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Abstract
The zoonotic H7N9 avian influenza virus emerged with the H9N2-origin internal gene cassette. Previous studies have reported 
that genetic reassortments with H9N2 were common in the first five human H7N9 epidemic waves. However, our latest work 
found that the circulating high pathogenicity H7N9 virus has established a dominant internal gene cassette and has decreased 
the frequency of reassortment with H9N2 since 2018. This dominant cassette of H7N9 was distinct from the cocirculating 
H9N2, although they shared a common ancestor. As a result, we suppose that this dominant cassette may benefit the viral 
population fitness and promote its continuous circulation in chickens.
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Introduction

The first case of humans infected with the H10N3 avian 
influenza virus (AIV), whose internal genes inherited from 
the H9N2 AIV, has recently been reported in China [1, 2]. 
The rise of other human-infecting AIVs, such as H5N6, 
H7N9, and H10N8, was similarly donated by the H9N2-
origin gene cassette [3, 4]. Almost all donor H9N2 AIVs 
were of Genotype S (G57-like), prevalent in China’s chicken 
population since 2010 [5]. These findings show that AIVs 
with the Genotype S H9N2 internal genes pose a potential 
threat to human health. Genotype S H9N2 is also of severe 
concern to the poultry industry and plays a crucial role in 
novel AIV genesis and evolution in China.

The zoonotic H7N9 virus emerged through reassortment 
with chicken-origin H9N2 viruses in 2013 [6]. It can cause 
severe disease in humans and other mammals (e.g., mice, 
ferrets, guinea pigs, pigs, and nonhuman primates) [7, 8]. It 
is responsible for at least five human epidemics [8], making 
it one of the most deadly AIVs, which carries the H9N2 
gene cassette. Since February 2013 (http://​www.​fao.​org/​
ag/​again​fo/​progr​ammes/​en/​empres/​H7N9/​situa​tion update.
html, last accessed on 19 December 2021), it has caused 
1568 human infection cases with 616 fatalities, resulting in 
about 40% mortality. Reassortment with the dominant H9N2 
genotype has played a critical role in the wave 5 human 
outbreak in 2016–2017, the largest H7N9 zoonotic outbreak 
[9]. Furthermore, a high pathogenicity (HP) H7N9 variant 
with four-amino acid insertion in cleavage sites of hemag-
glutinin (HA) protein emerged from its low pathogenic (LP) 
counterpart in July 2016 [10]. HP H7N9 has caused signifi-
cant economic losses in the poultry industry, subsequently 
promoting a nationwide vaccination program (http://​www.​
moa.​gov.​cn/​govpu​blic/​SYJ/​201707/​t2017​0711_​57444​36.​
htm, last accessed on 19 December 2021). Following that, 
the LP H7N9 virus is becoming increasingly rare in the field 
since 2018, whereas the HP H7N9 viruses are still sporadi-
cally detected [1]. The Yangtze River Delta (YRD) and Pearl 
River Delta lineages have been established [11]. The YRD 
lineage was responsible for the current circulating HP H7N9 
outbreaks under vaccination in China [12–16]. The emerging 
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cases of vaccine escape mutation and altered receptor bind-
ing characteristics have been reported [12–14, 16, 17].

Previous studies frequently reported genetic reassort-
ments between H9N2 and H7N9 [18–21]. As a result, H7N9 
genotypes continue to emerge. However, most of these geno-
types were ephemeral, with only a few genotypes enduring 
for more than two waves [22]. Intensive reassortments with 
the internal gene cassette from the cocirculate Genotype S 
H9N2 AIV may significantly affect the adaptation and preva-
lence of H7N9 in the avian host during the first five waves. 
[19, 23, 24]. However, the status quo relationship between 
the internal genes of H9N2 and H7N9 remains unknown 
since wave 5 (2016.10 to 2017.9).

Methods

To elucidate the current relationship of the internal genes 
between H7N9 and H9N2, we conducted a phylogenetic 
analysis of the six internal genes. We firstly collected all 
available internal gene sequences of H7N9 and H9N2 from 
2010 to 2021 from the NCBI Influenza Research Database 
(https://​www.​ncbi.​nlm.​nih.​gov/​genom​es/​FLU/​Datab​ase/​
nph-​select.​cgi) and Global Initiative on Sharing All Influ-
enza Data (GISAID, https://​platf​orm.​gisaid.​org/). Then, 
we clean the sequence dataset following our previously 
described methods [13, 14]. Ultimately, 4643 PB2, 4637 
PB1, 4652 PA, 4651 NP, 4718 M, and 4719 NS sequences 
were obtained. ModelFinder was used to determine the best-
fit substitution model using the optimality Bayesian informa-
tion criterion (BIC) [25]. IQ-tree (v1.6.12) [26] was used 
to generate a preliminary maximum likelihood (ML) tree 
for each segment with 10,000 repeats ultra-bootstrap on our 
High-Performance Computing Cluster.

To construct the time-scaled tree, we first estimated the 
temporal signal of the collected sequences through root-
to-tip regression of genetic divergence and sampling times 
based on ML trees using Treetime [27]. Then, we removed 
the sequences without time signal. Sequences acquired 
before 2013 (H7N9 was first detected in February 2013) 
were removed. Sequences collected between 2013 and 2017 
with a similarity of greater than 99% (highly similar) and 
sequences collected after 2018 with a similarity of greater 
than 100% (identical) were deleted using Bioaider [28]. 
Eventually, 843 (PB2), 889 (PB1), 757 (PA), 705 (NP), 604 
(M), and 691 (NS) were retained. Then, the time-scaled 
tree construction was performed using BEAST (v1.10.4). 
BEAST running was set following our previous study [13, 
29]. Generally, the substitution model of GTR + G4 was 
adopted under an uncorrelated relaxed molecular clock 
model and different tree priors (Constant size and GMRF 
Bayesian Skyride plot). The MCMC chain length was set 
to 200 million generations, and trees were collected every 

20,000 steps. Tracer (v1.7.1) was used to analyze the log 
file convergence (effective sample size > 200). Following the 
burn-in of the first 10% of trees, TreeAnnotator prepared the 
maximum clade credibility (MCC) tree with median heights. 
The phylogenetic trees were visualized using ggtree [30] and 
ggtreeExtra [31].

Results and discussion

Phylogenetic analyses revealed that the HP H7N9 virus 
isolated since 2018 was separately clustered together on 
each time-resolved tree. Before 2018, the internal gene of 
the H7N9 virus was intensively associated with the distinct 
clusters of the H9N2 AIVs on each phylogenetic tree (Figure 
S1-S6), indicating that their reassortments were extensive. 
However, the majority of HP H7N9 AIVs isolated since 
2018 were clustered in the same region within the trees, 
suggesting that reassortment events have decreased and the 
HP H7N9 virus has evolved independently since 2018. To 
further elucidate these findings, we first divided the tree into 
HP H7N9 cluster and non-HP H7N9 cluster based on the 
MCC tree (Figure S1-S6). Then, the segment genotype heat-
map was drawn and demonstrated our finding (Fig. 1, right 
panel), showing reduced reassortment since 2018 compared 
to before 2018. Although the internal genes present reassort-
ment between a few HP H7N9 AIVs and cocirculate H9N2 
AIVs, most HP H7N9 AIVs contain a dominant internal 
gene cassette without reassortment with H9N2. According 
to the phylogenetic incongruence tree analysis, the inter-
nal segments of H7N9 show a dominant internal gene cas-
sette across the six MCC trees (Figure S7). To conclude, 
our investigation found that a dominant internal gene cas-
sette of the HP avian influenza H7N9 virus was raised since 
2018, and the six internal segments of most HP H7N9 AIVs 
evolved independently after 2018. This dominant internal 
gene cassette emerged at or before wave 5. 

In addition, the PB2 K526R mutation was identified in 
the dominant cluster, whereas the PB2 627 site was kept as 
glutamate (E). The K526R mutation enhances viral repli-
cation when combined with E627K [32]. The strains after 
2018 mainly had alanine at a position 100 of PA, which 
is a human relevant amino acid (usually V in avian, A in 
human) [33, 34]. However, some strains had threonine at this 
position, implying host adaptation to avian species around 
2018. T357S substitution of PA were also found in the 
strains in the dominant cluster. This position was suggested 
to be involved in viral polymerase activity and pathogenic-
ity in duck [35]. The role of the mutation should be further 
explored. 

Our findings suggest that most HP H7N9 AIVs have a 
stable internal gene cassette and have evolved independently 
since 2018. In other words, the frequency of reassortment 
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between HP H7N9 and H9N2 has evidently decreased com-
pared to earlier waves. Despite significant reductions in 
H7N9 population size [14] and positive rates among poultry 
[36] since the H7N9 Re-1 vaccine administration, the circu-
lating HP H7N9 AIVs still have a high risk of coinfection 
with the H9N2 virus in the field. Since the H9N2 virus is 
basically ubiquitous in Chinese poultry farms, vaccination 
cannot prevent viral shedding and transmission in chickens 
after infection [37–39]. Coinfection may result in the shuf-
fling of individual viral genes and generation of H7N9 reas-
sortants whose phylogenetic topology would closely cluster 
with H9N2 AIVs and resemble the phylogenetic relation-
ship of the first 5 waves. However, only a few reassortants 

were identified among the six phylogenetic trees after 2018. 
Our data imply that the HP H7N9 virus has experienced 
a considerable reduction in reassortment with the H9N2 
virus in recent years and evolved independently in chickens. 
However, the isolation of H7N9 has significantly dropped 
in recent years due to the shrinking size of the H7N9 under 
vaccination. Meanwhile, the “sampling strategy” in the 
H7N9 surveillance may be affected by the declining human 
infection and the shadow of COVID-19. As a result, sample 
bias cannot be ruled out entirely.

Our findings show that circulating HP H7N9 viruses cur-
rently have a dominant genetic cassette, resulting in a stable 
genetic background. HP H7N9 AIVs are less likely to be 
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Fig. 1   Time-resolved maximum clade credibility (MCC) tree and 
segment cluster heatmap. The HA tree of the HP H7N9 influenza 
virus (left panel) with a genotype table presented as a heatmap (right 

panel). Tips’ colors are labeled by isolation year, and the host deter-
mines the tips' shape of the different symbols. The blanks represent 
the missing data
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reassortants than their LP counterparts. Our findings also 
show the adaptative mutations of the HP H7N9 internal gene 
cassette, which evolved separately from H9N2 even though 
they shared a common ancestor. The genesis and convergent 
evolution of stable gene cassettes warrant further investiga-
tion. It is also vital to monitor the further evolution of the 
HP H7N9 viruses to provide timely prevention and control. 
Other influenza viruses with zoonotic potential also deserve 
to be closely monitored. It is also advised that better control 
of the H9N2 virus is essential to avoid introducing novel 
zoonotic influenza viruses.
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