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Fragile site instability: measuring more than breaks
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ABSTRACT
Genome instability is not only a hallmark of cancer, it is necessary for its 

initiation and evolution, and naturally accumulates as cells age. Replication 
stress is a potent source of genome instability found in many tumor types [1]. 
Chromosomal fragile sites are genomic loci highly prone to DNA damage specifically 
from replication stress and are frequently mutated in cancer [2-4]. While tracking 
the origin of individual mutations has proved challenging, measuring DNA damage 
and repair at endogenous sites can offer key insights into understanding the etiology 
of cancer.

In the past 15 years, the causal link between replication stress, oncogene 
activation, and tumor initiation and evolution has become increasingly clear [1, 
5-9]. Replication-associated damage accumulates at early stages of tumorigenesis 
and may promote further transformation. Studying the causes and consequences of 
fragile site instability can offer a window into the earliest stages of carcinogenesis 
[10-13]. In particular, fragile site studies will help us understand the molecular 
underpinnings influencing the frequency of DNA breakage, successful repair 
processes suppressing genome instability, and unsuccessful repair leading to 
mutations and chromosome rearrangements. Of these, measuring successful repair 
is the most challenging as it leaves little evidence behind.

EXISTING METHODS MEASURING 
UNSUCCESSFUL AND SUCCESSFUL 
DNA REPAIR 

Here we focus on the repair of DNA double strand 
breaks (DSBs), a potent source of DNA damage and a 
critical intermediate in the formation of chromosome 
rearrangements [14, 15]. DSBs are a common intermediate 
of replication stress and can be repaired either by 
non-homologous end-joining (NHEJ) or homologous 
recombination (HR). Multiple methods exist to measure 
“unsuccessful” repair—unrepaired DSBs can be directly 
identified by ligation-mediated PCR or deep sequencing 
techniques such as LAM-HTGTS, BLESS, BREAK-Seq, 
and END-Seq [16-20]. Alternatively, mutagenic repair 
products can be identified by reporter assays, PCR-
based insertion-deletion assays, or deep sequencing for 

unfaithful end joining [19, 21-24]. DNA sequencing can 
give information on mutagenic repair – however it misses 
long-range rearrangements. Of note, fluorescent reporter 
assays are powerful tools that utilize common mistakes 
in DNA repair to assess the efficiency of specific repair 
pathways—specific deletion or recombination events 
restore expression of a fluorescent or selectable marker 
[22, 23, 25]. Importantly, reporter assays provide critical 
information on repair frequency—information lost with 
most PCR- and sequencing-based approaches.

Measuring DNA damage and mutagenesis is 
straightforward, however “successful” repair is difficult 
to assess. By their nature, truly faithful NHEJ and HR are 
invisible leaving no telltale mutations to indicate repair 
process type; therefore, how do we measure when cells 
get the job done right? Traditional methods of monitoring 
DNA breakage and repair by genomic DNA blotting 
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Figure 1: SCE-FISH and its advantages. A. SCE-FISH assay scheme. SCE is an event where the two strands of DNA exchange 
after repair of a DSB, resulting in a crossover event. SCEs can be visualized by differentially labeling the two sister chromatids with the 
nucleotide analog BrdU. Combining single locus FISH with BrdU staining to measure SCE events allows the measurement of successful 
DSB repair at a specific locus on a single cell level. Telomere probe visualizes chromosome ends and facilitates cytogenetic analysis of 
DNA damage. FISH probes are shown in green, telomere-specific probe is in red, and BrdU shown in cyan. B. SCE-FISH validation 
showing a SCE at the ERFS locus BCL2 and break colocalized with crossover upstream to BCL2 in response to aphidicolin. BCL2 is 
shown in green, telomere-specific probe is in red, BrdU shown in cyan and DAPI shown in greyscale. C. Full metaphase spread harboring 
chromatid breaks at the fragile sites BCL2 and FRA12C1 (white arrows) and a complex rearrangement involving BCL2 within one plate in 
response to aphidicolin (green arrow). BCL2 is shown in green, FRA12C1 is in red and DAPI shown in greyscale. D. Examples of complex 
chromosome fusions with junction points overlapping with  crossover events (left) and not overlapping with crossover events (right) from 
cells exposed to aphidiolin. BrdU shown in cyan and DAPI shown in greyscale. E. Example of complex rearrangement involved BCL2 
region with colocalized chromatid break and crossover and subsequent fusion at the BCL2 region in response to aphidicolin. BCL2 is 
shown in green, BrdU shown in cyan and DAPI shown in greyscale. F. The number of cell cycles/S phases a cell experienced during drug 
treatment can be determined by BrdU-labeling. Cells with no BrdU incorporated correspond to 0 cell cycles, metaphases with equally 
labeled chromatids correspond to 1 cell cycle, metaphases with differentially labeled chromatids correspond to 2 cell cycles. BrdU shown 
in cyan and DAPI shown in greyscale.
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remains the gold-standard as it measures broken DNA 
and repair product formation [24]. The largest challenge 
in measuring endogenous damage is knowing where the 
damage occurs—all current methods require positional 
information of where the damage takes place to develop 
PCR primers or probes to assess breakage and repair. 
To utilize these methods effectively, DNA damage must 
be confined to a discrete region that can be assessed by 
standard gel electrophoresis (normally 20 kb or less), or 
easily amplified by PCR. However endogenous fragile 
sites induced by replication stress cover very large 
regions, some have breaks spanning regions larger 
than 1 Mb [3, 26-29]. Measuring successful fragile 
site repair by PCR, genomic blots, or DNA sequencing 
has been unsuccessful due to their size. Finally, only 
metaphase spread analysis reveals the physical structure 
of chromosomes harboring complex chromosome 
rearrangements.

Recently we published a novel method to measure 
simultaneously successful and repair of replication stress-
induced damage at endogenous fragile sites termed SCE-
FISH (sister chromatid exchange and fluorescent in situ 
hybridization) sites [30]. While NHEJ directly rejoins 
broken DNA ends, HR primes new DNA synthesis from 
a template DNA, most often the sister chromatid [15, 31]. 
The intertwined sisters can be resolved in either a non-
crossover or crossover orientation, the latter results in the 
sister chromatids exchanging DNA (Figure 1A-B). With 
SCE-FISH, the SCE number estimates overall DNA repair 
by homologous recombination (HR); SCE frequency 
assesses the rate of repair [32-35]. SCE frequency at 
specific sites can then be compared using one or more 
FISH probes (Figure 1B-C). Finally, telomere FISH allows 
for the assessment of DNA damage and chromosome 
rearrangements. Currently, only SCE-FISH can assess 
the capacity of HR-mediated repair and the formation of 
chromosome rearrangements in the same cell and even on 
the same chromosome (Figure 1D-E). Importantly, radial 
fusions and many complex rearrangements also contain 
two or more centromeres—a situation that can induce 
defective chromosome segregation and mitotic failure 
[36].

FRAGILE SITES AND CANCER

Fragile sites were originally defined as genomic 
locations where DNA breaks were visible in condensed 
mitotic chromosomes. While most fragile sites do not 
appear to play a direct role in tumor suppression or 
oncogene overexpression. In mammalian cells, fragile 
sites were first classified by the method used to induce 
damage. Rare fragile sites were first identified by breakage 
in response to folate deprivation or bromodeoxyuridine 
exposure, while common fragile sites (CFS) were 

initially discovered by sensitivity to replication inhibitors 
including aphidicolin, 5-azacytidine, or distamycin A [37-
40]. More recently, a class of early replicating fragile sites 
(ERFS) were discovered in response to acute replication 
stress with hydroxyurea [4]. Additionally, small molecule 
inhibitors of the DNA damage checkpoint kinase ATR 
revealed genomic loci rich in forming non-B DNA 
structures are prone to DNA breakage [41].

SOURCES OF FRAGILE SITE 
BREAKAGE

While damage at rare fragile sites—best 
characterized by trinucleotide repeat-associated diseases 
such as Friedrichs ataxia, fragile X syndrome, and 
Huntington’s disease—can occur in non-dividing cells, 
the majority of fragile site damage occurs in proliferating 
cells and requires DNA replication [3, 42-44]. Common 
fragile sites strongly correlate with late-replicating, origin 
-poor regions, suggesting replication may not be complete 
at these loci prior to cell division. However what stalls 
or delays replication in these regions is still debated, 
though there are likely multiple causes. CFS are known 
to form difficult-to-replicate secondary structures [41, 45, 
46]. There is also evidence that transcription of very long 
genes may stall DNA polymerases leading to incomplete 
replication [47, 48]. However, transcription can also shape 
nuclear architecture and replication timing [49, 50]. An 
alternate theory is that transcription affects replication 
timing at CFSs, rather than creating direct conflicts with 
moving replication forks [42, 50].

In comparison to CFS, ERFS are origin-rich regions, 
therefore incomplete replication is unlikely to drive 
instability observed in mitosis. A host of factors associated 
with euchromatin and active transcription correlate with 
ERFS—they overlap with CpG islands, trimethylation 
of histone at lysine 4, and genes with abundant mRNA 
production. Many ERFS overlap two or more highly-
transcribed genes. A substantial subset of ERFS loci also 
co-localize with RNA:DNA hybrids—three stranded 
nucleotide structures that can cause replication stress [4, 
51]. Since ERFS replicate early and are origin-rich, we 
predict that instability stems from impeding replication 
fork progression rather than incomplete replication.

Though molecularly distinct, ERFS and CFS 
are sensitive to multiple replication stress-inducing 
agents. Both experience elevated levels of DNA 
breaks and rearrangements in response to DNA 
damage checkpoint inhibition or loss of repair proteins 
involved in homologous recombination [3, 4, 30, 52-
55]. Oncogene overexpression is another potent source 
of replication stress that induces DNA damage at both 
ERFSs and CFSs [4, 56]. Finally, both CFS and ERFS 
are associated with increased mutations, copy number 
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alterations, and rearrangements observed in human 
cancers [3, 4, 57, 58]. Using SCE-FISH we showed 
that spontaneous and replication stress-induced SCE is 
significantly higher at fragile sites than genomic loci with 
no known predisposition to damage (“cold” sites) [30]. 
Further, replication stress from checkpoint inhibition or 
blocking replication progression increased successful and 
unsuccessful repair at most CFS and ERFS loci examined.

ADVANTAGES OF SCE-FISH

SCE-FISH assesses successful and unsuccessful 
repair at endogenous genomic loci, allowing for the 
direct comparison of the frequency of repaired and 
unrepaired breaks (Figure 1B, [30]). Further, the rate of 
SCE formation at independent fragile site loci can be 
compared to each other and to the total rate of SCE in the 
same cell sample. This gives two important quantitative 
comparisons of fragile sites to other loci: it can be 
assessed as its frequency within a cell population (events 
per cell), or its frequency to all exchanges (frequency as 
% of SCEs). With standard 4-color microscopy, three 
independent FISH probes can be combined in a single 
hybridization. We found individual cells harboring DNA 
aberrations at both ERFS and CFS loci, indicating that 
damage at early and late-replicating regions occurred in 
the same cell (Figure 1C).

Unlike other techniques, only SCE-FISH also 
analyzes structural abnormalities allowing for the 
identification of radial and complex fusions. We found that 
cells exposed to the replication stress agent aphidicolin 
often harbored complex rearrangements often contained 
multiple SCE events (Figure 1D). We hypothesize that 
structures such as these arise from HR repair failed at 
the last stage - Holliday junction resolution. Supporting 
this hypothesis, we found SCE events localizing to fusion 
junctions in radial and complex rearrangements—a subset 
of junction sites also overlapped with fragile sites (Figure 
1D, E ).

Importantly, the BrdU incorporation also measures 
the extent of DNA replication and cell cycle progression. 
Metaphase spreads with no BrdU labeling did not traverse 
S phase during BrdU incubation, cells with equal sister 
chromatid labeling went through 1 complete S phase, and 
cells with unequal (but complete) labeling progressed 
through two full S phases (Figure 1F. This information 
can help determine two related questions: 1) does DNA 
damage from replication stress arise by mitotic failure, 
and 2) what are the temporal requirements of chromosome 
rearrangement formation?

SCE-FISH can be readily tailored to measure 
HR at endogenous genomic loci in many contexts, 
complementing molecular analysis of protein recruitment 
by ChIP or replication timing and origin usage by OK-Seq 

or Repli-Seq. Such studies will help define the molecular 
pathways involved in creating and repairing damage at 
endogenous fragile sites, as well as oncogenes and loci 
harboring tumor suppressors. Notably, we found that 
fragile sites near centromeres (both ERFS and CFS) did 
not exhibit elevated levels of SCE [30]. These results 
suggest there may be positional effects governing repair 
pathway choice, similar to meiosis. Further investigation 
will reveal if SCE suppression is specific to centromeres 
or if other chromosomal regions also elicit a similar 
response. Combined with site-specific DNA breaks 
created by CRISPR-Cas or TALENs, SCE-FISH could 
also be harnessed to define the frequency of exchanges 
in heterochromatin vs. euchromatin, or compare HR 
frequency between two distinct cell types.

LIMITATIONS

SCE-FISH measures only homologous 
recombination repair, which results in CO events; NCO 
products of HR and NHEJ remain unexplored. Further, 
SCE-FISH measures successful repair in condensed 
mitotic chromosomes, restricting analysis to 1-5% of the 
cell population. ~50-100 cells are necessary for accurate 
quantitation of fragile site repair, which may limit its use 
in cell cultures or tissues with very low mitotic index. 
The resolution of FISH is on the megabase-scale. Fragile 
sites often span regions a megabase or longer, making 
FISH and ideal method to fully assess damage and 
repair, however it provides no information concerning 
repair junctions. We anticipate that in the future ultra-
long read sequencing techniques such as PAC-BIO or 
MinION can be used in tandem to analyze fragile site 
mutations and rearrangement junctions [59, 60]. SCE-
FISH studies directly measures the frequency of repair 
in a cell population, a component sorely lacking in many 
next-generation sequencing studies of WT and tumor 
samples. Thus, functional assays such as SCE-FISH can 
complement studies characterizing HR-mediated repair, 
similar to PCR-based assays for the frequency of point 
mutation.

HARNESSING SCE-FISH IN CANCER 
STUDIES

Since fragile site instability can arise from multiple 
sources, how can we define the underlying cause of 
replication stress in a tumor? While whole-genome and 
exome sequencing be helpful, many alterations will have 
unknown consequences. This is exemplified by variants of 
unknown significance (VUS) for DNA repair genes like 
Brca1—little is known about the functional consequence 
of even relatively common point mutations identified in 
tumor sequencing [61, 62]. Instead, functional assays such 
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as SCE-FISH can provide more actionable information—
fragile site breakage identified by FISH strongly indicates 
increased replication stress while alterations in SCE 
frequency can infer if HR is defective [35, 63-67].

Complex chromosome rearrangements are strongly 
associated with tumorigenesis and are regularly observed 
in in mature cancers [68-71]. Understanding how cells 
generate these rearrangements will help us understand 
cancer etiology, and identify novel ways to exploit their 
occurrence. In particular they could help structure cancer 
therapies—in some cases short, acute dosing may be more 
effective, while other times longer low-level exposure 
may eliminate tumor cells more completely. Alternatively, 
chromosome rearrangement analysis would provide 
insight into potentially “overactive” repair pathways 
tumor cells rely on for survival.

FUTURE DIRECTIONS

A current challenge lies in developing assays to 
identify and quantify DNA repair events resulting in 
non-crossover HR products and NHEJ. Combining such 
tools with SCE-FISH will unlock when, where, and how 
often specific repair pathways are used at the single cell 
level—and help reveal the complex interplay of genetic 
and epigenetic factors governing genome stability its role 
in tumor suppression.
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