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Abstract

Genome-wide association studies (GWAS) have identified greater than 30 variants associ-

ated with ovarian cancer, but most of these variants were investigated in European popula-

tions. Here, we integrated GWAS and subsequent functional analyses to identify the genetic

variants with potential regulatory effects. We conducted GWAS for ovarian cancer using

681 Japanese cases and 17,492 controls and found that rs137672 on 22q13.1 exhibited

a strong association with a P-value of 1.05 × 10−7 and an odds ratio of 0.573 with a 95%

confidence interval of 0.466–0.703. In addition, three previously reported SNPs, i.e.,

rs10088218, rs9870207 and rs1400482, were validated in the Japanese population (P <
0.05) with the same risk allele as noted in previous studies. Functional studies including reg-

ulatory feature analysis and electrophoretic mobility shift assay (EMSA) revealed two regu-

latory SNPs in 22q13.1, rs2072872 and rs6509, that affect the binding affinity to some

nuclear proteins in ovarian cancer cells. The plausible regulatory proteins whose motifs

could be affected by the allele changes of these two SNPs were also proposed. Moreover,

the protective G allele of rs6509 was associated with a decreased SYNGR1 expression

level in normal ovarian tissues. Our findings elucidated the regulatory variants in 22q13.1

that are associated with ovarian cancer risk.
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Introduction

Ovarian cancer (OC) is one of the most common cancers among women worldwide [1]. The

high mortality rate in ovarian cancer is due to late diagnosis resulting from the nonspecific

nature of symptoms and lack of effective screening tools [2]. In the Japanese population, ovar-

ian cancer exhibits the highest mortality rate compared with other gynecologic malignant

tumors, and its prevalence has been increasing since 1975, although the main cause remains

unclear [3]. Genome-wide association studies (GWAS) have identified greater than 30 variants

associated with OC susceptibility. Most of these studies were conducted in European popula-

tions [4–10], and only two studies included Asian populations [11, 12]. Pathogenic variations

in the BRCA1 and BRCA2 tumor suppressor genes responsible for most of hereditary breast

and ovarian cancer syndromes [13] have been reported in numerous ethnic group including

Japanese populations [14]. However, low-penetrance genetic variants still need to be eluci-

dated, especially in Japanese populations.

To understand the functional consequences of cancer risk loci, post-GWAS analysis is

performed, particularly with non-protein-coding variants. The goal is to uncover functional

or causal SNPs that likely differ from associated SNPs obtained from GWAS. The systematic

strategies for post-GWAS [15, 16] include the following: (1) targeting SNPs in linkage dis-

equilibrium (LD) with the associated SNP; (2) determining mRNA expression levels of

nearby genes that may be affected by the expression quantitative trait loci (eQTL); (3)

characterization of gene regulatory regions; (4) identification of potential epigenetic mecha-

nisms using tissue-specific data. In addition, (5) electrophoretic mobility shift assays

(EMSA) are used to confirm the potential interaction between the tested variant and tran-

scription factors (TF) [17]. Here, we performed a first population-based case–control

GWAS in ethnical Japanese, and then selected the loci with the strongest associations for

post-GWAS analyses.

Materials and methods

Patients and controls

All participants were ethnic Japanese women. The DNA samples of 681 ovarian cancer

patients were stored in an automated DNA storage system; and 5μg of DNA samples (50 μl at

a concentration of 100 ng/μl) were provided by Biobank Japan [18]. The 17,492 noncancer

control female samples were obtained from four population-based cohorts: the JPHC (Japan

Public Health Center)-based Prospective Study [19], the J-MICC (Japan Multi-Institutional

Collaborative Cohort) study [20], ToMMo (Tohoku Medical Megabank Organization) and

IMM (Iwate Tohoku Medical Megabank Organization) [21, 22]. The characteristics of each

cohort are presented in Table 1; only the age of subjects was included in this analysis. All

participating studies obtained written informed consents from all participants by following

the protocols approved by their institutional ethical committees before enrollment. The con-

sent procedure was approved by the ethical committees at each institute. This study was

approved by the first ethics committee of Institute of Medical Science, The University of

Tokyo (approval number of 29–74). We cannot access to any patient-level identifying informa-

tion as part of the study.

GWAS genotyping and imputation

DNA genotyping and imputation were conducted at RIKEN Center for Integrative Medical

Sciences in the previous studies for cases [23] and controls [24]. Genomic DNA samples were

extracted from peripheral blood leukocytes using a standard method. All case and control
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samples were genotyped using the Illumina OmniExpress Exome or the OmniExpress+Huma-

nExome BeadChip (Illumina Inc.). The type, version, and number of SNPs of genotyping

platform used in each cohort were described in Table 1. A list of SNPs in each platform was

obtained from Illumina. We select 925,436 common SNPs those were genotyped by any

platforms for all samples. Allele calling algorithm used to compute the genotyping data was

GenomeStudio V2011.1. A quality control was applied to the raw genotyping data to filter

unqualified SNPs following the criteria as previously described [24]. We excluded SNPs that

met the following criteria: minor allele frequency (MAF) < 0.01; Hardy-Weinberg equilibrium

(HWE) P-value< 1 × 10−6; call rate < 0.99. We also exclude SNPs with a large allele frequency

difference between the reference panel and the GWAS (> 0.16) as described previously [25].

After quality control, 498,990 SNPs were included for imputation analysis. Imputation of the

ungenotyped SNPs was conducted with MaCH [26] and minimac [27] using the data from the

JPT/CHS/CHB subjects and the 1000 genomes project phase 1 (release 16, March 2012) as a

reference. Allele labels, as an effect or non-effect allele, and allele frequencies of imputed SNPs

were obtained from minimac [27]. Post-imputation quality control was performed based on

these following exclusion criteria: (1) MAF < 0.01; and (2) HWE P-value< 1 × 10−6. Finally, a

total of 7,521,072 imputed SNPs were obtained for further analyses. The genotyping data is

available at DNA DataBank of Japan (DDBJ) with an accession number: JGAD00000000123.

Statistics

The statistical analyses were done for the SNPs that were common to different genotyping plat-

forms used (Table 1) and whose genotype information was available for all cases and controls

after imputations/implementation of quality control measures. The association between SNP

and risk for developing ovarian cancer risk was investigated using logistic regression based on

the first principal component (PC1) and the second principal component (PC2) as covariates

[28]. The genetic inflation factor lambda (λ) was derived from P-values obtained using the

Cochran–Armitage trend test for all the tested SNPs [29, 30]. The quantile-quantile plot was

drawn using the R program. Odds ratios were calculated using the non-effect alleles as refer-

ences. The effect size (beta) from the logistic model and the standard error for beta (SEbeta)

were calculated using R program. The 95% confidence interval was calculated based on the

Table 1. Characteristics of study population.

Sample type Source N Age (mean ± SD) Platform Number of SNPs

Ovarian cancer cases Biobank Japan 30 54.43±11.8 HumanExome_v10 247,870

OmniExpress 730,525

571 56.99±11.25 HumanExome_v11 242,901

OmniExpress 730,525

12 70.17±9.33 OmniExpressExome_v10 951,117

68 58.03±12.57 OmniExpressExome_v12 964,193

Total 681 57.22 ± 11.51

Controls 1) JPHC 5,019 53.49 ± 7.80 OmniExpressExome_v12 964,193

2) J-MICC 7,049 54.25 ± 9.41 OmniExpressExome_v12 964,193

3) ToMMo 2,852 58.28 ± 11.95 OmniExpressExome_v12 964,193

4) IMM 2,572 62.21 ± 10.03 OmniExpressExome_v12 964,193

Totala 17,492 55.86 ± 10.04

a JPHC, Japan Public Health Center-based Prospective Study; J-MICC, Japan Multi-Institutional Collaborative Cohort study; ToMMo, Tohoku Medical Megabank

Organization; IMM, Iwate Tohoku Medical Megabank Organization.

https://doi.org/10.1371/journal.pone.0209096.t001
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following formula:

Lower limit of 95%CI ¼ ebeta � 1:96 � SEbeta

Upper limit of 95%CI ¼ ebeta þ 1:96 � SEbeta

SNP selection

We selected 201 candidate SNPs within 24 regions exhibiting a high association with ovarian

cancer based on the following inclusion criteria: GWAS P-value < 1 × 10−5 and imputation

quality score (Rsq)> 0.3 (S1 Table). Pairwise linkage disequilibrium (r2) between each SNP

and lead SNP (the SNP with the lowest P-value in each region) in Japanese was obtained from

Ensembl [31]. SNPs previously reported to be associated with ovarian cancer in published

GWASs were obtained from GWAS catalog (https://www.ebi.ac.uk/gwas/). The data of

reported SNPs, including risk allele and odd ratio, were retrieved from the original publica-

tions and further compared to the data of this Japanese dataset.

Analysis of regulatory features

Thirty candidate SNPs at 22q13.1 were analyzed based on their location, epigenetic markers

(i.e., H3K4Me1, H3K4Me3, and H3K27Ac) in ENCODE [32], Ensembl regulatory build indi-

cating gene regulation, and TF binding data in Ensembl, ReMap [33], and JASPAR [34]. All

data were visualized in the UCSC genome browser using track data hubs [35]. Regarding track

settings in ReMap 2018, transcription regulators with peaks greater than 1.5 kb in size were

retrieved from all public and ENCODE ChIP-seq data [33]. For JASPAR, we chose predicted

binding sites with matching scores greater than 400 (P-value� 10−4). The ovary-specific tran-

scriptional regulations, including epigenome activity representing open chromatin and TF

binding retrieved from ChIP-Seq data, were obtained from Ensembl. Regional plots were gen-

erated using LocusZoom (http://csg.sph.umich.edu/locuszoom).

The SNPs located in regulatory regions were further analyzed. The transcription factors

reported in three databases and epigenome activity in ovaries were investigated. eQTL data

of each SNP with nearby genes in normal ovarian tissues were obtained from Ensembl. The

TF binding motifs containing SNP sequences were downloaded from HOCOMOCO [36],

abstracting from ChIP-Seq datasets with quality A ratings.

Electrophoretic mobility shift assay

SKOV3 cells were purchased from the American Type Culture Collection (ATCC). Cell cul-

ture was maintained using the depositor’s recommendations. Nuclear proteins from SKOV3

cells were extracted using NE-PER nuclear and cytoplasmic extraction reagents (Thermo

Fisher Scientific) according to the manufacturer’s protocol. Protein concentrations were mea-

sured using a BCA protein assay (Thermo Fisher Scientific). EMSA was performed using DIG

Gel Shift Kit, 2nd Generation (Roche) following the manufacturer’s instruction with the addi-

tional step of re-annealing to eliminate the non-specific bands [37]. EMSA was performed two

times separately, including screening for nine SNPs in 22q13.1 (S2 Fig) and confirming posi-

tive SNPs. The sequences of oligonucleotide probes are listed in S2 Table. In brief, 60 fmol of

labeled probes containing SNP positions were hybridized with 5 mg of nuclear protein extract

for 15 minutes at 20˚C. The mixtures were then loaded into a 6% TBE gel, separated by electro-

phoresis at 4˚C and transferred onto a nylon membrane. The membrane was then hybridized

GWAS, post-GWAS, and ovarian cancer
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with anti-digoxigenin-AP antibody and developed by CSPD solution. The intensity of the

shifted band was quantified using ImageJ software [38].

Results

GWAS of ovarian cancer in a Japanese population

The DNA samples of 681 ovarian cancer patients and 17,492 cancer-free control females

were genotyped by Illumina OmniExpress Exome or the OmniExpress+HumanExome Bead-

Chip. The characteristics of each cohort are presented in Table 1. We conducted a standard

quality control and genome-wide imputation analysis. The SNPs were excluded based on the

following criteria: minor allele frequency (MAF) < 0.01; Hardy-Weinberg equilibrium P-

value < 1 × 10−6; call rate< 0.99; GWAS allele frequency difference from the reference

panel> 0.16. Consequently, we obtained the genotyping results of 7,521,072 imputed SNPs on

autosomal chromosomes and analyzed their associations with OC risk (Fig 1A). The genomic

Fig 1. Genome-wide association results for ovarian cancer in a Japanese population. (A) Manhattan plot of 7,521,072 imputed SNPs on

chromosomes 1 to 22. The red line indicates a threshold P-value of 1 × 10−5. Among 201 SNPs with P-values less than the threshold, rs137672 on

chromosome 22 exhibited the lowest P-value (P = 1.05 × 10−7). (B) Quantile-quantile plot. The genomic inflation factor lambda (λ) was 1.035.

https://doi.org/10.1371/journal.pone.0209096.g001

GWAS, post-GWAS, and ovarian cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0209096 December 17, 2018 5 / 16

https://doi.org/10.1371/journal.pone.0209096.g001
https://doi.org/10.1371/journal.pone.0209096


inflation factor lambda (λ) was 1.035 (Fig 1B). We selected 201 candidate SNPs in 24 genomic

regions demonstrating a suggestive association (P-value < 1 × 10−5). The most significant

SNPs in each region, called lead SNPs, are presented in Table 2. Regional plots of 24 candidate

loci are presented in S1 Fig. Among all candidates, rs137672 on 22q13.1 that is located in the

upstream region of the SYNGR1 gene (Synaptogyrin 1) exhibited the strongest association

(P = 1.05 × 10−7; odds ratio of 0.573 with 95% confidence interval of 0.466–0.703). Detailed

information of all 201 candidate SNPs are presented in S1 Table.

Associations of reported variants in a Japanese population

The imputed SNPs in this study were investigated whether they had been previously reported

in published GWASs. First, we included reported SNPs that exhibited associations with OC

susceptibility in any population, but not including the SNPs associated with specific OC sub-

types or OC survival. Next, the reported SNPs were searched in this GWAS and found that

34 SNPs, reported in nine studies [4–12], passed the quality control and could be evaluated in

the Japanese dataset (Table 3). Among nine studies, two included Asian populations [11, 12].

Chen et al. conducted GWAS with Han Chinese subjects; whereas Pharoah et al. pooled

Table 2. Associations of lead SNPs in 24 regions meeting the criteria (P< 1 × 10−5 and Rsq> 0.3).

Locus SNP Eff/non allelea Case freqb Ctrl freqb Rsqc OR (95% CI)d P-value Gene Relative locatione

1p22.1 rs185345278 A/G 0.9664 0.9784 0.3344 0.348 (0.221–0.547) 4.86 × 10−6 GCLM -23582

1p12 rs12031579 G/A 0.9177 0.9453 0.6395 0.548 (0.432–0.696) 7.88 × 10−7 HAO2 -60859

1q22 rs188625872 C/T 0.9885 0.9966 0.8794 0.266 (0.154–0.460) 2.01 × 10−6 LMNA 0

1q24.3 rs12117623 C/A 0.4070 0.4694 0.9943 0.762 (0.683–0.850) 1.46 × 10−6 DNM3 0

2p11.2 rs17027263 C/T 0.8437 0.8828 0.9998 0.693 (0.596–0.806) 1.69 × 10−6 KDM3A 0

3q27.3 rs6801612 A/G 0.7460 0.6830 0.9997 1.328 (1.174–1.503) 7.57 × 10−6 RPL29P9 1722

5p15.32 rs12658731 G/A 0.7030 0.6438 0.7678 1.405 (1.227–1.608) 8.57 × 10−7 ADAMTS16 0

5q31.2 rs147867139 A/G 0.9671 0.9825 0.7531 0.455 (0.322–0.642) 7.65 × 10−6 CXXC5 29634

5q35.3 rs60982503 G/A 0.7852 0.7345 0.9017 1.384 (1.204–1.591) 4.66 × 10−6 CNOT6 -9381

6p24.3 rs303051 A/G 0.5521 0.6053 0.9928 0.776 (0.696–0.867) 6.21 × 10−6 TFAP2A 0

6p21.31 rs56855829 C/T 0.9877 0.9964 0.8154 0.263 (0.151–0.459) 2.37 × 10−6 FANCE 0

6q16.1 rs4599655 A/C 0.8281 0.8635 0.9934 0.718 (0.621–0.829) 7.69 × 10−6 FUT9 68769

6q24.3 rs73589840 C/T 0.9452 0.9671 0.9537 0.573 (0.450–0.731) 7.42 × 10−6 C6orf103 0

7p12.3 rs181474944 C/T 0.9710 0.9850 0.6381 0.407 (0.276–0.600) 5.60 × 10−6 MGC16075 3731

7q21.13 rs76926936 T/G 0.9261 0.9483 0.4682 0.520 (0.390–0.694) 9.24 × 10−6 ZNF804B 361650

9q21.33 rs10117922 A/G 0.6249 0.6750 0.7793 0.749 (0.661–0.849) 7.35 × 10−6 DAPK1 0

9q34.3 rs10858374 T/C 0.8444 0.8894 0.9488 0.681 (0.583–0.795) 1.03 × 10−6 C9orf62 -95595

10q25.3 rs2615880 A/C 0.8385 0.8766 0.9776 0.713 (0.614–0.828) 8.30 × 10−6 ATRNL1 0

12q15 rs789336 C/T 0.6857 0.6082 0.9999 1.369 (1.217–1.540) 1.46 × 10−7 C12orf28 69976

16q12.2 rs145065165 G/A 0.9640 0.9777 0.4136 0.348 (0.233–0.519) 2.33 × 10−7 RPL31P56 5394

17p13.2 rs11870446 C/G 0.8360 0.8762 0.7774 0.674 (0.570–0.796) 3.37 × 10−6 LOC339166 0

19q13.43 rs12151036 G/T 0.9736 0.9881 0.9998 0.453 (0.322–0.636) 5.27 × 10−6 ZNF274 0

20q13.31 rs1884920 A/G 0.4534 0.4973 0.5171 0.711 (0.611–0.827) 8.29 × 10−6 TFAP2C 8727

22q13.1 rs137672 C/T 0.9045 0.9399 0.7961 0.573 (0.466–0.703) 1.05 × 10−7 SYNGR1 -8860

a Effect allele/non-effect allele.
b Effect allele frequency.
c Rsq, imputation quality score.
d OR, odd ratio (non-effect alleles were considered as references); 95% CI, 95% confidence interval.
e Relative location, the distance from the transcription start site of the nearest gene to the SNP

https://doi.org/10.1371/journal.pone.0209096.t002
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Table 3. Associations of the previously reported SNPs in the study population.

Locus SNP Eff/non

allelea
GWAS results in this study (Japanese) Gene Previous study

Case

freqb
Ctrl

freqb
P-value Rsqc OR (95% CI)d Concordance with this

study

PMID

(population)e

2q13 rs2165109 A/C 0.5403 0.5183 1.72 × 10−1 0.9929 1.079 (0.967–

1.204)

ACOXL opposite 28346442 (EU)

2q13 rs17041869 A/G 0.7439 0.7474 8.50 × 10−1 0.9987 0.988 (0.873–

1.118)

BCL2L11 opposite 28346442 (EU)

2q14.1 rs752590 A/G 0.8554 0.8459 2.60 × 10−1 0.8992 1.098 (0.934–

1.293)

PAX8 same 26075790 (EU)

2q31.1 rs711830 G/A 0.7832 0.7938 7.39 × 10−1 0.9972 0.978 (0.858–

1.116)

HOXD3 same 28346442 (EU)

2q31.1 rs2072590 C/A 0.7830 0.7935 7.52 × 10−1 0.9970 0.979 (0.859–

1.117)

LOC401022 same 20852632 (EU)

23535730 (EU+AS)

2q31.1 rs6755777 G/T 0.7828 0.7931 7.68 × 10−1 0.9982 0.980 (0.860–

1.118)

LOC401022 same 28346442 (EU)

3q25.31 rs2665390 T/C 0.9934 0.9901 1.39 × 10−1 0.9994 1.655 (0.850–

3.223)

TIPARP same 20852632 (EU)

25134534 (AS)

3q28 rs9870207 A/G 0.5387 0.5034 3.53 × 10−2 0.9994 1.124 (1.007–

1.255)

LOC100131685 same 28346442 (EU)

4q32.3 rs13113999 T/G 0.9397 0.9439 2.94 × 10−1 0.7344 0.867 (0.664–

1.132)

TLL1 opposite 28346442 (EU)

5p15.33 rs10069690 C/T 0.7485 0.7550 2.22 × 10−1 0.9847 0.925 (0.816–

1.049)

TERT same 25581431 (EU)

25134534 (AS)

5p15.33 rs7705526 C/A 0.6226 0.6361 1.27 × 10−1 0.8361 0.909 (0.805–

1.027)

TERT same 28346442 (EU)

7p12.1 rs2190503 G/A 0.8747 0.8781 1.91 × 10−1 0.9948 0.895 (0.760–

1.056)

GRB10 same 24190013 (EU)

7p12.1 rs6593140 T/C 0.8869 0.8875 3.15 × 10−1 0.9998 0.916 (0.771–

1.088)

GRB10 same 24190013 (EU)

7p12.1 rs2329554 G/A 0.6888 0.6946 4.71 × 10−1 0.9890 0.957 (0.852–

1.077)

GRB10 same 24190013 (EU)

8q24.21 rs9886651 A/G 0.7318 0.7160 4.96 × 10−1 0.9823 1.044 (0.923–

1.181)

PVT1 opposite 28346442 (EU)

8q24.21 rs1400482 G/A 0.9897 0.9830 4.94 × 10−2 0.9867 1.709 (1.001–

2.919)

MIR1208 same 28346442 (EU)

8q24.21 rs10088218 G/A 0.9897 0.9829 4.73 × 10−2 0.9988 1.713 (1.007–

2.913)

MIR1208 same 20852632 (EU)

25134534 (AS)

9p22.2 rs3814113 T/C 0.7525 0.7519 8.30 × 10−1 0.9975 1.014 (0.895–

1.150)

BNC2 same 19648919 (EU)

25134534 (AS)

9q22.33 rs1413299 T/G 0.7249 0.7326 7.96 × 10−1 0.9988 0.984 (0.872–

1.111)

COL15A1 same 25134534 (AS)

9q34.2 rs633862 T/C 0.5470 0.5265 3.05 × 10−1 1.0000 1.058 (0.950–

1.179)

ABO same 25134534 (AS)

10p11.21 rs1192691 G/T 0.4723 0.4746 4.02 × 10−1 0.9902 0.954 (0.855–

1.065)

LOC389948 opposite 25134534 (AS)

12q14.2 rs11175194 G/A 0.6417 0.6377 6.76 × 10−1 0.9998 1.024 (0.914–

1.148)

SRGAP1 same 25134534 (AS)

12q22 rs11108890 C/A 0.8847 0.8933 9.89 × 10−2 0.9994 0.867 (0.731–

1.028)

TRNAQ46P same 24190013 (EU)

13q14.2 rs970651 G/A 0.7590 0.7533 8.57 × 10−1 0.9844 1.012 (0.893–

1.147)

SUCLA2 opposite 24190013 (EU)

14q24.1 rs17106154 T/C 0.6988 0.6817 2.61 × 10−1 0.9093 1.074 (0.949–

1.215)

RPL12P7 opposite 24190013 (EU)

17q12 rs7405776 G/A 0.6906 0.6873 8.46 × 10−1 0.6209 1.015 (0.875–

1.178)

HNF1B same 28346442 (EU)

(Continued)
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GWAS from European countries and confirmed the associations in various European and

Asian populations. A concordance between studies was investigated based on risk alleles

and odd ratios. We compared the associations of seven SNPs reported in both Asian and Euro-

pean populations in previous studies and found the concordances between those ethnicities.

Among 34 reported SNPs (23 loci) with Japanese data, 25 SNPs (18 loci) exhibited the same

risk allele as reported in previous studies; though only three SNPs, i.e., rs9870207, rs1400482,

and rs10088218, exhibited significant associations (P< 0.05).

Analysis of regulatory features

From GWAS results, we selected the most strongly associated loci (22q13.1) in a Japanese pop-

ulation, including 30 candidate SNPs that passed the criteria (P< 1 × 10−5 and Rsq > 0.3) for

post-GWAS analyses. The enlarged view of the regional plot for these 30 candidate SNPs is

presented in Fig 2A. We analyzed the following regulatory features (Fig 2B): 1) epigenetic

markers indicating an active promotor or enhancer region, i.e., H3K4Me1, H3K4Me3, and

H3K27Ac; 2) regulatory build indicating regions that are likely to be involved in gene regula-

tion; 3) transcriptional regulation data. The results demonstrated that nine SNPs were located

in regions with positive epigenetic markers and transcription factor binding sites based on

ReMap and ENCODE (Fig 2B); however, these regions did not include the lead SNP rs137672

or seven SNPs with absolute linkage disequilibrium with the lead SNP (r2 = 1) (S1 Table).

Among nine SNPs in regulatory regions in 22q13.1, only rs6509 was located in the protein-

coding region on exon 2 of the RPL3 gene. However, this variant was a synonymous SNP that

did not affect the protein sequence. Moreover, five SNPs were located in predicted promotor

regions active in ovary cells reported by Ensembl, i.e., rs738331, rs6509, rs470082, rs5757613,

Table 3. (Continued)

Locus SNP Eff/non

allelea
GWAS results in this study (Japanese) Gene Previous study

Case

freqb
Ctrl

freqb
P-value Rsqc OR (95% CI)d Concordance with this

study

PMID

(population)e

17q12 rs757210 C/T 0.6854 0.6821 8.57 × 10−1 0.6656 1.013 (0.878–

1.169)

HNF1B opposite 25581431 (EU)

23535730 (EU+AS)

17q12 rs11651755 T/C 0.6799 0.6779 9.76 × 10−1 0.9990 1.002 (0.891–

1.127)

HNF1B same 28346442 (EU)

17q21.31 rs183211 A/G 0.7048 0.7051 7.30 × 10−1 0.8396 1.023 (0.899–

1.165)

NSF same 25581431 (EU)

17q21.32 rs9303542 A/G 0.8094 0.8094 3.63 × 10−1 0.9788 0.937 (0.815–

1.077)

SKAP1 same 25581431 (EU)

25134534 (AS)

19p13.11 rs2363956 T/G 0.6970 0.6894 2.52 × 10−1 0.9995 1.071 (0.953–

1.205)

ANKLE1 opposite 20852633 (EU)

19p13.11 rs1469713 A/G 0.7357 0.7374 9.17 × 10−1 0.9890 0.993 (0.878–

1.124)

GATAD2A same 28346442 (EU)

22q12.1 rs6005807 C/T 0.9751 0.9685 1.32 × 10−1 0.9183 1.324 (0.920–

1.907)

TTC28 same 28346442 (EU)

22q12.2 rs9609538 T/C 0.8122 0.8025 2.06 × 10−1 0.9986 1.094 (0.952–

1.258)

BPIFC same 24190013 (EU)

a Effect allele/non-effect allele.
b Effect allele frequency.
c Rsq, imputation quality score.
d OR, odd ratio (non-effect alleles were considered as references); 95% CI, 95% confidence interval.
e EU, European; AS, Asian.

https://doi.org/10.1371/journal.pone.0209096.t003
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Fig 2. Regulatory feature analysis of 30 candidate SNPs at 22q13.1. (A) The regional plot of 22q13.1, the most associated loci in a

Japanese population, with an enlarged view of 30 candidate SNPs meeting the criteria (P< 1 × 10−5 and Rsq> 0.3). The SNPs

surrounding the lead SNP (rs137672) are color-coded to reflect their correlation as indicated. Pairwise r2 values are obtained from

1000 Genomes East Asian data (March 2012 release). Genes, the position of exons and the direction of transcription obtained from

the UCSC genome browser. (B). Thirty SNPs were marked on chromosome 22 (chr22:39,671,929–39,738,825; GRCh37/hg19) based

on their positions. Nine yellow-highlighted SNPs, variant located in regulatory regions in 22q13.1. The regulatory features included

1) epigenetic markers, i.e., H3K4Me1, H3K4Me3, and H3K27Ac; 2) Ensembl regulatory build representing regions involved in gene

regulation; 3) transcriptional regulation binding data.

https://doi.org/10.1371/journal.pone.0209096.g002
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and rs137627 (Table 4). The eQTL data demonstrated significant associations (P< 0.05) with

SYNGR1 level for six SNPs, i.e., rs137620, rs137621, rs94852, rs6509, rs470082, and rs137627.

Only rs137627 was also associated with PDGFB level (Table 4). Noteworthy, the eQTL effect

size of all nine SNPs revealed that the trend of association with RPL3 was in the opposite direc-

tion to that with PDGFB and SYNGR1.

Allele specific binding of nuclear proteins to rs2072872 and rs6509

To investigate whether the genetic variations in 22q13.1 affect the binding affinity of some

transcription factors, we performed the electrophoretic mobility shift assays using the nine

candidate SNPs. We examined the binding of nuclear proteins extracted from SKOV3 human

ovarian cancer cells and a labeled oligonucleotide corresponding to each allele of the candidate

SNPs. Among the three SNPs that exhibited allele-specific binding in the screening (S2 Fig),

rs2072872 and rs6509 showed consistent results in the confirmation step (Fig 3). The oligonu-

cleotides corresponding to G alleles of these two SNPs exhibited stronger binding affinity to

nuclear proteins compared with A alleles (S2 Fig and Fig 3). Several transcription factors,

including KLF6 and TP53, are predicted to bind DNA fragments containing these SNPs with

different affinities as shown in Fig 4.

Table 4. Transcriptional regulations and eQTL analysis of the nine SNPs in regulatory regions in 22q13.1.

SNP r2 to

rs6509a
Transcriptional regulationsb eQTL in ovary

ReMap Ensembl (data in ovary) Ref/alt

allelec
PDGFB RPL3 SYNGR1

TF Epigenome

activity

TF P-

value

Betad P-

value

Betad P-

value

Betad

rs137620 1.000 atf2 N/A - T/C 0.102 0.18 0.777 -0.04 0.025 0.19

rs137621 1.000 atf2 N/A - G/A 0.079 0.19 0.784 -0.04 0.015 0.21

rs94852 1.000 sin3a, bcl6 N/A - T/C 0.119 0.16 0.42 -0.12 0.023 0.19

rs2072872 1.000 sin3a, bcl6, mllt1, smad5, chd1 N/A - A/G 0.14 -0.2 0.368 0.17 0.297 -0.11

rs738331 1.000 sin3a, bcl6, mllt1, smad5, chd1, max Active promotor

(G allele)

Cjun, Gabp, Jund,

FOSL2, Egr1, CTCF,

Yy1, JUN::FOS, SP1

A/G 0.14 -0.2 0.368 0.17 0.298 -0.11

rs6509 1.000 bcl6, chd1, mllt1, max, taf3 Active promotor

(T allele)

Yy1, Jund, SP1, CTCF,

JUN::FOS, Cjun,

FOSL2, Gabp, Egr1

C/T 0.065 0.2 0.648 -0.07 0.005 0.23

rs470082 1.000 chd1, mllt1, max, taf3, bclaf1, smad5,

bcor, brd4, atf2, mxi1, cdk8, myc, taf1,

smc3, sin3a, rad21, cbfb, bcl6, chd8,

phf8, med1

Active promotor

(T allele)

SP1, Yy1, JUN::FOS,

Egr1, FOSL2, Gabp,

Jund, Cjun, CTCF

C/T 0.091 0.19 0.379 -0.13 0.003 0.25

rs5757613 0.543 chd1, mllt1, max, taf3, bclaf1, smad5,

bcor, brd4, atf2, mxi1, cdk8, myc, taf1,

smc3, sin3a, rad21, cbfb, bcl6, chd8,

phf8, med1

Active promotor

(A allele)

Cjun, Jund, Gabp,

Egr1, FOSL2, CTCF,

JUN::FOS, Yy1, SP1

G/A 0.116 -0.22 0.164 0.26 0.171 -0.15

rs137627 1.000 chd1, max, taf3, smad5, bcor, brd4, atf2,

mxi1, cdk8, taf1, smc3, sin3a, rad21,

bcl6, chd8, phf8, med1, ctcf, stag1

Active promotor

(C and A alleles)

JUN::FOS, FOSL2,

SP1, Cjun, Gabp,

Egr1, CTCF, Yy1,

Jund

G/A 0.049 0.22 0.383 -0.13 0.002 0.27

a Pairwise linkage disequilibrium (r2) to rs6509 in Japanese.
b Transcriptional regulations in ReMap and Ensembl; TF, transcription factor.
c Reference/alternative allele.
d Beta, effect size representing the effect of alternative allele to the gene expression; (value > 0), increased expression; value < 0, decreased expression.

https://doi.org/10.1371/journal.pone.0209096.t004
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Discussion

This is the first GWAS for ovarian cancer using Japanese case–control samples. Furthermore,

the functional analyses were carried out following a GWAS to distinguish functional from

non-functional risk SNPs. Novel 201 SNPs in 24 loci exhibited an association with ovarian

cancer susceptibility with P-value less than 1 × 10−5 (S1 Table). Among all candidates,

rs137672 in the upstream region of SYNGR1 gene at 22q13.1 was the most associated variant

(P = 1.05 × 10−7). Given the relatively small number of patients, if compared to previously pub-

lished GWASs [4, 5, 11], no SNPs with a significant GWAS P-value (< 5 × 10−8) was observed

in this study. Indeed, the incidence of ovarian cancer in Japanese population was lower (age-

standardized rate = 8.4 per 100,000 persons/year in 2012) than that reported in European pop-

ulation that exhibited the highest incidence in central and eastern Europe (age-standardized

rate = 11.4 per 100,000 persons/year in 2012) [1]. However, the prevalence of pathogenic vari-

ants in BRCA1/2 seems comparable across diverse ethnicities, including European and Asian

women [39], suggesting that other risk or protective factors still need to be identified. In the

present study, we verified the significant associations (P< 0.05) of three previously reported

Fig 3. Allele-specific binding of nuclear proteins to rs2072872 and rs6509. EMSA using 31-bp labeled

oligonucleotide probes flanking each SNP (SNP ± 15 bp). Sequences of oligonucleotide probes are listed in S2 Table.

The shifted band indicated the interaction between nuclear protein extracted from SKOV3 cells and probes containing

the SNP allele as indicated, i.e., A or G allele. The star indicates specific binding to the G allele of each SNP. Arrow

indicates non-specific interaction found in every sample. The intensity of a shifted band was quantified based on the

fold-change of the G allele with respect to the A allele using ImageJ software.

https://doi.org/10.1371/journal.pone.0209096.g003
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SNPs in a Japanese population; all SNPs exhibited similar associations with other ethnicities

(Table 3). Among these variants, the association of rs10088218 was previously reported in an

Asian population (Han Chinese) [12], whereas rs9870207 and rs1400482 were investigated in

Asian for the first time in this study.

The regulatory feature analysis of 30 SNPs (P< 1 × 10−5) with the strongest associations

(22q13.1) unveiled nine candidate functional SNPs that exhibited interactions with some tran-

scription factors based on ChIP-Seq databases and positive histone marks associated with

Fig 4. The predicted transcription factor motifs containing rs2072872 and rs6509. The SNP with flanking sequences (SNP ± 25 nucleotides) was

searched for transcription factor binding site motifs using HOCOMOCO-11 collection (http://opera.autosome.ru) with a p-value cutoff = 0.0005 and

fold-change cutoff = 4.0. The motifs built from ChIP-Seq data with quality A demonstrating high affinity (indicated by fold-change of G/A) for G allele

are included. The SNP position is labeled in red.

https://doi.org/10.1371/journal.pone.0209096.g004
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active promotor or enhancer based on ENCODE (Fig 2). We subsequently analyzed nine can-

didate causal SNPs using EMSA and identified two regulatory SNPs, rs2072872 and rs6509,

that affected the binding affinity to nuclear proteins from ovarian cancer cells (Fig 3). In

GWAS, the association results of rs2072872 (G/A) were OR (95% CI) = 0.612 (0.501–0.750)

with P = 2.08 × 10−6, and the results for rs6509 (C/T or G/A) were OR (95% CI) = 0.613

(0.501–0.750) with P = 2.16 × 10−6 (S1 Table). The distances between the SNP with the stron-

gest association with OC risk (rs137672) and the regulatory SNPs, rs2072872 and rs6509, were

23.97 kilobase and 22.60 kilobase, respectively. The pairwise r2 of these two SNPs to the SNP

rs137672 was 0.85 in Japanese (S1 Table), suggesting that the strong association of rs137672

may be influenced by the two regulatory SNP. The eQTL results demonstrated that the T (A)

allele of rs6509 was associated with increased SYNGR1 levels (effect size = 0.23, P = 0.005)

(Table 4). Given that these two SNP are in complete LD (r2 = 1, both SNP’s G alleles are corre-

lated), the post-GWAS results can possibly predict the regulation of transcription factor(s) that

synergistically regulate(s) the decreased expression of SYNGR1 through binding to G allele of

rs6509 and rs2072872 simultaneously. However, in vivo experiments are essential to verify that

either or both of rs6509 and rs2072872 have the regulatory functions. GWAS identified G

alleles of both SNPs as being associated with reduced OC risk. Our finding suggested that

SYNGR1 and higher level of SYNGRI expression may plausibly increase ovarian cancer risk.

The RPL3 gene encodes a ribosomal protein L3 that plays an essential role in the initial

step of protein translation [40, 41]. Moreover, RPL3 is involved in modulation of cell cycle and

apoptosis pathways [42] and serves as a target of Omacetaxine, an anticancer drug used for

chronic myeloid leukemia [43]. RPL3 mRNA expression is extraordinarily high in ovarian tis-

sue compared with other organs [44], highlighting some important functions that should be

investigated. Although SNPs at 22q13.1 were not associated with RPL3 expression based on

eQTL data, further studies should focus on functional roles of these SNPs and RPL3 in ovarian

cancer risk. In addition, the role of SYNGR1 in ovaries should be clarified.

In conclusion, we utilized GWAS and post-GWAS analyses to identify regulatory genetic

variants that were predicted to function as transcriptional regulators, without causing amino

acid changes. Although further replication studies are essential, our results elucidated the

important role of genetic variations in the development of OC among the Japanese population.
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