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High-frequency synchronization has been found in many real neural systems and is confirmed by excitatory/inhibitory (E/I)
network models. However, the functional role played by it remains elusive. In this paper, it is found that high-frequency
synchronization in E/I neuronal networks could improve the firing rate contrast of the whole network, no matter if the network
is fully connected or randomly connected, with noise or without noise. It is also found that the global firing rate contrast
enhancement can prevent the number of spikes of the neurons measured within the limited time window from being confused
by noise, thereby enhancing the information encoding efficiency (quantified by entropy theory here) of the neuronal system.
The mechanism of firing rate contrast enhancement is also investigated. Our work implies a possible functional role in
information transmission of high-frequency synchronization in neuronal systems.

1. Introduction

High-frequency synchronization of neural firing is believed
to be one possible origination of high-frequency brain oscil-
lations and gamma oscillations, which reside in the frequency
band between 30 and 90 hertz and are found in many regions
of the cerebral cortex [1]. Synchronization of neural firing
may be relevant to some disorders of neural systems [2],
but more importantly, the high-frequency oscillations (syn-
chronization) are found to be related with many cognitive
behaviors such as the processing of sensory signals, learning
and memory, and attention in many biological experiments
[3–7]. To reveal the underlying mechanisms of functional
roles of the high-frequency synchronization (oscillations)
on these cognitive behaviors, neural network models are con-
structed. Some functional roles of the high-frequency oscilla-
tions are hypothesized and tested with neural network

models. One of the possible functional roles of the high-
frequency oscillations is the feature binding [8–10]. Various
features of the object such as shape, color, and motion are
represented by different groups of neurons in different
regions of the cerebral cortex. These groups of neurons fire
synchronously, thereby distinguishing them from other neu-
rons in the cerebral cortex. Thus, the corresponding features
encoded in these synchronized firing of neurons are bound
together to form a complete perceptual construct. Another
possible function of the high-frequency oscillation is stimu-
lus selection [11–14]. More coherent stimuli oscillating at
high frequency are found to have a competitive advantage
over less coherent ones; thus, the coherent stimuli are
selected to pass down the neural systems.

Though these proposed functions of the high-frequency
oscillation (synchronization) have been tested by neural net-
work models, they are not producing satisfactory results due
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to the lack of relevant data and the oversimplicity of these
models. Since neural systems are usually composed of both
excitatory and inhibitory neurons, it is helpful to have a
closer look at the mechanism of the genesis of high-
frequency synchronization in E/I networks before we explore
its functional role. It is widely believed that ING (interneuron
gamma) and PING (pyramidal and interneuron gamma) are
two possible mechanisms of the generation of high-
frequency synchronization [15]. ING mechanism [16–19]
suggests that interneurons (inhibitory neurons) themselves
can induce synchronization, and this synchronization of
inhibitory neurons makes excitatory neurons fire synchro-
nously through the inhibitory synapses on excitatory neu-
rons. However, as excitatory neurons have excitatory
synapses on inhibitory neurons as well, excitatory neurons
also affect the firing of the inhibitory neurons. For example,
excitatory neurons with sensory input encoded in them
may drive inhibitory neurons to fire more frequently through
excitatory synapses [20]. The PING mechanism [21] sup-
poses that inhibitory neurons themselves cannot generate
high-frequency synchronization. It is the interaction of excit-
atory drive and inhibition that induces the synchronization.
Furthermore, it is believed that only a fraction of neurons
fires at each cycle of the synchronization [22, 23]. Therefore,
a fraction of excitatory neurons fires at each cycle of the
synchronization, which provides synaptic current helping
to drive inhibitory neurons to fire. The firing of inhibitory
neurons inhibits the firing of all neurons in the network.
This reminds us of the lateral inhibition [24–26]. Lateral
inhibition suggests that the firing of excitatory neurons
drives the firing of the neighboring inhibitory neurons,
which inhibits the firing of the neighboring excitatory neu-
rons in turn. Inspired by this idea, in Ref. [27], we found
that inhibitory neurons could act as a global recurrent
inhibition to enhance the firing rate contrast of the whole
neuronal network. This further reminds us that improving
firing rate contrast could be a possible function of neural
synchronization, and as information may be encoded in
the firing rate of neurons [28], neural synchronization
could contribute to information transmission of neural
systems.

We proposed and confirmed this global contrast
enhancement mechanism based on the high-frequency syn-
chronization in the E/I network in this paper. More impor-
tantly, we confirmed by entropy theory [29–31] that the
firing rate contrast enhancement can prevent the numbers
of firings of the neurons measured within a limited time win-
dow from being confused by noise, thereby enhancing the
information encoding efficiency of neural systems. This
paper is organized as follows. Model and Methods provides
the E/I network model and the methods for quantifying the
neuronal information transmission efficiency. Simulation
Results presents simulation and quantitative results on the
enhancement of the firing rate contrast with relatively simple
E/I networks. Mechanism of the Global Contrast Enhance-
ment gives a qualitative analysis of the mechanism of the
enhancement of firing rate contrast in E/I networks. Conclu-
sions and Discussions summarizes the results and gives some
discussions.

2. Model and Methods

The information encoded in the sensory neurons passes
through the neural systems layer by layer. It is expected that
information can be transmitted through the noisy neural sys-
tems with less information loss and less energy consumption.
We proposed a method that is based on the entropy theory to
quantify the neuronal information transmission efficiency.
Suppose there is a group of neurons with population size
Ne (see the excitatory neurons in Figure 1). Each neuron,
for example, neuron i, receives an input ISi , the firing rate of
which, ri, is measured by lim

T→∞
ki/T where ki is the number

of spikes emitted by the neuron during period T . When T
is finite, ri is usually a random number due to the uncertainty
of the internal and external environment of the neuron. We
hope that for any ISi ≠ ISj , ri ≠ rj, i.e., for any ISi ≠ ISj , ki ≠ kj.
However, ki may equal kj due to the limited time window T
and the noisy nature of the neural system. This will lead to
the misidentification of the input values of ISi and I

S
j . In other

words, the input values ISi and ISj will be mixed or wrongly
encoded in the output of neurons i and j. To avoid such
confusion, the contrast of the firing rates of neurons i and j
should be enhanced. We found in this paper that in an exci-
tatory/inhibitory (E/I) network, the high-frequency synchro-
nization of inhibitory interneurons can globally enhance the
firing rate contrast of excitatory neurons, the model of which
is described in Model of E/I Network. On the other hand, we
hope that the neural system can transmit more information
with less energy consumption, i.e., we hope neural systems
have high information transmission efficiency. To character-
ize this efficiency, we propose a method based on the entropy
theory, which is described in Methods for Quantifying Neu-
ronal Information Transmission Efficiency.

2.1. Model of E/I Network. The network consists of one pop-
ulation of spiking excitatory neurons with size Ne and one
population of spiking inhibitory neurons with size Ni. Excit-
atory and inhibitory neurons receive synaptic inputs from
both excitatory and inhibitory neurons. Neurons in the net-
work connect to other neurons with a probability ρ. We
define WEI = ðwEI

i,jÞNi×Ne
as the synaptic connection matrix

from excitatory neurons to inhibitory neurons, where “E”
in the superscript is the abbreviation of “excitatory neurons”
and “I” is the abbreviation of “inhibitory neurons.” If there
is a synapse from excitatory neuron j to inhibitory neuron
i, wEI

i,j = gEI with gEI being the strength of synapse; other-

wise, wEI
i,j = 0. The definitions for WIE = ðwIE

i,jÞNe×Ni
, wIE

i,j , g
IE,

WEE = ðwEE
i,j ÞNe×Ne

, wEE
i,j , g

EE, WII = ðwII
i,jÞNi×Ni

, wII
i,j, and gII

are similar to those of WEI = ðwEI
i,jÞNi×Ne

, wEI
i,j , and gEI.

The dynamics of the excitatory and inhibitory neurons
are described as follows [29, 32].

τEm
dvEi tð Þ
dt

= − vEi tð Þ −VL
� �

− REIEEi tð Þ − REIIEi tð Þ + REISi tð Þ,
ð1Þ

2 Neural Plasticity



τEm
dvIi tð Þ
dt

= − vIi tð Þ −VL
� �

− RIIEIi tð Þ − RIIIIi tð Þ + RIIBi tð Þ:
ð2Þ

Here, vEi ðtÞ and vIiðtÞ are the membrane potentials for the
excitatory neurons and inhibitory neurons, respectively.
When reaching the threshold potential V th, the neuron emits
a spike, and the membrane potential returns to the rest
potential V rest. τ

E
m and τIm are the time constants of the mem-

brane for the excitatory neurons and inhibitory neurons,
respectively. RE and RI are the membrane resistances. VL
is the balance potential associated with the leak current.
IEEi ðtÞ is the summation of the synaptic current from all
excitatory neurons to excitatory neuron i, and the defini-
tions for IEIi ðtÞ, IIEi ðtÞ, and IIIi ðtÞ are similar to IEEi ðtÞ. They
can be described as in

IEEi tð Þ =〠
j

wEE
i,j I

EE
i,j tð Þ,

IEIi tð Þ =〠
j

wEI
i,j I

EI
i,j tð Þ,

IIEi tð Þ =〠
j

wIE
i,j I

IE
i,j tð Þ,

IIIi tð Þ =〠
j

wII
i,jI

II
i,j tð Þ,

ð3Þ

where IEEi,j ðtÞ is the synaptic current resulting from all the
spikes of neuron j [29]:

IEEi,j tð Þ =〠
k

βj,k t, τEd , τEr
� �

vEi tð Þ − EE
syn

h i
, ð4Þ

βj,k t, τEd , τEr
� �

=
0, t < t j,k + d,

1
τEd − τEr

e− t−t j,k−d/τEdð Þ − e− t−t j,k−d/τErð Þ� �
, t ≥ t j,k + d,

8><
>:

ð5Þ
where t j,k is the firing time of the k-th spike of neuron j; d
is the synaptic delay, τEd and τEr are the decay time con-
stant and rise time constant of the excitatory synaptic cur-
rent, respectively; and EE

syn is the reverse potential of the
excitatory synapse.

Similar to the definition of τEd , τ
E
r , and EE

syn, we denote

τIdðτIrÞ as the decay time constant (rise time constant) and
EI
syn as the reverse potential of the inhibitory synapse. Corre-

spondingly, the descriptions of IIEi,jðtÞ, IEIi,jðtÞ, and IIIi,jðtÞ can be

given similarly to that of IEEi ðtÞ.
ISi ðtÞ is the stimulus presented to the excitatory neuron i.

ISi ðtÞ consists of two parts as follows:

ISi tð Þ = cSi 1 + εi tð Þð Þ, ð6Þ

where cSi is the strength of the stimulus. It is a constant, but
each neuron has a different strength, i.e., cSi ≠ cSj . c

S
i is drawn

from a normal distribution with standard deviation δS and
meanmS. εiðtÞ is white noise, which obeys a normal distribu-
tion with standard deviation σS

N and a mean of zero. The
parameter δS controls the contrast of the strength of the stim-
uli. Larger δS means higher contrast of the strength of the
stimuli.

Similar to ISi ðtÞ, the background input to the inhibitory
neurons IBi ðtÞ is defined; thereby, we have parameters δB,
mB, and δBN for IBi . The excitatory neurons may have back-
ground input as inhibitory neurons, and here, we assume that
ISi ðtÞ includes this background input.

2.2. Methods for Quantifying Neuronal Information
Transmission Efficiency. To simplify the descriptions of the
method, assume that the inputs of the neurons are images,
which are denoted by X = fxi, i = 1, 2,⋯,Neg, where X rep-
resents the image presented to the neurons, Ne is the number
of pixels in an image, and xi is the gray value of the i -th pixel
in the image. The output of the neurons represents the output
image with the number of firings of neuron i during time
window T . ki stands for the gray value of the corresponding
pixel. The images are presented to the neurons by letting
ISj = xj. Suppose that the input xi is discrete (continuous
values of the gray value can be discretized following the
degree of the resolution in the neural systems), i.e., xi ∈ f0,
Δx, 2Δx,⋯,MΔxg where Δx is the resolution of the discreti-
zation. Let us denote sj = jΔx. Let Lgði, jÞ = 1 if the gray value
of the i-th pixel is jΔx; otherwise, Lgði, jÞ = 0. Let pðsjÞ =
∑Ne

i=1Lgði, jÞ/Ne be the “probability” (proportion) of the pixels
whose gray value is jΔx. Then, the entropy of the input image
(stimulus) can be calculated as SS = −∑M

j=1pðsjÞ log ðpðsjÞÞ.
Let pðkÞ be the “probability” (proportion) of neurons whose
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Figure 1: The structure of the E/I network.
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spiking number is k. Then, the full entropy of the output
image is defined as Sfull = −∑∞

k=0pðkÞ log ðpðkÞ Þ. If for any
pair of neurons with ISi ≠ ISj , ki ≠ kj, i.e., if the different inputs
of any two neurons can be distinguished by their outputs,
then the mutual information, SI, will be equal to the entropy
of the input image, SI = SS. This means that the information is
transmitted from the input side of the neural system to the
output side of the neural system without any loss. However,
as we discussed in the first paragraph of Model and Methods,
ki may be equal to kj when ISi ≠ ISj , which results in SI < SS,
implying that some information is lost due to the finite time
window and noisy nature of the neuronal channels. The cor-
responding noise entropy, which is denoted by Snoise, can be
calculated as Snoise = −∑M

j=1∑
∞
k=0pðsjÞpðk ∣ sjÞ log ðpðk ∣ sjÞÞ

according to the entropy theory [29]. Here, pðk ∣ sjÞ is defined
as pðk ∣ sjÞ = C1/C2, where C1 is the count of neurons whose
spike number is k and input is sj, and C2 is the count of neu-
rons whose input is sj. The mutual information is the full
entropy subtracted by noise entropy, SI = Sfull − Snoise.

Energy consumption [33, 34] should also be considered
when neural systems encode information with firing rates
[35–37]. It is desired that neural systems carry more informa-
tion with less energy consumption. Metabolic energy is usu-
ally considered when encoding efficiency is investigated,
which is quantified by the number of spikes employed to
encode the information. Then, the information efficiency is
calculated as IE = SI/FS, where FS is the average number of
spikes of neurons.

3. Simulation Results

3.1. Firing Patterns in a Fully Connected Network. We first
use a relatively simple E/I network to focus our presentation
on our idea of global contrast enhancement resulting from
the high-frequency synchronization, where neurons are fully
connected and the background inputs to the inhibitory neu-
rons are homogeneous. The parameter values are set similar
to Ref. [29], which are set as follows unless otherwise stated:
ρ = 1, Ne = 450, Ni = 150, gEI = gEE = 1:2/ðNe +NiÞ, gIE =
gII = 7/ðNe +NiÞ, τEm = 50ms, τIm = 10ms, RE = RI = 1MΩ,
VL = −65mV, τEd = τId = 6ms, τEr = τIr = 0:1ms, EE

syn = 0mV,
EI
syn = −85mV,d = 0:2ms,δS = 0:5mS = 4, δSN = 0:5,δB = 0,

mB = 2:4, σB
N = 0, and T = 300ms. It should be notified that

the numbers of excitatory neurons and inhibitory neurons
can be changed (the ratio of the two types of neurons falls
in a range around 3 : 1~4 : 1 according to Ref. [38], and we
choose 3 : 1 in this paper). If the ratio of excitatory neurons
and inhibitory neurons is changed, the excitatory and inhib-
itory synaptic strengths should also be suitably changed to
maintain the balance of excitation and inhibition in the net-
work so that the network still oscillates synchronously.

Figure 2 shows the raster plots of the firing of neurons in
the E/I network, where neurons labeled from 1 to 450 are
excitatory neurons and neurons labeled from 451 to 600 are
inhibitory neurons. Inhibitory neurons fire synchronously
and act as the globally inhibitory signal to all the neurons

in the E/I network. In each cycle of synchronization, a frac-
tion of excitatory neurons fires, and it is the firings of these
neurons that drive the inhibitory neurons to fire in this cycle
of synchronization. Neurons with larger input will fire more
frequently than those with smaller input, i.e., neurons with
larger input will fire in more cycles of synchronization. Thus,
the input values are encoded in the firing rates (the number
of spikes) of these excitatory neurons.

3.2. Contrast Enhancement in a Fully Connected Network.
We first investigate the firing rate contrast in the fully con-
nected network when randomness is not included in the
stimulus to the excitatory neurons, i.e., σSN = 0. Figure 3(a)
shows the number of spikes of all neurons when T = 300ms
in such cases. It is very interesting and unexpected to see that
the number of spikes of all the neurons scattered between 0
and 6, as the inputs of all the neurons are clustered around
4 (see Figure 3(c)). For comparison, Figure 4(a) shows the
number of spikes of all the neurons when neurons do not
connect with each other, i.e., each neuron is isolated and only
receives the external input ISi ðtÞ in Equation (1), and the syn-
aptic inputs IEEi ðtÞ and IIEi ðtÞ are both 0. We can see from
Figure 4(a) that the number of spikes of isolated neurons is
closely around 8 and 9. Stated in other words, the contrast
of the number of spikes of excitatory neurons in the E/I
network is enhanced compared with that of the isolated neu-
rons. If we measure the number of spikes when T is large
enough, we can get the firing rate of each neuron, ri ≈ ki/T .
Figures 3(b) and 4(b) visualize the firing rates of 400 excit-
atory neurons in the E/I network and a population of isolated
neurons, respectively, where the gray value of the small
square at the position (i,j) represents the firing rate of the
neuron with index 20 ∗ ði − 1Þ + j. It shows clearly that the
gray contrast of Figure 3(b) is much larger than that of
Figure 4(b), implying that the firing rate contrast of excit-
atory neurons in the E/I network is much larger than those
in the population of isolated neurons.

The enhancement of the contrast of the firing rates of
excitatory neurons in E/I networks when randomness is
included is also confirmed in Figures 5 and 6, where the spik-
ing numbers of neurons within time window T and visualiza-
tion of the firing rates are shown. Randomness is introduced
to the network by setting σS

N = 0:5. Figures 7(a) and 7(b) fur-
ther show the histograms of the firing rates of the excitatory
neurons in the E/I network and in the population of isolated
neurons, respectively. The histogram of Figure 7(b) is more
homogeneous than that of Figure 7(a), also confirming that
the firing rate contrast of excitatory neurons in the E/I net-
work is much larger than that in the population of isolated
neurons.

To get a clearer watch of this contrast enhancement, we
arbitrarily choose several neurons between Figures 3(a) and
4(a), say neurons 6 to 15, and display the firing rates of the
ten neurons in Table 1. We can see that the number of spikes
of the isolated neurons only has three values, 7, 8, or 9. Some
neurons have an identical number of spikes though their
inputs are somewhat different. Namely, the number of spikes
of some neurons overlaps, resulting in a failure of the
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Figure 3: Firing rates of all excitatory neurons in E/I networks with no noise, σSN = 0: (a) spiking numbers of all excitatory neurons within
300ms; (b) visualization of the firing rates of neurons 1-400 with gray values located at (i, j) representing the firing rate of neurons
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Figure 4: Firing rates of all excitatory neurons of a population of isolated excitatory neurons with no noise, σSN = 0: (a) spiking numbers of all
excitatory neurons within 300ms; (b) visualization of the firing rates of neurons 1-400.
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Figure 2: High-frequency oscillation in E/I networks with (a) no noisy input to the excitatory neurons, σSN = 0, and (b) noisy input to the
excitatory neurons, σSN = 0:5.
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encoding of the inputs of these neurons. For example, both
neuron 6 and neuron 15 have 8 spikes though they have dif-
ferent inputs. This is because the contrast of the firing rates of
the two neurons (neuron 6 and neuron 15 have firing rates of
25.3 and 27.3, respectively) is so small that the number of the

spikes within a small time window T cannot be distin-
guished. On the other hand, as the contrast of the firing rates
of the excitatory neurons in the E/I network is enhanced, the
problem of this overlapping is alleviated. The number of
spikes of these neurons in the E/I network has more
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Figure 5: Firing rates of all excitatory neurons in E/I networks with noisy input to excitatory neurons, σS
N = 0:5: (a) spiking numbers of all

excitatory neurons within 300ms; (b) visualization of the firing rates of neurons 1-400.
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Figure 6: Firing rates of all excitatory neurons of a population of isolated excitatory neurons with noisy input to excitatory neurons, σSN = 0:5:
(a) spiking numbers of all excitatory neurons within 300ms; (b) visualization of the firing rates of neurons 1-400.
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individual values (0, 1, 2, 3, 4, or 5) than those (7, 8, or 9) in a
population of isolated neurons (notice that as the synaptic
inhibition in the E/I network is stronger than excitation, the
number of spikes fired by neurons in the E/I network is less
than those in the population of isolated neurons). The num-
bers of spikes of neuron 6 and neuron 15 are no longer iden-
tical (they have 1 and 3 spikes, respectively); this is because
they have a relatively large contrast of the firing rates (they
have firing rates of 5.3 and 12.7, respectively). Therefore,
thanks to the enhancement of the contrast of the firing rates,
the output overlapping problem is somewhat relieved. Corre-
spondingly, it is found that the information transmission effi-
ciency is much higher in the E/I network (it is 0.54 in the E/I
network of Figure 3(a)) than that in the population of iso-
lated neurons (it is 0.13 in the population of isolated neurons
of Figure 4(a)).

There is another more important problem, the noise dis-
turbance problem, for the information transmission caused
by the small contrast of firing rates in a population of isolated
neurons. Noise will disturb the encoding of the input infor-
mation. If the difference of the firing rates of the two neurons
is too small, the noise will make the two neurons fire the same
number of spikes. Similarly, as in Table 1, we choose 10 neu-
rons from Figures 5(a) and 6(a) and display their firing rates
in Table 2. It can be seen that the firing rate of neuron 23
(26.5) is a little larger than that of neuron 21 (24.0), but the
noise makes neuron 23 emit the same number of spikes (8
spikes) as neuron 21 within the small time window T . As a
result, it fails for the identification of the two inputs. This
noise disturbance problem can also be alleviated in an E/I
network. As the contrast of the firing rates of neuron 23
and neuron 21 is enhanced in an E/I network (they have fir-
ing rates of 6.7 and 2, respectively), noise cannot make neu-
ron 23 fire the same spikes as neuron 21 any longer
(neuron 23 and neuron 21 fire 3 and 1 spikes, respectively);
thereby, we can distinguish the strength of the inputs of the
two neurons by their outputs correctly. Therefore, due to
the alleviation of the output overlapping problem and noise
disturbance problem, the information efficiency in the E/I
network (it is 0.39 in the E/I network of Figure 5(a)) is greatly
improved compared to that in a population of isolated neu-

rons (it is 0.098 in the population of isolated neurons of
Figure 6(a)).

3.3. Contrast Enhancement in a Randomly Connected
Network. It is worthwhile noting that although the contrast
enhancement is explored in the relatively simple E/I network,
the results obtained in this paper are also reserved in more
realistic E/I networks. Figure 8 shows the firing rate distribu-
tion and information transmission efficiency in a randomly
connected network with the connection probability ρ = 0:7
among all the neurons. The input to each inhibitory neuron
is different one by one by setting δB = 0:1, σBN = 0:5. The
decay constants of excitatory synapses and inhibitory synap-
ses are set differently as τEd = 20ms, τId = 5ms. Figure 8(a)
shows that inhibitory neurons fire synchronously, and a frac-
tion of excitatory neurons fires at each cycle like the relatively
simple case in Figure 2. Figure 8(b) visualizes the number of
spikes of neurons 1~400 similar to Figure 5(b), which reveals
the contrast enhancement of the firing rates of the excitatory
neurons in the E/I network, compared with Figure 8(c). The
information transmission efficiency is also calculated. The
information transmission efficiency in the E/I network is
2.3 times of that in a population of isolated neurons.

3.4. Information Transmission Efficiency. Further, we
explored the dependency of the information transmission
efficiency on the parameter values. Firstly, we checked the
effect of two important parameters of the network on the effi-
ciency of information encoding of the excitatory neurons, i.e.,
the strength of the inhibition to the excitatory neurons and
the strength of the synaptic currents from the excitatory neu-
rons to the inhibitory neurons. To compare the information
transmission efficiency of the E/I network with that of a pop-
ulation of isolated neurons, we define an information trans-
mission efficiency quantity IC = IE/IS, where IE is the
information transmission efficiency of the E/I network and
IS is the information transmission efficiency of the corre-
sponding population of isolated neurons. Figure 9 shows that
IC declines when the strength of the inhibition to the excit-
atory neurons decreases (see the solid line). IC is even smaller
than 1 when the strength of inhibition is too weak, implying
that the information transmission efficiency of an E/I

Table 1: Spiking numbers of 10 isolated neurons and 10 excitatory neurons in E/I networks (see Figures 3(a) and 4(a)) with no noise.

Neuron index 6 7 8 9 10 11 12 13 14 15

Strength of the stimuli 3.69 3.53 4.16 3.73 3.87 3.75 3.96 3.70 4.26 3.88

Spiking numbers of isolated neurons 8 7 9 8 8 8 8 8 9 8

Spiking numbers of neurons in E/I network 1 0 4 2 3 2 3 2 5 3

Table 2: Spiking numbers of 10 isolated neurons and 10 excitatory neurons in E/I networks (see Figures 5(a) and 6(a)) with noise.

Neuron index 21 22 23 24 25 26 27 28 29 30

Strength of the stimuli 3.58 3.69 3.80 4.27 3.91 4.03 3.97 4.40 4.28 3.84

Spiking numbers of isolated neurons 8 7 8 10 9 9 9 10 10 8

Spiking numbers of neurons in E/I network 1 2 3 4 3 4 3 5 5 3
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network with no inhibition to the excitatory neurons is worse
than a population of isolated neurons. This is because with-
out inhibition, excitatory synaptic currents, which are
approximately the same to each neuron, may even homoge-

nize the contrast of the inputs. Therefore, inhibition is
important for high information transmission efficiency.
Figure 9 also shows that IC declines when the strength of
the synaptic current from the excitatory to the inhibitory
neurons decreases (see the dashed line). This means that
the inputs from the excitatory neurons to the inhibitory neu-
rons are also necessary for high efficiency. Hence, synaptic
inhibition and excitation work together to enhance the con-
trast, which we will explain in the next section.

4. Mechanism of the Global
Contrast Enhancement

One may wonder how the global contrast enhancement hap-
pens as neurons receive the same afferent synaptic spikes
from the network (notice that each neuron connects to all
the other neurons in the network)? We found by close obser-
vation of the synaptic currents of two typical neurons (the fir-
ing rate of one of them is higher than the other) that the
synaptic currents of the two neurons are different although
they receive the same afferent synaptic spikes. It is this differ-
ence between the synaptic currents that results in the contrast
enhancement. The synaptic current of a neuron is divided
into two parts. One part is the excitatory current due to
spikes from the excitatory neurons (see Figure 10(a)), and
the other part is the inhibitory current due to spikes from
the inhibitory neurons (see Figure 10(b)). Figure 10(a) shows
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Figure 8: Firing rate contrast enhancement in a randomly connected E/I network: (a) raster plot of the firing of all neurons; (b) visualization
of the firing rates of neurons 1-400 in the E/I network; (c) visualization of the firing rates of neurons 1-400 in a population of isolated neurons.
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that the excitatory current of the neuron with a higher firing
rate receives a larger excitatory synaptic current, and the neu-
ron with a lower firing rate receives a smaller current. On the
other hand, Figure 10(b) shows that the neuron with a higher
firing rate receives a smaller negative synaptic current while
the neuron with a lower firing rate receives a larger negative
synaptic current. Combining the two elements together, we
can conclude that the neuron with the higher firing rate
receives more synaptic excitation and less synaptic inhibition,
but the neuron with the lower firing rate receives less excita-
tion and more inhibition. Consequently, the neurons with
higher firing rates in the network will fire with even higher
rates, but neurons with lower firing rates will fire with even
lower rates. This explains the firing rate contrast enhancement
we obtained in Simulation Results in this paper.

The next interesting question is why synaptic currents are
different for the two neurons although the afferent spikes for
them are the same? This can be explained by the voltage-
dependent properties of the synaptic currents [39]. Let us
consider the synaptic currents received by a neuron after it
fires at a certain cycle of synchronization. For example, neu-
ron 1 fires at the time tk; therefore, the membrane potential of
neuron 1 resumes to the reset potential (-65mV in the
model) immediately after its firing. As synchronization of
the firing of the neurons also occurs at roughly tk, the inhib-
itory currents induced by the synchronized spikes from the
inhibitory neurons will be small due to the low membrane
potential of neuron 1 according to Equation (4) (notice that
for inhibitory synapse, EE

syn should be replaced by EI
syn). On

the other hand, neuron 2, which does not fire at tk, will
receive a larger inhibitory current due to the higher mem-
brane potential compared to neuron 1. Namely, a neuron fir-
ing at a cycle of synchronization will receive a smaller
negative synaptic current than those who do not fire, imply-
ing that neurons with higher firing rates will receive smaller
negative inhibitory currents.

In short words, it is the voltage-dependent property of
the synaptic current that causes high firing rate neurons to
receive large excitatory synaptic currents and small inhibi-
tory synaptic currents, thereby firing with even higher firing
rates. Similarly, low firing rate neurons receive small excit-
atory synaptic currents and large inhibitory synaptic cur-
rents, thereby firing with even lower firing rates. This may

be the mechanism that explains the firing rate contrast
enhancement exhibited in the synchronized E/I network in
this paper.

5. Conclusions and Discussions

Synchronization with high frequency in excitatory/inhibitory
networks has been found in many real neural systems, which
is pertinent to some high-frequency components of neuronal
oscillation, for example, gamma oscillation. Some possible
functional roles of this high-frequency synchronization have
been hypothesized and have been tested in theoretical models
[12–14]. Contrast enhancement is a general feature of infor-
mation processing in neural systems, especially in sensory
pathways [23]. We found that high-frequency synchroniza-
tion in the E/I network can enhance the contrast of the firing
rates of excitatory neurons globally. Lateral inhibition is
widely believed to be able to enhance the contrast of the firing
rates of neighboring neurons [24, 25]. It is supposed that
information is encoded in excitatory neurons, and neurons
only connect to neighboring neurons. The excitatory neurons
activate neighboring inhibitory neurons, which in turn
inhibit neighboring excitatory neurons. Thereby, excitatory
neurons with a higher firing rate may inhibit neighboring
neurons more, therefore causing the following effect: for
two neighboring excitatory neurons, the one with a lower fir-
ing rate receives more inhibition while the other with a
higher firing rate receives less inhibition. This reciprocal
inhibition of neighboring neurons enhances their firing rate
contrast. Unlike lateral inhibition, where neurons only con-
nect to neighboring ones resulting in local firing rate con-
trast enhancement, each neuron connects to all the other
neurons in the network in our model (or connects to all neu-
rons with a constant probability as in the model), resulting
in global contrast enhancement. Namely, the inhibition
caused by the synchronized inhibitory neurons enhances
the firing rate contrast of all excitatory neurons in the net-
work in our model, whereas lateral inhibition only enhances
the firing rate contrast of the corresponding two neighboring
neurons.

The firing rate contrast of all excitatory neurons in the
network can be characterized by the theory of image entropy.
If we view the firing rate of each neuron as the gray value of a
pixel in an image, then the firing rates of all excitatory
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Figure 10: Comparisons of the synaptic currents received by a neuron with a higher firing rate (red) and a neuron with a slower firing rate
(blue): (a) total synaptic currents from excitatory neurons; (b) total synaptic currents from inhibitory neurons.
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neurons can project a gray-valued image. Since an image
with high image entropy has high image contrast, we can
use the theory of image entropy to characterize the firing rate
contrast of all excitatory neurons. Correspondingly, the
information transmission efficiency is relevant to the entropy
of the inputs and the outputs (firing rates) of the neurons. We
found that the global contrast enhancement in this paper can
alleviate two problems. One is the output overlap problem
that the spiking numbers of neurons with a low firing rate
contrast will be identical. The other is the noise disturbance
problem that noise will make neurons with different inputs
fire the same number of spikes. Thus, the contrast enhance-
ment in the E/I networks can improve the information trans-
mission efficiency, namely, increase the mutual information
on the one hand and decrease the energy consumption on
the other hand. Another important thing for real neural sys-
tems is that they need to distinguish signals with high simi-
larities. In our model, signals with high similarities mean
that the parameter value δS is small (if δS is small, the input
contrast of all excitatory neurons is small). We can see from
Figure 9 (see the dot dashed line) that the information trans-
mission efficiency increases with the decrease of this param-
eter, implying that the information transmission efficiency is
enhanced more by the E/I network if the input contrast is
lower. This has a strong biological implication because the
neural systems need to enhance the contrast of sensory input
more for clear identification of the signals when the sensory
input contrast is smaller.

The mechanism of contrast enhancement is also analyzed
in the paper. The global contrast enhancement results from
the interaction of the excitatory neurons and inhibitory neu-
rons. Inhibitory neurons fire synchronously at each cycle,
while only a fraction of excitatory neurons fires at each cycle.
It is the firing of these excitatory neurons that drives the syn-
chronized firing of the inhibitory neurons at each cycle of the
synchronization, and the firing inhibitory neurons inhibit all
neurons in the network. Due to the voltage-dependent prop-
erties of the synaptic currents, the inhibitory synaptic cur-
rents to the fired excitatory neurons are less than those of
the nonfiring excitatory neurons. Thus, neurons that fire
more frequently may receive less inhibition, resulting in the
enhancement of the contrast of the firing rates.

Our work implies a possible functional role in informa-
tion transmission of high-frequency synchronization in neu-
ronal systems and also might be heuristic for modelling of an
artificial neuron model [40] and neural networks [41], which
will be explored in our future work.
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