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Background: Immunogenic Cell Death (ICD) is a novel way to regulate cell

death and can sufficiently activate adaptive immune responses. Its role in

immunity is still emerging. However, the involvement of ICD in Intracranial

Aneurysms (IA) remains unclear. This study aimed to identify biomarkers

associated with ICDs and determine the relationship between them and the

immune microenvironment during the onset and progression of IA

Methods: The IA gene expression profiles were obtained from the Gene

Expression Omnibus (GEO) database. The differentially expressed genes

(DEGs) in IA were identified and the effects of the ICD on immune

microenvironment signatures were studied. Techniques like Lasso, Bayes, DT,

FDA, GBM, NNET, RG, SVM, LR, and multivariate analysis were used to identify

the ICD gene signatures in IA. A consensus clustering algorithm was used for

conducting the unsupervised cluster analysis of the ICD patterns in IA.

Furthermore, enrichment analysis was carried out for investigating the

various immune responses and other functional pathways. Along with

functional annotation, the weighted gene co-expression network analysis

(WGCNA), protein-protein interaction (PPI) network and module

construction, identification of the hub gene, and co-expression analysis were

also carried out.
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Results: The above techniques were used for establishing the ICD gene

signatures of HMGB1, HMGN1, IL33, BCL2, HSPA4, PANX1, TLR9, CLEC7A,

and NLRP3 that could easily distinguish IA from normal samples. The

unsupervised cluster analysis helped in identifying three ICD gene patterns in

different datasets. Gene enrichment analysis revealed that the IA samples

showed many differences in pathways such as the cytokine-cytokine

receptor interaction, regulation of actin cytoskeleton, chemokine signaling

pathway, NOD-like receptor signaling pathway, viral protein interaction with

the cytokines and cytokine receptors, and a few other signaling pathways

compared to normal samples. In addition, the three ICD modification modes

showed obvious differences in their immune microenvironment and the

biological function pathways. Eight ICD-regulators were identified and

showed meaningful associations with IA, suggesting they could severe as

potential prognostic biomarkers.

Conclusions: A new gene signature for IA based on ICD features was created.

This signature shows that the ICD pattern and the immune microenvironment

are closely related to IA and provide a basis for optimizing risk monitoring,

clinical decision-making, and developing novel treatment strategies for

patients with IA.
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Introduction

Intracranial Aneurysm (IA) is a highly prevailing life-

threatening disease, with a prevalence of 3.2% in adults,

worldwide. IA is an abnormal expansion or dilation of

intracranial blood vessels in the brain, usually located in the

branch of the intracranial artery (1). Rupture of an IA can lead to

aneurysmal subarachnoid hemorrhage (aSAH), which is a severe

form of stroke (2). Around 30% of IA patients die due to aSAH,

and a large majority who survive the stroke cannot carry out

regular daily activities (3). Available treatments for IA include

surgical treatment, including intracranial aneurysm neck

clipping, aneurysm wrapping, and interventional endovascular

treatment, like coiling and flow-divert (4–6). However, various

risks and complications are associated with treating ruptured or

unruptured IA (7). Therefore, identifying IA with high rupture

risk and providing timely intervention may be essential for

improving risk assessment and treatment.

The primary histopathological features of IA include cell

death, immune infiltration, lipid metabolism, oxidative stress,

proteolytic activity, and iron accumulation (8). Cell death affects

the formation and development of IA and, to a large extent a key

component of the IA pathophysiology (9, 10). Immunogenic cell

death (ICD) has been identified as a type of regulatory cell death
02
mode (RCD) that triggers an adaptive immune response induced

by necrosis or programmed death. This process promotes the

maturation of dendritic cells (DC), which present antigens to

cytotoxic T cells (CTL), thereby activating CTL to remove

adjacent cells and trigger innate and adaptive immune

responses (11). In the last few years, many comprehensive

research studies were carried out for understanding the

mechanism associated with ICD. Damage-related molecular

patterns (DAMPs), including the secretion of ATPs, high

mobility group protein B1 (HMGB1) release, and surface

exposure to calreticulin (CRT), are the key modulators of ICD

immunogenicity (12). The mechanism underlying the IA

regulation by immunogenic cell death could have potential

therapeutic applications in treating unruptured aneurysms.

However, previous studies have detected only a few immune

cells and immune-related molecules in IA, lacking a view of the

ICD in IA.

There is a pressing need to find new biomarkers which could

help in the early clinical diagnosis (13, 14) and prognosis (14, 15)

of IA patients and explore the potential mechanism of IA

progression, which will aid in developing new treatment

strategies. Some ICD regulators have been used as typical

biomarkers for other diseases. For example, mutations in

CALR are widespread in tumors, and CALR interacts with
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different genes and various proteins (16). HMGB1 can serve as a

unique biomarker as well as a target of new therapy in many

inflammatory skin diseases (17). Despite the fact that there is

mounting evidence that ICD regulates the immune response,

these studies do not focus on the role of ICD in the pathogenesis

of IA (18). Hence an in-depth investigation of the different

immune profiling between the normal tissues and intracranial

aneurysm specimens, along with various subtypes of intracranial

aneurysm, would help elucidate the changes that occur in ICD

and its related genes. This will shed new light on our

understanding of the pathogenesis of the intracranial aneurysm.

This study presents a systematic assessment of the ICD-

related biomarkers in IA. The results showed that the ICD-

regulators could successfully distinguish normal samples from

IA samples. Many infiltrating immune cells as well as the

immune response gene sets in IA showed a significant

correlation with the ICD-regulators. Thus, it was concluded

that the ICD-regulators were closely related to immune

regulatory factors. Here, IA samples were collected using 22

ICD regulators and three different ICDmodification modes were

identified. As these subtypes displayed different immune

features, their biological functions were compared. The

findings of this study indicated that the ICD modification

mode significantly impacts the immune microenvironment of

intracranial aneurysms.
Materials and methods

Intracranial aneurysm datasets
and pre-processing

Five independent IA datasets were downloaded from the

Gene Expression Omnibus database (GEO database, http://

www.ncbi.nlm.nih.gov/geo/), which included GSE15629,

GSE13353, GSE75436, GSE26969, and GSE54083. The five

gene sets were used as screening sets, and the batch effect

from the original data was removed using the sva package

(Figure S1). A total of 64 IA and 33 normal samples were

included in this study. In addition, the GSE122897 dataset

was retrieved from GEO and used as a validation set, which

included 44 IA samples and 16 normal samples. All the

samples were taken from the same tissue type, and the

detailed clinical features and platform files of patients are

shown in Supplement file 1. As per the previous literature, 28

ICD-regulators in the final standardized data set were

annotated: CALR, HMGB1, HMGN1, IL1A, IL33, ROCK1,

PANX1, BCL2, PPIA, HSPA4, HSP90AA1, TLR2, TLR3, TLR4,

TLR7, TLR9, CLEC4E. CLEC7A, NLRP3, DDX58, IFIH1,

AIM2, AGER, TREM1, FPR1, FPR2, CASR, P2R (18).
Frontiers in Immunology 03
Differences in ICD regulators between
different samples and correlation analysis

The differences present in the expression of the ICD-

regulators between IA and normal samples were compared

with the aid of the Wilcox test. The correlation between the

expression of ICD-regulators in the IA and normal samples were

also examined using Spearman’s rank correlation analysis.
Filtering of core ICD regulators using
machine learning

The 10-fold Least Absolute Shrinkage and Selection

Operator (LASSO) regression method was used for eliminating

the redundant genes from 28 gene regulators, and the resulting

genes were the core ICD regulators. Based on removed

redundant genes, a variety of machine learning models were

constructed: Bayes, Decision Tree (DT), Force Directed

Algorithm (FDA), Gradient Boosting Machine (GBM),

Support Vector Machine (SVM), Neural Network (NNET),

RG, and Logistic Regression (LR). Furthermore, the values of

the area under the ROC curve (AUC) presented by different

models were compared. Finally, LR was determined as the best

model. The multi-factor LR was used to calculate the

corresponding coefficients of each ICD-regulators, and the

final score of each sample (risk score) was obtained.
Identification and evaluation of
nomogram of intracranial aneurysm

The rms package was used to draw the line graphs.

Calibration curve, risk decision curve analysis (DCA), AUC,

and clinical impact curves were used to evaluate the

discrimination performance of scores.
Identification of ICD pattern

The unsupervised clustering analysis technique was

implemented for identifying the varying ICD patterns

depending on the core ICD-regulator expression. The consensus

clustering algorithm was used for evaluating the number of

clusters and robustness. To ensure clustering stability, the k-

means clustering method was used to perform 100 iterations

(wherein 80% of the samples were used in every run). The optimal

number of clustering was determined by determining the

clustering score for the cumulative distribution function (CDF)

curve. Principal Component Analysis (PCA) validated the

reliability of the consensus clustering.
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Differences in immune characteristics
and correlation analysis

A single-sample Gene Set Enrichment Analysis (ssGSEA)

technique was implemented for determining the number of

specific infiltrating immune cells and the immune response

activities. ssGSEA also explored the state of immune cells and the

immune-linked pathways according to gene sets. A comparison of

the enrichment scores of the different immune cells and immune-

linked pathways between different ICD modification modes was

carried out using the Kruskal-Wallis test. Additionally, the

relationship between the core ICD regulators and the immune

cells, immune response activity, and HLA expression was

determined using Spearman’s rank correlation analysis.
Gene enrichment analysis for distinct
ICD patterns

The “c2.cp.kegg.v7.4.symbols” gene set was downloaded

from the MSigDB database and used to study the changes in

the biological signaling pathways. The expression matrix was

transformed into the score matrix by the gene set variation

analysis (GSVA) technique. The score of biological signaling

pathways across various ICD modes was compared using the

linear models for microarray data (Limma) tool. A statistically

significant difference was set at P-values<0.05.
Identification of the differentially
expressed genes noted between different
ICD patterns

The Limma package screened DEGs between different ICD

patterns. P<0.05 was used as a screening standard. The Gene

Ontology (GO) and the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were carried

out using the clusterProfiler package.
Weighted gene co-expression
network analysis

The WGCNA R software package was applied for evaluating

the training set for the first 25% variance of the gene matrix. The

construction of the WGCNA network and the module detection

were done using a sign-less Topology Overlap Matrix (TOM). The

optimal soft threshold value was recorded to be 3, while a minimum

of 50 genes were included in the module, with a truncation height of

0.2. The relationship between the merged modules and the various

ICD modification modes was determined by performing

Spearman’s rank correlation analysis. Finally, the core protein in

the module was defined as the top ten MCC genes present in the
Frontiers in Immunology 04
protein-protein interaction (PPI) network. Cytoscape 3.7.1 was used

for visualization.
Results

Expression landscape of ICD-regulators
among different samples

Figure 1A shows that the combat algorithm can better

remove the batch effect between different datasets. There were

28 ICD regulators involved in the study, and the correlation

expression of different regulators was analyzed in normal (Figure

S1A) and IA samples (Figure S1B). The results revealed that the

TLR2 and most regulators showed a strong positive correlation

with all the samples. In addition, the Wilcox test results

highlighted the significant variations in the expression levels of

19 regulators between the IA and normal samples (Figures 1B,

C). The location of the 19 regulators on chromosomes is shown

in Figure 1D. In addition, the regulatory interactions of these

ICD-regulators were manifested as PPI networks. It was found

that the different regulators were very closely linked and usually

functioned as a complex (Figure 1E). In addition, we used the

Enrichr databased to predict therapeutic drug based ICD

regulators , and we found therapeutic drug maybe

Hydroxychloroquine, Hydroxy Radical Formation Stimulant,

etc (Supplemental Files 2).
ICD-regulators as potential biomarkers
for intracranial aneurysm

To study the contribution of ICD-regulators in the

pathogenesis of IA, LASSO regression was carried out on 28

regulators for feature selection, while the dimensionality reduction

procedure was implemented for eliminating the redundant genes

(Figure 2A). Finally, nine genes were selected and used for

subsequent analysis. Subsequently, the machine learning models

of Bayes, DT, FDA, GBM, NNET, RG, SVM, and LR were used to

determine the value of core regulators in diagnosing IA. Figure 2B

shows the importance plot of nine genes in different models. As

shown in Figure 2C, the LR model had the best AUC value in the

model comparison. Subsequently, the OR values of nine genes for

the occurrence in IA samples have been presented. HMGB1, IL33,

BCL2, and HSPA4 were protective factors, while PANX1, TLR9,

CLEC7A, and NLRP3 were risk factors (Figure 2D) for IA. Finally,

the multi-factor LR model was used to calculate the final risk

score. The final risk score = (-2.4351 * HMGB1) + (-0.3326 *

IL33) + (1.6050 *PANX1) + (-1.2607 * BCL2) + (-1.3720 *

HSPA4) + (0.6241 * TLR9) + (0.4043 * CLEC7A) + (0.9358 *

NLRP3). The classifier consisted of nine ICD regulators, wherein

the risk scores of IA samples were significantly higher compared

to those of the normal tissue samples (Figure 3A).
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Construction of nomogram model

A line diagram model based on eight ICD regulators was

constructed (Figure 3B). In the training set, the clinical influence

curve revealed that the line graph model showed a remarkable

predictive ability (Figure 3C). Furthermore, the calibration curve

indicated that the line graph model showed an accurate
Frontiers in Immunology 05
predictive ability (Figure 3D). In the DCA curve, the red line

was always above the gray line, indicating that the decision based

on the line graph model can benefit IA patients (Figure 3E). In

the validation set, the risk score showed an AUC value of 0.893

(Figure 4A). The clinical influence, calibration, and DCA curves

also showed a strong diagnostic prediction abi l ity

(Figures 4B–E).
B

C

D E

A

FIGURE 1

(A) PCA results for the combined expression profile before Combat and after Combat. (B) The box plot demonstrated the transcriptome
expression status of 28 immunogenic cell death (ICD) regulators between intracranial aneurysms (IA) and normal samples. (C) The heatmap plot
showed significant differences in terms of the expression levels of 19 regulators between IA and normal samples. (D). The landscape of gene
expression changes of ICD-regulators in the IA. The location of the CNV alteration of ICD-regulators on the 22 chromosomes derived from the
GEO database. (E) The composition summary of the ICD-regulators and PPI among the 28 ICD-regulators. *P < 0.05, **P < 0.01, ***P < 0.001.
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ICD-regulators mediated patterns in
intracranial aneurysm

Based on the expression of the core regulators, an

unsupervised consistent cluster analysis was performed on 63

IA samples, and three different ICD modification subtypes were

identified (Figure 5A). PCA analysis showed that IA patients can
Frontiers in Immunology 06
be further categorized into three groups based on the ICD-

regulators (Figure 5B). Significant differences were observed in

the expression of some ICD-regulators among different

modification modes (Figures 5C, D). In addition, we

conducted unsupervised consistent cluster analysis in external

dataset, and significant DEG were similar with modeling dataset

(Figure S2).
B

C D

A

FIGURE 2

(A) LASSO coefficient profiles of IA-linked ICD-regulators. 10-fold cross‐validation for tuning parameters using the LASSO regression. (B) Variable
importance plot in machine learning. (C) ROC curves show the AUC values of various machine learning models in model comparison. (D) Logistic
regression highlighted the correlation between ICD-regulators and IA samples, which yielded nine IA-linked ICD-regulators (P <0.05).
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Identification of immune
microenvironment and biological
function characteristics in different
ICD patterns

To study the difference in the immune microenvironment

features between the different ICD models, the differences in
Frontiers in Immunology 07
the infiltrating immune cells and their immune functions were

analyzed. Compared to models B and C, model A has relatively

higher activation of T cells and Natural Killer (NK) cells

(Figure 6A). Regarding the immune responses, model A’s

immune response was more active (Figure S3A) than models

B and C. In addition, the expression of different HLA was also

different among the modified models (Figure S3B). The
B

C D E

A

FIGURE 3

(A) Risk distribution between IA and normal samples, where IA showed a higher risk score compared to the normal samples. (B) Nomograms for
predicting the risk scores of nine IA-related ICD-regulators. (C) Every variable was given a score, where the total was transformed into a
probability on the model’s lowest scale of the clinical impact curves. (D) Plots show the model-related calibration in terms of the consistency
between predictions. In the nomogram, Y-axis presents the observed IA, while the X-axis presents the estimated IA. (E) Decision curves for risk
prediction models for IA. The vertical axis depicts the net benefit of standardization. The two horizontal axes present the correlation between
the cost-benefit ratio and the risk threshold. * refers to multiplication. ***P < 0.001.
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expression of HLA in model A was higher than in models B and

C. These results again validated that ICD modification plays an

important regulatory role in forming different immune

microenvironments in IA patients. In addition, to study the

biological behavior between ICD-regulators and the immune
Frontiers in Immunology 08
microenvironment, the correlation between the nine core

regulators and the expression levels of infiltrating immune

cells and immune-linked pathways, was analyzed. The results

showed that nine core regulators were closely associated with

many immune cells in IA samples (Figure 6B), especially
B

C D

E

A

FIGURE 4

(A) In the External Validation cohort, the ROC curve and AUC value were used to study and assess the capacity of ICD-regulators to distinguish
between normal and IA samples. (B–D). The clinical impact, decision, and calibration curves for the model in the external validation dataset.
(E) AUC values of all models in the External Validation dataset.
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CLEC7 A and NLRP3 positively correlated with most immune

cells in IA samples. In contrast, BCL2 and IL33 negatively

correlated with most immune cells in IA samples. In terms of

immune function, the results showed a close correlation

between immune cells in IA samples (Figure 6C). These

results show the role of the core ICD-regulator in the IA

immune microenvironment.
Frontiers in Immunology 09
Biological properties of different
ICD patterns

To study the biological functions in the three ICD models,

the KEGG pathways were compared. Furthermore, the GSVA

enrichment analysis was implemented to evaluate the activation

of the biological signaling pathways in the three ICD models.
B

C

D

A

FIGURE 5

(A) Heatmap describing the co-occurrence proportion matrix for IA samples and the relative changes in the area under the CDF curve for k =
2–9. (B) Results of PCA of the transcriptome profiles of three ICD subtypes that exhibit differences in the transcriptome across various patterns.
(C) Results of the unsupervised clustering analysis of 28 ICD-regulators determined in the three patterns. (D) Expression levels of the 28 ICD
regulators in the three ICD subtypes. *P < 0.05, **P < 0.01, ***P < 0.001.
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The results indicated that in comparison to model C, the

intestinal immune network for the NOD-like receptor, IgA

production, and the TOLL-like receptor signaling pathways

(Figure 7A) were remarkably enriched in model A.
Frontiers in Immunology 10
Furthermore, compared to Model B, the NK cell-mediated

toxic signaling pathway and the B-cell receptor signaling

pathway were remarkably enriched in model A (Figure 7B). As

shown in Figure 7C, the complement and coagulation cascades
B C

A

FIGURE 6

(A) Significant differences were noted in each type of immune microenvironment -infiltrating immune cells in the three ICD patterns.
(B, C). Correlation between the immune reaction gene-sets, infiltrating immunocytes, and ICD-regulators. (B) The square plot highlighted the
relationship between every dysregulated immune microenvironment infiltration cell type and each dysregulated ICD-regulators (C) Square plot
highlighting the relationship between every dysregulated immune response gene set and every dysregulated ICD-regulators. *P < 0.05, **P <
0.01, ***P < 0.001.
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signaling pathway was remarkably enriched in model A,

compared to model B. In addition, 664 DEGs (Supplementary

Files 2) were identified in different modification modes. Further

enrichment analysis was carried out using these DEGs. GO

enrichment analysis results showed these genes were mainly

involved in various mechanisms such as lymphocyte activation,

inflammatory response regulation, innate immune response

regulation, T cell activation, and neutrophil degranulation

(Figures S4A–C). Using the KEGG enrichment analysis,

pathways like NOD-like receptor signaling, regulation of actin,

and cytokine-cytokine receptor interaction were screened out.

The interaction between the viral proteins and cytokine receptor

pathways was significantly associated with the IA samples

(Figure S4D). The WGCNA method was used to determine

the gene-gene modules linked to various ICDs models

(Figures 8A, B). Three key gene modules were identified as

associated with different ICD models (Figure 8C). The

blue module was associated with subtype A (r = 0.72), the

brown module was associated with subtype B (r = -0.25), and

the blue module was associated with subtype C (r = 0.57).
Characterization of coregulatory proteins
with different ICD patterns

The protein interaction network of the brown module, grey

module, and red module was established with the help of the

STRING database, and then, the MCC values of each protein

were calculated using Cytoscape. The results showed that

subtype A may be mainly regulated by CD8A, IL2, CD69,

CCL4, CCL5, CD86, IL10, ITGAM, PTPRC, and SELL

(Figure 8D); Subtype B may be mainly regulated by COL4A1,

COL5A1, COL1A2, DCM, LUM, COL3A1, BGN, COL1A1, FN1,

POSTN (Figure 8E); Subtype C may be mainly regulated by

CXCL3, CX3CL1, CXCL1, CCL25, CXCL2, PF4, TNF, IL1B,

CXCL6 and CCL19 (Figure 8F).
Discussion

Different types of cell death processes, like apoptosis,

necrotizing, autophagy, ferroptosis, copper-induced cell death,

non-procedure necrosis, and immunogenic cell death, have been

widely studied in many diseases and have led to the development

of many therapeutic modalities (19, 20). Many studies confirmed

that ICD was significantly involved in the pathogenesis of

multiple diseases, such as cancers (21). In the present study,

significant differences were noted in the expression of most ICD-

regulators between the normal and IA samples. Lasso regression,

multiple machine learning models (Bayes, DT, FDA, GBM,

NNET, RG, SVM, LR), and multiple factors LR were used to

determine ICD-regulators gene patterns, including HMGB1,

HMGN1, IL33, BCL2, HSPA4, PANX1, TLR9, CLEC7A,
Frontiers in Immunology 11
NLRP3. IA and normal samples can be easily distinguished,

emphasizing the difference in the ICD gene signatures between

the two.

Among the 28 ICD-regulators studied using LASSO, nice

ICD- regulators were selected for subsequent analysis. Many

ICD-regulators have extensive protein interactions or expression

correlations, revealing the extensive regulatory network of ICD

modifications. The correlation analysis among ICD-regulators

and immune characteristics of IA was studied, and different

immune response gene sets, infiltrating immune cells, and HLA

gene expression were carried out. The results suggest that a wide

range of ICD-regulators were strongly linked to these

immunological features, indicating that ICD is crucial in

modulating the immune microenvironment of IA.

Based on core ICD-regulator expression profiles and

unsupervised clustering analysis, ICD patterns in IA were

studied, and three subtypes were identified with unique ICD

patterns. Each subtype has particular immunological traits of its

own. The modified model A has a higher infiltration level of

immune cells than models B and C, indicating a more active

immunological response. The immunological traits of each

subtype validated the robustness of the classification of various

ICD-regulators used in this study. The classification method of

immune subtypes helps elucidate the potential mechanism of

immune regulation. To develop accurate treatment strategies, IA

subtypes could further be analyzed at the molecular or immune

level rather than the phenotypic characterization. A recent study

used a similar method to identify two different ICD patterns in

the head and neck squamous cell carcinoma, which enhanced

the understanding of the tumor microenvironment and helped

develop a more effective immunotherapy strategy (22). Lu et al.

used WGCNA and ssGSEA methods to analyze IA and normal

samples and identified immune-related genes that mediate IA.

The final results showed that inflammation and immune

responses are involved in IA pathogenesis (23).

Here, different patterns of ICD-regulators and ICD gene

signatures were identified. The expression and regulation of

these genes are affected by ICD. Understanding their biological

functions may help understand the role played by ICDs in IA

pathogenesis. Additionally, from the functional pathway

perspective, compared to model C, model A greatly enriched

the intestinal immune network for the signaling pathways that

control IgA synthesis, NOD-like receptor signaling, and TOLL-

like receptor signaling. When compared to model B, the natural

killer cell-mediated toxic signaling pathway and B cell receptor

signaling pathway were enriched more in model A. Compared to

model B, the complement and coagulation cascade signaling

pathway in model C was significantly enriched. Finally, nine

ICD regulators were determined. HMGB1, IL33, BCL2, and

HSPA4 were protective factors, while PANX1, TLR9, CLEC7

A, and NLRP3 were risk factors for IA. No significant differences

were noted in the HMGN1 expression levels between the IA and

normal samples.
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HMGB1 is a high mobility group B1 protein is a nonhistone

chromatin-binding protein. It regulates transcription and DNA

repair and is remarkably involved in many cellular processes,

including immune responses, inflammation, cell proliferation,

cell differentiation, and cell migration (24). Recent studies have

shown that association between RAG/MR/HMGB1 and

ATP1a3 imbalance and inflammatory changes in vulnerable

cerebral aneurysms (25). Zhang et al. demonstrated the

expression of HMGB1 in brain aneurysms; there was higher
Frontiers in Immunology 12
HMGB1 expression in ruptured aneurysm tissue compared to

unruptured tissues aneurysm tissue (26). amRF promotes the

expression of the heat shock protein 70 (HSP70) on the plasma

membrane, which participates in the ICD pathway, and guides

the sequential molecular changes that trigger innate and

adaptive immune responses. Extracellular HSP70 forms

damage-related molecular patterns (DAMP) with free HMGB1

and membrane expression of calreticulin (CRT) (27). In

addition, Micheliolide (MCL) induces ICD-related DAMP
B

C

A

FIGURE 7

The underlying biological function characteristics diversity across three ICD patterns. (A) The variations in KEGG pathway enrichment scores
across ICD patterns A and C. (B) The variations in KEGG pathway enrichment scores across ICD patterns A and B. (C) The variations in KEGG
pathway enrichment scores across ICD patterns B and C.
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(such as CRT exposure, ATP secretion, and HMGB1 release).

Reports suggest in the mouse vaccine model, MCL triggered the

regression of tumors by inducing ICD, involving the DCs

maturation, stimulation of CD4 and CD8 T cells, and release

of HMGB (28). Additionally, photothermal therapy and the
Frontiers in Immunology 13
CDT-mediated ICD improve anti-tumor immunity by exposing

HMGB1, CRT, and ATP. Reports also suggest Amphotericin B

(AmB) enhances the anti-tumor immune response by releasing

HMGB1, which induces ICD (29). Studies show a correlation

between high serum concentration of IL-33 and inflammation,
B

C

D

E

F

A

FIGURE 8

(A) Analysis of a scale-free ft index and mean connectivity for different soft-thresholding powers. (B) Gene dendrogram was developed using
average linkage hierarchical clustering. The module assignment decided by the Dynamic Tree Cut, in which nine modules were discovered, is
displayed in the color row beneath the dendrogram. (C) A heatmap showing how module eigengenes and ICD patterns are correlated. d-f. Hub
protein-related PPI networks in the blue module (D), brown module (E), and turquoise module (F).
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poor prognosis, and severity of aSAH. Elevated serum IL-33

concentration is indicative of a poor prognosis of aneurysmal

subarachnoid hemorrhage (30). Thus, suggesting that IL-33

could be considered as a potential inflammatory biomarker

that could be used for evaluating the prognosis and severity of

aSAH. BCL2 (BCL2 Apoptosis Regulator) is an anti-apoptotic

protein that prevents the death of specific cells like lymphocytes.

The expression of BCL2 may reflect the enhancement of cell

death and immunogenicity risk signals in transplantation and

constitute a risk factor for poor transplantation results (31).

Further, HSPA4 is expressed in heat resistance, damage

signaling molecules (DAMPs), and ICD (32).

ICD represents a special class of apoptosis that triggers an

adaptive immune response, in which ATP secretion depends

on the molecular mechanism of autophagy. Studies have found

that pannexin 1 (PANX1) -dependent lysosome exocytosis

mediates ATP release (33, 34). TLR9 (Toll-Like Receptor 9)

mediates the production of cytokines required for an effective

immune response. It also mediates cell responses to

unmethylated CpG dinucleotides in bacterial DNA, thereby

initiating innate immune responses. Studies have shown that

TLR9 agonists enhance radiofrequency ablation-induced CTL

(cytotoxic T lymphocyte) response, effectively inhibiting tumor

growth and lung metastasis (35). In addition, studies have

shown that intravenous injection of TLR9 agonists

nanoparticles can detect tumor microenvironment, generate

localized immune activation and release the dead tumor cells

into the circulation, which are then taken up by the antigen-

presenting cells to trigger an anti-tumor immune reaction by

stimulating tumor antigen-specific CD8 T cell (36). In

addition, inhaled TLR9 agonists make lung tumors more

tolerant to PD-1 blockade by promoting the interaction

between CD4 and CD8 T cells (37).

NLRP3 (NLR Family Pyrin Domain Containing 3) contains

a nucleotide-binding site domain (pyrin domain) and a

leucine-rich repeat motif. It interacts with PYCARD/ASC, an

apoptosis-related spotted protein, which contains the caspase

recruiting domain and belongs to the NLRP3 inflammasome

complex. Studies have shown that tumor cell-derived IL-1b
promotes the pro l i f e ra t ion o f fibrous t i s sue and

immunosuppression in pancreatic cancer. This phenomenon

depends on tumor cells activating the NLRP3 inflammasome to

produce IL-1b (38). Together these studies indicate that ICD-

regulators may induce inflammatory responses, thereby

emphasizing the association between ICD-regulators in

immune responses and their involvement in regulating

immune responses.

However, the study has a few limitations. The clinical data of

every patient, like age, gender, Hunt-Hess grade, treatment, and

disease prognosis, was unavailable; hence, it could not be

analyzed. Further, the datasets were acquired from GEO and

had a limited sample size. Therefore, studies with a large sample

size are required to thoroughly understand the involvement of
Frontiers in Immunology 14
ICD in IA. In addition, due to the difficulty of obtaining IA

samples, we did not conduct in vitro experiments. In summary,

this study evaluates the role of ICD in IA patients. The study

revealed that ICD-regulators could easily distinguish IA from

normal and determined three different ICD subtypes based on

28 ICD-regulators. The three ICD subtypes of IA significantly

differed in ICD expression, immune microenvironment, and

biological function pathways. A close association was observed

between ICD subtypes and immune characteristics. This could

have a potential role in the development of targeted

immunotherapy. In addition, 8 ICD-regulators were identified

that could be used as potential prognostic biomarkers for the

treatment of IA.
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SUPPLEMENTARY FIGURE 1

(A, B) Relationships between the expression levels of 28 ICD-regulators in
IA and normal samples.

SUPPLEMENTARY FIGURE 2

DEGs in external validation dataset.

SUPPLEMENTARY FIGURE 3

(A) Variations in the expression levels of 13 immune response gene sets

between IA and normal tissue samples. (B) Variations in the expression
levels of 18 HLA genes between IA and the normal samples.

SUPPLEMENTARY FIGURE 4

(A–C) CC, GO-BP, and MF functional enrichment analyses highlight

the biological features of the ICD phenotype-linked genes. d. The
KEGG enrichment analysis of the ICD phenotype-linked immune

genes reveals the correlation between immune regulation and
ICD-regulators.
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