number of

cells isolated per brain varied from about 150,000 to 750,000

depending on inoculation (Fig. 1B).

Flow cytometry

Antibodies were purchased from BD Biosciences Phar-

mingen, San Diego, CA. Mononuclear cells isolated from the

brains were used at approximately 250,000 cells per tube.

Cells were incubated 5 h at 37jC in 10% FCS/RPMI in the

presence of brefeldin A, which retains proteins in the

endoplasmic reticulum, and either viral peptides (S510 and

S598, 1 AM) presented on EL4 cells or anti-CD3 (10 Ag/ml).

CD8 T cells were detected with Cy-Chrome (CyC)-conju-
gated rat anti-CD8a (clone 53-6.7) and IFN-g was detected

by fluorescein isothiocyanate (FITC)-anti-IFN-g (clone

XMG1.2) (Haring et al., 2001). Macrophage populations

were identified by co-staining with CyC-anti-CD45 (clone

30F11) and FITC-anti-FcR (clone 2.4G2) or CyC-anti-CD45

and FITC-anti-CD11b (clone M1/70). Stained cells were

enumerated on FACScan (Becton Dickinson, Franklin

Lakes, NJ) and analyzed with CellQuest software (BD

Biosciences Pharmingen). A mononuclear gate was used to

determine the percent of T cells and macrophages. All gates

were verified by back-gating to the forward/side scatter plot.

Ribonuclease protection assay (RPA)

TRIzol reagent (GibcoBRL) was used to extract total

RNA from the brains of sham and MHV inoculated mice.

RPA was performed to detect cytokine and chemokine

mRNA messages (Stalder and Campbell, 1994). Templates

(PharMingen) were labeled with UTP-P32 (Amersham Phar-

macia). Signal intensity was determined from scanned auto-

radiographs using the NIH Image 1.61 software. Target

bands were normalized against the ribosomal subunit L32

control RNA.
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