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Monoclonal antibodies, fusion proteins including the immunoglobulin fragment c (Ig Fc)

CH2‐CH3 domains, and engineered antibodies are prominent representatives of an

important class of drugs and drug candidates, which are referred to as biotherapeutics

or biopharmaceuticals. These recombinant proteins are highly heterogeneous due to

their glycosylation pattern. In addition, enzyme‐independent reactions, like

deamidation, dehydration, and oxidation of sensitive side chains, may contribute to

their heterogeneity in a minor amount. To investigate the biological impact of a spon-

taneous chemical modification, especially if found to be recurrent in a biotherapeutic,

it would be necessary to reproduce it in a homogeneous manner. Herein, we undertook

an explorative study towards the chemical synthesis of the IgG1 Fc CH3 domain, which

has been shown to undergo spontaneous changes like succinimide formation and

methionine oxidation. We used Fmoc‐solid‐phase peptide synthesis (SPPS) and native

chemical ligation (NCL) to test the accessibility of large fragments of the IgG1 Fc CH3

domain. In general, the incorporation of pseudoproline dipeptides improved the quality

of the crude peptide precursors; however, sequences larger than 44 residues could not

be achieved by standard stepwise elongation with Fmoc‐SPPS. In contrast, the applica-

tion of NCL with cysteine residues, which were either native or introduced ad hoc,

allowed the assembly of the C‐terminal IgG1 Fc CH3 sequence 371 to 450. The synthe-

ses reported here show advantages and limitations of the chemical approaches chosen

for the preparation of the synthetic IgG1 Fc CH3 domain and will guide future plans

towards the synthesis of both the native and selectively modified full‐length domain.
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1 | INTRODUCTION

Monoclonal antibodies (mAbs) and immunoglobulin fragment c‐fusion

proteins are the most prominent representatives of the rapidly emerg-

ing class of biopharmaceuticals, which are applied to treat life‐threat-

ening diseases like cancer and autoimmune disorders (eg, MabThera/

Rituximab for B‐cell lymphoma, Herceptin/Trastuzumab for breast

cancer, Enbrel/Etanercept, and Remicade/Infliximab for rheumatoid
- - - - - - - - - - - - - - - - - - - - - - - - - - -

the Creative Commons Attribution

ed, the use is non‐commercial and

ublished by European Peptide Soc
arthritis).1-3 Still in the context of cancer therapy, Ab engineering,

including minibodies that are formed by the dimer of a single polypep-

tide chain reassembling the Ab VH and VL regions with the immuno-

globulin fragment c CH3 domain,4,5 has become a valuable approach,

as it allows designing Ab‐related molecules with tuned pharmacoki-

netic and immunogenic properties.6,7

The analytical and biological characterization of mAbs and, in gen-

eral, of large biomolecules is a challenging but indispensable task.
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Indeed, the quality of a protein‐based drug may be affected by the

existence of multiple variants displaying altered biophysical and bio-

chemical properties; such chemical diversity mainly arises from post‐

translational modifications (PTMs), like glycosylation, and spontaneous

degradation during the production and formulation processes.8,9 To

this regard, the most commonly encountered enzyme‐independent

modifications are methionine oxidation,10-12 deamidation of aspara-

gine coupled to succinimide (Snn), aspartate and isoaspartate (isoAsp)

formation,13-16 N‐terminal glutamate or glutamine cyclization to

pyroglutamate,17-19 and arginine glycation or carbonylation.20,21 Spon-

taneous degradation products due to pyroglutamate formation, methi-

onine oxidation, and asparagine deamidation have been observed in

therapeutic mAbs.22 In particular, the IgG1 Fc domain contains two

conserved and solvent‐exposed methionines at positions 432 in the

CH3 domain (Figure 1) and 256 in the CH2 domain, which have been

shown to be susceptible to oxidation upon manufacturing and stor-

age.11 Moreover, it has been demonstrated by surface plasmon reso-

nance that oxidation of Met‐432 and Met‐256 impacts the binding

affinity to the human neonatal Fc receptor (FcRn),23 protein A, and

protein G,24 which has been attributed to the alteration of the second-

ary structure surrounding the residues involved in the binding.25

Asparaginedeamidation and relatedproducts (Asp, isoAsp, andSnn)

have been detected in both the Fc and Fab regions of mAbs, causing

alterations of their secondary structure, potency, and binding affinity,

especially when occurring across the flexible complementarity‐deter-

mining region,26-28 thus having direct consequences on the Ab‐medi-

ated immune response. In the IgG1 Fc region, such PTM has been

reported at Asn‐319 within the sequence Leu‐Asn‐Gly‐Lys in the CH2

domain, as well as at Asn‐388, Asn‐393, and Asn‐438 within the CH3

domain29-31 (Figure 1). The biological impact of deamidation has been

studied in the Fab region of mAbs,26-28 whereas its effect on the Fc

region remains to date unclear. However, the results of an alanine‐scan

on human IgG1 have revealed that replacement of Asn‐438 influences

the binding affinity for FcRn.32 Therefore, also the structural change

caused by deamidation at Asn‐438 might potentially affect the FcRn

binding.

Thus, oxidation and deamidation events may be considered two of

the most important sources of enzyme‐independent PTMs in drugs

based on mAbs and Fc‐fusion proteins. Moreover, both changes may

influence the Ig binding to FcRn, thus affecting the half‐life of Igs and

Fc‐fusion proteins in the blood.33-35 Although spontaneous PTMs are
FIGURE 1 Sequence of the IgG1 Fc CH3 domain and detected,
spontaneously occurring PTMs at Met and Asn sites
fortunately present only as minimal impurities, which may be hardly

detectable even by highly sophisticated MS analysis,36,37 nevertheless,

the assessment of their structural and biological effects is of high signif-

icance. For this reason, it is often necessary to treat the protein chem-

ically, in order to induce and investigate the desired PTM. For example,

H2O2 treatments are usually performed to increase the amount of oxi-

dized methionine. This, however, results in multiple combinations of

reduced and oxidized methionine residues.11,23,38 In contrast, chemical

protein synthesis (CPS) based on the native chemical ligation (NCL) of

synthetic fragment precursors would, in principle, allow obtaining only

one species at the time by replacing only the desired methionine with

methionine sulfoxide. CPS has been successfully applied for small and

medium‐size proteins,39-43 whereas other approaches have been

developed to overcome the protein‐size limitation, which rely on the

NCL between synthetic and recombinant fragment precursors (so‐

called expressed protein ligation44-46), or on the incorporation of unnat-

ural amino acids (AAs) into a protein by genetic‐code expansion.47-49

At the light of the important role played by the CH3 domain in the

binding of IgGmolecules to FcRn50,51 as well as in the dimerization pro-

cess of minibodies,4 we undertook the present work to assess the

accessibility of this domain by chemical synthesis, which, in turn, would

make variants containing, for example, oxidized methionine or D‐amino

acids at the desired position also accessible. In particular, we focused on

the preparation of IgG1 CH3 fragment precursors for two possible NCL

strategies that rely on threonine‐based52,53 and cysteine‐based43,54

chemoselective reactions (Scheme 1). The C‐terminal fragment precur-

sor (either 1, 4, or 6) contains oxidized methionine at position 432.

Problems encountered during the solid‐phase peptide synthesis (SPPS)

of the precursors and some solutions to them, as well as NCL attempts,

are discussed below. Although the total chemical synthesis of the IgG1

Fc CH3 domain could not be achieved in this work, the conducted

explorative study provides useful insights into the Fmoc‐based SPPS

of IgG1 Fc CH3 sequences, including C‐terminally activated intermedi-

ates bearing the salicyladehyde ester (Sal) or a thioester.
2 | MATERIALS AND METHODS

2.1 | Chemicals

All protected AAs, Fmoc‐Rink amide MBHA resin, N‐(9‐fluoreny-

lmethyloxycarbonyloxy)‐succinimide (Fmoc‐OSu), N,N‐dimethylfor-

mamide (DMF), 1‐methyl‐2‐pyrrolidinone (NMP), dichloromethane

(DCM), diethylether (Et2O), 2,2,2‐trifluoroethanol (TFE), and N,N‐

diisopropylethylamine (DIPEA) were purchased from Iris Biotech

GmbH (Marktredwitz, Germany). Pseudoproline dipeptides, O‐(7‐

azabenzotriazol‐1‐yl)‐N,N,N′,N′‐tetramethyluronium‐hexafluorophos-

phate (HATU), H‐Gly‐2‐Cl‐trityl resin, H‐Thr(tBu)‐2‐Cl‐trityl resin,

Fmoc‐Gly‐NovaSyn‐TGT resin, Fmoc‐Dbz‐NovaSyn‐TGR resin, 4‐

nitrophenylchloroformate, and disodiumhydrogenphosphate were

from Merck (Darmstadt, Germany). 1‐Hydroxybenzotriazole (HOBt),

2‐(1H‐benzotriazol‐1‐yl)‐1,1,3,3‐tetramethyluronium hexafluorophos-

phate (HBTU), N,N′‐diisopropylcarbodiimide (DIC), trifluoroacetic acid

(TFA), and piperidine were obtained from Biosolve (Valkenswaard,

The Netherlands). HPLC‐grade acetonitrile (ACN), thiophenol, 4‐



SCHEME 1 Proposed strategies for the synthesis of the IgG1 Fc CH3 domain based on two (A and B) or three (C) ligation points. The * in
fragments 1, 4, and 6 indicates the presence of Met(O)‐432. Sal, salicylaldehyde ester. Peptide 4 is also referred to as 1b in the following
schemes. The ligations indicated by green arrows were successfully performed in this work
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mercaptophenylacetic acid (MPAA), triisopropylsilane (TIS), thioanisole

(TIA), tris(2‐carboxyethyl) phosphine hydrochloride (TCEP), guanidine

hydrochloride (GuHCl), and salicylaldehyde were obtained from Sigma

Aldrich (Vienna, Austria). HPLC‐grade trifluoroacetic acid (TFA) was

from Alfa‐Aesar (Karlsruhe, Germany).
2.2 | Methods

Analytical RP‐HPLC was performed using a Thermo Fisher Scientific

Dionex UltiMate 3000 UHPLC system (Germering, Germany) and

either a Syncronics C‐18 column (100 Å, 5 μm, 250 × 4.6 mm, Thermo

Fisher Scientific) at a flow rate of 1.5 mL/min or a Nucleosil C‐18 col-

umn (100 Å, 5 μm, 250 × 4 mm, Macherey‐Nagel, Düren, Germany) at

a flow rate of 1 mL/min. Unless specifically stated, the first one was

used. The UV detection was set at 220 nm. The elution system was

(A) 0.06% (v/v) TFA in water, and (B) 0.05% (v/v) TFA in ACN. The

crude products were dissolved in ACN/H2O (10:90, v/v) containing

0.1% TFA. Analytical chromatograms were obtained with the follow-

ing gradients: method A: 10% B for 5 minutes, 10% to 70% B in

40 minutes; method B: 20% B for 5 minutes, 20% to 70% B in

30 minutes; method C: 25% B for 5 minutes, 25% to 75% B in

40 minutes; method D: 20% B for 5 minutes, 20% to 60% B in

40 minutes. Mass spectra were recorded on an Autoflex Speed

MALDI‐TOF mass spectrometer (Bruker Daltonics, Bremen, Germany)

by using α‐cyano‐4‐hydroxycinnamic acid as matrix.
2.3 | Stepwise synthesis of [Met(O)‐432]‐IgG1‐Fc
419‐450 (1aTRT) and Fmoc‐[Met(O)‐432]‐IgG1‐Fc 407‐
450 (1aTGT+ψ)

Solid‐phase peptide synthesis was automatically performed on a Syro‐I

(Biotage, Uppsala, Sweden) peptide synthesizer by using the Fmoc/tBu
strategy. Sequence assembly was carried out on H‐Gly‐2‐Cl‐trityl

(loading: 0.63 mmol/g; 18‐μmol scale) or Fmoc‐Gly‐NovaSyn‐TGT

resin (loading: 0.2 mmol/g; 8‐μmol scale). The couplings of the

protected AAs were carried out using AA/HOBt 1:1 (5 equivalents

each), HBTU (4.9 equivalents), and DIPEA (10 equivalents), in DMF/

NMP (7:3, v/v). Each coupling was performed twice (2 × 45 minutes).

The couplings of the pseudoproline dipeptides were performed

manually by employing (AAψAA)/HOBt 1:1 (2 equivalents each), HBTU

(1.9 equivalents), and DIPEA (4 equivalents), in DMF/NMP (7:3, v/v) for

1 hour. The completeness of the coupling was then checked by the

ninhydrin test, and, when needed, the coupling was repeated under

the same conditions to assure complete acylation. Nα‐deprotection

was obtained with a 3‐minute treatment with 30% piperidine in DMF,

followed by a 12‐minute treatment with 15% piperidine in DMF. After

the coupling of the last residue, the peptidyl‐resin was washed

with DMF, DCM, and Et2O (three times each) and vacuum‐dried

overnight. The resin‐bound peptide was treated with TFA/H2O/TIA/

TIS/EDT (90:3:2:2:3, v/v) for 3 hours at room temperature (rt), then

the peptide was precipitated with cold Et2O, recovered by centrifuga-

tion, and washed three times with the same solvent to remove the

residual scavengers. The crude products were characterized by

analytical RP‐HPLC and MALDI‐TOF‐MS.
2.4 | Synthesis of [Met(O)‐432]‐IgG1‐Fc 398‐450 (1)
by chemoselective ligation

Peptide 1b was assembled on the H‐Gly‐2‐Cl‐trityl resin (loading:

0.63 mmol/g; 18‐μmol scale) by using the SPPS protocol described in

the subsection 2.3. The crude product was characterized by analytical

RP‐HPLC using method A and by MALDI‐TOF‐MS. Peptide 1c was

synthetized with the commercially available Fmoc‐Dbz‐NovaSyn‐TGR

resin (loading: 0.2 mmol/g; 9‐μmol scale). The Fmoc group of the Dbz
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linker was cleaved with 20% piperidine in DMF for 20 minutes, then the

resin was treated with 5 equivalents Fmoc‐Ser(tBu)‐OH, 5 equivalents

HATU, and 10 equivalents DIPEA in DMF for 1 hour at rt. Then, the resin

waswashedwithDMF,DCM, andEt2O (three times each) and dried under

vacuum. The new loading was determined by measurement of the UV

absorbance of the dibenzofulvene‐piperidine adduct at 301 nm. The

peptide chain was assembled with the SPPS protocol described in the

subsection 2.3 and the use of the pseudoproline dipeptides Fmoc‐

Lys(Boc)‐Ser(ψMe,Mepro)‐OH, Fmoc‐Tyr(tBu)‐Ser(ψMe,Mepro)‐OH, and

Fmoc‐Asp(tBu)‐Ser(ψMe,Mepro)‐OH. The coupling of Gly‐424 was

performed manually with Fmoc‐Gly‐OPfp/HOBt 1:1 (6 equivalents) for

1 hour in DMF at rt, and the progress of the reaction was monitored by

the ninhydrin test. After coupling the last residue as Boc‐AA, the resin

was swollen in DCM for 30 minutes and treated with 5 equivalents p‐

nitrophenylchloroformate dissolved in DCM (50 mM) for 1 hour under

nitrogen at rt. The solvent was sucked off, the resin was washed with

DCM, DMF, and again DCM (three times each), and finally subjected to

a 30‐minute treatment with 0.5 M DIPEA in DMF at rt. After washing

cycles with DMF, DCM, and Et2O, the peptide was cleaved from the resin

with TFA/H2O/TIS (95:2.5:2.5, v/v) for 2.5 hours at rt, precipitated and

successively washed with cold Et2O, and finally dried under vacuum.

The crudeproductwas characterized by analytical RP‐HPLCusingmethod

B and byMALDI‐TOF‐MS. Peptides 1b and 1cwere dissolved in nitrogen‐

purged ligation buffer (0.2 M phosphate buffer at pH 7, 6 M GuHCl,

20mMTCEP, and1% thiophenol). Themixturewas shaken for 2.5 hours,

then acidified by using 0.5% TFA in water and lyophilized. The ligation

product was isolated by analytical RP‐HPLC using method D. The

fraction containing the peak of interest was collected and lyophilized.
2.5 | Synthesis of [Thz‐371, Thr‐Sal‐397]‐IgG1‐Fc
371‐397 (2)

Peptide chain elongation was performed by Fmoc/tBu chemistry on

H‐Thr(tBu)‐2‐Cl‐trityl resin (loading: 0.73 mmol/g; 18‐μmol scale) as

described in the subsection 2.3. The protected peptide was cleaved

from the resin by using six 30‐minute treatments with TFE/DCM

(2:8, v/v). The combined filtrates resulting from each treatment were

collected and concentrated in vacuum, and the fully protected peptide

was precipitated with a cold mixture of Et2O/hexane (2:8, v/v), recov-

ered by centrifugation and vacuum‐dried overnight. The solid was dis-

solved in DCM/DMF (9:1, v/v), and the resulting solution was cooled

to 0°C before 8 equivalents DIC and 10 equivalents salicylaldehyde

dimethyl acetal were added. The mixture was stirred first at 0°C for

3 hours, and then at rt for 16 hours. The solvent was evaporated,

and the product was precipitated from cold Et2O/hexane (2:8, v/v)

and washed twice with the same mixture. The resulting white solid

was then treated with a mixture of TFA/H2O/TIA (95:2.5:2.5, v/v)

for 2 hours at rt, and the deprotected peptide was recovered by cen-

trifugation from cold Et2O. The crude product was characterized by

analytical RP‐HPLC using method B and by MALDI‐TOF‐MS.
2.6 | Synthesis of [Thr‐Dbz‐370]‐IgG1‐Fc 345‐370 (3a)

Mono‐Fmoc‐Dbz‐OH was prepared starting from commercially avail-

able 3,4‐diaminobenzoic acid, then coupled to Rink amide MBHA resin
(loading: 0.45 mmol) as previously described.55 Briefly 3,4‐

diaminobenzoic acid (0.5 g, 3.3 mmol) was suspended in 15‐mL 0.1 M

NaHCO3 (aq.)/ACN (1:1), and Fmoc‐OSu (1.1 g, 3.3 mmol) was added

over 20 minutes. The reaction was stirred for 6 hours, then the pH

was brought to 2 by adding HCl (aq.). The resulting white precipitate

was filtered, washed with water, cold Et2O, hexane, and dried under

vacuum to afford the expected mono‐Fmoc‐Dbz‐OH (0.6 g, 48%).

The latter (0.04 g, 0.11 mmol) was dissolved in DMF, and the resulting

solution was added to pre‐swelled Rink amide MBHA resin (0.05 g,

0.022 mmol) together with HBTU (0.042 g, 0.11 mmol) and DIPEA

(40 μl, 0.22 mmol) and stirred for 2 hours. The resin was washed three

times with DCM and DMF and subjected to Fmoc deprotection of the

linker with 20% piperidine in DMF for 20 minutes. Subsequently, the

resin was treated with 5 equivalents Fmoc‐Thr(tBu)‐OH, 5 equivalents

HATU and 10 equivalents DIPEA, for 1 hour at rt; the coupling was per-

formed a second time to assure complete acylation. The loading was

determined by measurement of the UV absorbance of the

dibenzofulvene‐piperidine adduct at 301 nm. The peptide chain was

elongated by Fmoc/tBu chemistry as described in the subsection 2.3.

The resin‐bound peptide was then treated with a mixture of TFA/TIS/

TIA (95:2.5:2.5, v/v) for 2.5 hours at rt, and the peptide was recovered

by centrifugation from cold Et2O. The crude product was characterized

by analytical RP‐HPLC using method B and by MALDI‐TOF‐MS.
2.7 | Synthesis of [Thz‐371, Ser‐Nbz‐428]‐IgG1‐Fc
371‐428 (5)

Fragment 5 was synthesized with the protocol that was used for

1c. An additional pseudoproline dipeptide, Fmoc‐Glu(tBu)‐Ser (ψMe,

Mepro)‐OH, was used in the SPPS. The crude product was character-

ized by analytical RP‐HPLC using method B and by MALDI‐TOF‐MS.
2.8 | Synthesis of [Cys(Acm)‐371,429, Cys‐390,428]‐
IgG1‐Fc 371‐450 by chemoselective ligation (10)

Peptides 6 and 8 were assembled on a H‐Gly‐2‐Cl‐trityl resin (load-

ing: 0.63 mmol/g; 18‐μmol scale) with the protocol described in the

subsection 2.3. Peptide 6 was cleaved from the resin and

deprotected by using a mixture of TFA/H2O/TIA/TIS/EDT

(90:3:2:2:3, v/v) for 3 hours at rt and then recovered by precipita-

tion from cold Et2O and centrifugation. The crude product was

characterized by analytical RP‐HPLC using method A and by

MALDI‐TOF‐MS. For peptide 8, the peptidyl‐resin was treated for

30 minutes with a mixture of TFE/DCM (2:8, v/v), and the procedure

was repeated six times. The combined filtrates resulting from each

treatment were collected, concentrated in vacuum, and the fully

protected peptide was precipitated with cold Et2O. After centrifuga-

tion and overnight drying under vacuum, the solid was dissolved in

DCM/DMF (7:3, v/v), and the resulting solution was cooled at 0°C

before 3 equivalents DIC and 5 equivalents benzylmercaptan were

added. The mixture was stirred at 0°C for 1 hour, and at rt for

16 hours. Afterwards, the solvent was evaporated, then the product

was precipitated with cold Et2O and washed twice with the same

solvent. The resulting white solid was dried under vacuum and then

treated with a mixture of TFA/H2O/TIA (95:2.5:2.5, v/v) for 2 hours,
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at rt, and the peptide was recovered by precipitation from cold Et2O

and centrifugation. The crude product was characterized by analytical

RP‐HPLC using method B and by MALDI‐TOF‐MS. Peptide 7a was

assembled on the commercially available Fmoc‐Dbz‐NovaSyn TGR

resin (loading: 0.2 mmol/g; 9‐μmol scale). The Fmoc group of the

linker was cleaved with 20% piperidine in DMF for 20 minutes, and

the resin was treated with 5 equivalents Fmoc‐Phe‐OH, 5 equivalents

HATU, and 10 equivalents DIPEA for 1 hour at rt. The resin was then

washed with DMF, DCM, and Et2O (three times each). After drying

under vacuum, the degree of substitution was determined by mea-

surement of the UV absorbance of the dibenzofulvene‐piperidine

adduct at 301 nm. The peptide chain was assembled by Fmoc/tBu

chemistry as described in the subsection 2.3, with the use of the

pseudoproline dipeptides Fmoc‐Lys(Boc)‐Ser(ψMe,Mepro)‐OH, Fmoc‐

Tyr(tBu)‐Ser(ψMe,Mepro)‐OH and Fmoc‐Asp(tBu)‐Ser(ψMe,Mepro)‐OH

within the SPPS. The coupling of Gly‐424 was performed manually

with Fmoc‐Gly‐OPfp/HOBt 1:1 (6 equivalents) for 1 hour in DMF

at rt, and the progress of the reaction was monitored by the ninhy-

drin test. Once the synthesis was completed, the resin was swollen

in DCM for 30 minutes and treated with 5 equivalents p‐

nitrophenylchloroformate dissolved in DCM (50 mM) for 1 hour

under nitrogen at rt. The solvent was sucked off, the resin was

washed with DCM, DMF, and again DCM (three times each), and

finally subjected to a 30‐minute treatment with 0.5 M DIPEA in

DMF at rt. After washing cycles with DMF, DCM, and Et2O, the

peptide was cleaved from the resin with TFA/H2O/TIS (95.2.5:2.5,

v/v) for 2.5 hours at rt, precipitated and successively washed with

cold Et2O, and finally dried under vacuum. The crude product was

characterized by analytical RP‐HPLC using method B and by

MALDI‐TOF‐MS. Peptides 6 and 7a were dissolved in nitrogen‐

purged ligation buffer (0.2 M phosphate buffer at pH 7, 6 M GuHCl,

90 mM TCEP, and 180 mM MPAA). The mixture was shaken for

2.5 hours, then 20 μL of a nitrogen‐flushed 1.4 M methoxylamine

solution containing 200 μM TCEP dissolved in 0.2 M Na2HPO4

and 6 M GuHCl were added, and the resulting mixture was acidified

to pH 4 and stirred for 6 hours at rt. The mixture was then eluted

through a column prepacked with Sephadex G‐25 (NAP GE

Healthcare) using 1 M GuHCl as elution system. After lyophilization,

the solid and peptide 8 were dissolved in nitrogen‐flushed ligation

buffer (0.2 M phosphate buffer at pH 6.8, 6 M GuHCl containing

50 mM TCEP and 100 mM MPAA). After 2.5 hours, the reaction

mixture was acidified by using 0.5% TFA in water and lyophilized.

The ligation product was isolated by analytical RP‐HPLC using method

B. The fraction containing the peak of interest was collected,

lyophilized, and characterized by analytical RP‐HPLC using method B

and by MALDI‐TOF‐MS.
3 | RESULTS AND DISCUSSION

3.1 | Ligation routes

Our work toward the chemical synthesis of the IgG1 Fc CH3 domain

consisted of the preparation of fragment precursors that were

designed on the base of the three ligation routes shown in Scheme 1.
In the first route, the 53‐residue long fragment precursor 1 should be

ligated to the 27‐residue long fragment 2 by salicylaldehyde ester

(Sal)‐Thr ligation: the chemoselective reaction between the C‐terminal

Sal of 2 and the N‐terminal Thr of 1 in pyridine/AcOH forms an N‐acyl

oxazolidine intermediate that can be cleaved by acidic hydrolysis to

afford the native peptide bond at the ligation site52,53 (Scheme 1A).

The resulting ligation product should be subjected to thiazolidine

(Thz) ring opening, followed by Cys‐thioester ligation43 with the 26‐

residue long fragment 3. The second route exploits the presence of

native Cys‐429 and Cys‐371 and the sequential NCL between the

precursors 3, 4 and 5 (Scheme 1B). Both routes involve the synthesis

of one large precursor (either 1 with 53 residues or 5 with 58

residues), which may represent a hurdle for the synthesis of the pre-

cursor as well as for the ligation reaction. Moreover, the presence of

a C‐terminal threonine at the ligation site may slow down the reaction

rate, as shown by a systematic study conducted by Dawson and

coworkers42 on all 20 proteinogenic AAs, which classified threonine

as one of the slowest ligation sites after valine, isoleucine, and proline.

Then, we envisioned a third route that contemplates the Cys‐thioester

ligation of four fragments, the largest one containing 38 residues (7),

at two fast‐reacting (Gly‐389 and Phe‐427) and one slow‐reacting

(Thr‐370) C‐terminal thioester (Scheme 1C). This, however,

requires the temporary replacement of two native residues, Gln‐390

and Ser‐428, with Cys, and the reconversion of the two non‐native

residues to the native ones with suitable methods (see section 3.7).
3.2 | Attempts of stepwise synthesis of [Met(O)‐
432]‐IgG1‐Fc 398‐450 (1)

Fragment 1 contains the C‐terminal part of the IgG1 Fc CH3 domain,

covering 53 residues and including the PTM site Met(O)‐432. At first,

we proved the feasibility of this fragment to be assembled by stepwise

SPPS with Fmoc/tBu chemistry. We started the synthesis on a poly-

styrene‐divinylbenzene‐2‐chlorotrityl resin preloaded with glycine

(0.63 mmol/g) (Scheme 2A). Met‐432 was inserted as Met(O) to take

into account the PTM. We checked the growing chain after 22 and

32 cycles: unfortunately, the homogeneity of the crude product

dropped from ~80% to ~20% (1aTRT in Scheme 2A). Thus, we decided

to repeat the synthesis of 1 by choosing a polar resin56,57 with low

loading (Fmoc‐Gly‐NovaSyn TGT resin, based on low cross‐linked

hydroxyethylpolystyrene‐polyethylene glycol, with a loading of

0.2 mmol/g). However, these two parameters (polarity and low loading

of the solid support) were not sufficient to accomplish the synthesis of

the desired 53‐residue long fragment, as the growing chain was highly

inhomogeneous after 44 cycles. Neither the addition of 2% DBU to

the conventional 20% piperidine in DMF,58 nor the use of HATU in

place of HBTU for the activation of selected AAs improved the syn-

thesis (data not shown).

Considering the presence of quite regularly distributed Thr and

Ser residues in the sequence, we envisioned the possibility to increase

the homogeneity of fragment 1 by incorporation of pseudoproline

dipeptides, which are well known to reduce the on‐resin self‐associa-

tion propensity of the growing peptide and, consequently, to improve

the quality of the crude product.59-61 Accordingly, by using the combi-

nation of a polar and low‐loaded resin with the employment of the



SCHEME 2 Attempts of stepwise synthesis of [Met(O)‐432]‐IgG1‐Fc 398–450 (1). A, Assembly attempt on polystyrene‐divinylbenzene 2‐
chlorotrityl resin preloaded with glycine (0.63 mmol/g). The RP‐HPLC profiles of the crude peptide acids with free N‐terminus at cycle 22 (till
Cys‐429) and 32 (till Ser‐419, 1aTRT) were obtained by using method A. B, Assembly attempt on the polar and low‐loaded resin NovaSyn TGT

(0.2 mmol/g Fmoc‐glycine) by using three pseudoproline dipeptides (in red). The RP‐HPLC profile of the Fmoc‐protected crude peptide acid at
cycle 44 (till Ser‐407, 1aTGT+ψ) was obtained by using method C with the Nucleosil C‐18 column (MALDI‐TOF‐MS peaks for M + H+ and [M + 2H
+]/2. Mcalc. for C242H352N62O69S2: 5298.01 Da)
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pseudoproline dipeptides Leu‐445‐ψSer‐446, Phe‐427‐ψSer‐428, and

Tyr‐411‐ψSer‐412, the growing chain was ~60% homogeneous after

44 couplings (1aTGT+ψ in Scheme 2B). Nevertheless, despite this

encouraging result, the attempt to elongate this fragment with addi-

tional nine residues to obtain the desired precursor 1 failed (data not

shown).
3.3 | Synthesis of [Met(O)‐432]‐IgG1‐Fc 398‐450 (1)
by chemoselective ligation

Given the difficulties encountered in the standard stepwise Fmoc‐

SPPS of the fragment precursor 1, we considered the chemoselective

ligation approach to accomplish the 53‐residue long fragment by using

the natural Cys‐429 as ligation point between the two fragments 1b

(= 4 in Scheme 1) and 1c (Scheme 3). As shown in Scheme 2A, the

C‐terminal fragment 1b could be successfully prepared by standard

Fmoc‐SPPS on the polystyrene‐divinylbenzene 2‐chlorotrityl resin

preloaded with glycine (0.63 mmol/g). For the synthesis of the peptide

thioester 1c, we chose the N‐acyl‐urea approach,55 in which the

peptide is synthesized on a diaminobenzoic (Dbz) acid linker by

Fmoc‐SPPS, followed by treatment with p‐nitrophenylchloroformate

and, then, a tertiary base to afford the corresponding N‐acyl‐

benzimidazolinone (Nbz). The latter can be either used directly for

the NCL62,63 or subjected to thiol exchange reaction providing access

to the corresponding peptide thioester.64,65 Thus, we accomplished

the synthesis of 1c starting from the low‐loaded Fmoc‐Dbz NovaSyn

TGR resin (0.2 mmol/g). The first residue, Fmoc‐Ser(tBu)‐OH, was

attached manually by using HATU/DIPEA. Then, the peptide chain

was elongated by automated SPPS using the HBTU/HOBt/DIPEA

coupling protocol, except for Gly‐424 that was coupled manually using
Fmoc‐Gly‐OPfp (Pfp = pentafluorophenyl) to reduce the formation of

branched by‐products arising from the double acylation of the

Dbz moiety. Also, in this case, we used pseudoproline dipeptides

(Lys‐418‐ψSer‐419, Tyr‐411‐ψSer‐412, and Asp‐403‐ψSer‐404), as

the IgG1 Fc CH3 sequence 398‐428 resulted to be otherwise very

difficult to assemble (data not shown). After the coupling of the last

residue as Nα‐Boc‐protected AA, the C‐terminal Dbz group was

converted into the Nbz group, and TFA cleavage gave the desired C‐

terminal Nbz peptide 1c with satisfactory homogeneity (~60%)

(Scheme 3A).

Fragments 1b and 1c were used for the NCL without any further

purification (Scheme 3C). After 1 hour, a significant amount of the

desired ligation product 1 could be detected; however, also a large

amount of the acid arising from the hydrolysis of 1c was formed

(1d). Moreover, two other by‐products were identified, having a mass

difference of −18 Da (1e) and +41 Da (1f) with respect to the acid 1d

(Scheme 3C): the first one (1e) might arise from an intramolecular

cyclization of the thioester precursor 1c or of the corresponding phe-

nyl thioester formed in situ. The second one (1f) might be the result of

the reaction of 1c or of the corresponding phenyl thioester formed in

situ with guanidine.66

After 2.5 hours, the C‐terminal Nbz peptide 1c was completely

consumed, and no further changes were observed with respect to

the previous control (Scheme 3C). Therefore, the reaction mixture

was acidified, and the HPLC fraction containing the ligation product

1 was collected and lyophilized. The mass spectrum confirmed the

successful separation of the desired ligation product 1 from all impuri-

ties present in the NCL mixture. However, an additional peak at

slightly higher retention time appeared in the HPLC profile, whose

identity could not be assessed by mass spectrometry.



SCHEME 3 Synthesis of [Met(O)‐432]‐IgG1‐Fc 398–450 (1) by chemoselective ligation. A, Fragment 1c was prepared on a Fmoc‐Dbz NovaSyn
TGR resin by using three pseudoproline dipeptides (in red). The RP‐HPLC profile of the crude product was obtained with method B (MALDI‐TOF‐
MS peak for M + H+. Mcalc. for C169H245N43O50: 3679.10 Da). B, Fragment 1b was assembled on a 2‐chlorotrityl resin preloaded with glycine (the
RP‐HPLC profile is shown in Scheme 2A). C, Ligation of 1c and 1b was followed by RP‐HPLC over 2.5 h. The peaks labelled with 1d‐f are
degradation products of 1c due to hydrolysis (1d: MALDI‐TOF‐MS peak for M + H+: 3521.35 Da. Mcalc. for C161H240N40O49: 3519.95 Da),
intramolecular aminolysis (1e: MALDI‐TOF‐MS peak for M + H+: 3503.52 Da. Mcalc. for C161H238N40O48: 3501.93 Da), and N‐acylation of
guanidine with the Nbz‐peptide (1f: MALDI‐TOF‐MS peak for M + H+: 3562.72 Da. Mcalc. for C162H243N43O48: 3561.0 Da). The HPLC runs were
performed by using method B. D, The ligation product 1 was separated from the impurities by HPLC fraction collection. The corresponding RP‐
HPLC profile was obtained by using method D (MALDI‐TOF‐MS peaks for M + H+ and [M + 2H+]/2. Mcalc. for C265H401N71O82S2: 5957.71 Da)
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3.4 | Synthesis of [Thz‐371, Thr‐Sal‐397]‐IgG1‐Fc
371‐397 (2)

Initially, we attempted to prepare fragment 2 by on‐resin phenolysis

of the corresponding C‐terminal Nbz peptide with salicylaldehyde

dimethyl acetal.52,67 However, despite successful elongation of the

peptide chain on the Fmoc‐Dbz Rink amide MBHA resin

(0.45 mmol/g), both the activation of the Dbz linker with p‐

nitrophenylchloroformate and the subsequent on‐resin phenolysis

were poorly efficient, probably due to the sterically hindered C‐termi-

nal Thr(tBu)‐397. Therefore, we looked for alternative solutions.

Owing to the fact that the presence of a tryptophan residue in the

sequence excluded the use of any protocol involving aldehyde gener-

ation by means of post‐SPPS oxidative processes,68 the esterification

in solution was chosen. The peptide was assembled on the H‐

Thr(tBu)‐chlorotrityl resin (0.73 mmol/g) and released from the solid

support under mildly acidic conditions (Scheme 4). The fully protected
peptide acid was esterified with salicylaldehyde dimethyl acetal by

using DIC as condensation agent, followed by TFA treatment for

the removal of the side‐chain protecting groups. HPLC and MS anal-

ysis showed that the desired peptide could be obtained with low

homogeneity (~30% for the major HPLC peak in Scheme 4). Indeed,

some impurities due to deleted sequences and double coupling of

salicylaldehyde were present (MS in Scheme 4). We decided not to

purify the crude product for further use in the ligation, as solubility

tests of 2 under the conditions reported for Sal‐Ser/Thr ligation (at

least 1 mM in pyridine/AcOH52,53,69) were unsatisfactory (good solu-

bility of 2 was obtained in pure AcOH, which, however, would not

allow for efficient ligation). Another concern for the use of 2 in the

ligation strategy was related to the possibility of 5(4H)‐oxazolone‐

mediated epimerization of the C‐terminal threonine during the ester-

ification step of the fully protected fragment (Scheme 4). To this

regard, it would have been of benefit to incorporate the C‐terminal

threonine as pseudoproline,70 or to couple it as aldehyde‐protected



SCHEME 4 Synthesis of [Thz‐371, Thr‐Sal‐397]‐IgG1‐Fc 371–397
(2) by esterification in solution. The RP‐HPLC profile of the crude
product was obtained with method B (MALDI‐TOF‐MS peak for
M + H+. Mcalc. for C146H206N34O46S1: 3205.53 Da. The masses at
2896.25, 3043.28, and 3313.22 Da were attributed to impurities with
ΔFY, ΔY, or condensation with an additional salicylaldehyde)

SCHEME 5 Synthesis of [Thr‐Dbz‐370]‐IgG1‐Fc 345‐370 (3a). The
RP‐HPLC profile of the crude product was obtained with method B
(MALDI‐TOF‐MS peak for M + H+. Mcalc. for C135H216N40O43:
3087.47 Da)
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amino salicylaldehyde ester to the fully protected peptide by using

the Sakakibara conditions.71,72
3.5 | Synthesis of [Thr‐Dbz‐370]‐IgG1‐Fc 345‐370
(3a)

For the synthesis of the C‐terminal Nbz peptide 3, we first

functionalized the Rink amide MBHA resin (0.45 mmol/g) with

mono‐Fmoc‐diaminobenzoic acid synthetized from commercially

available 3,4‐diaminobenzoic acid. The first residue, Fmoc‐

Thr(tBu)‐OH, was coupled manually with HATU/DIPEA, followed

by spectrophotometric determination of the Fmoc group, which

confirmed the success of the coupling. The peptide chain was then

elongated by automated SPPS with the HBTU/HOBt/DIPEA cou-

pling protocol. After the assembly was completed, we attempted to

convert the Dbz group into the Nbz group. However, the conversion

was incomplete, probably due to the sterically hindered C‐terminal

Thr(tBu)‐370. Thus, we decided to cleave the peptide from the resin

in the Dbz form 3a, which is more stable than the Nbz form 3 but

may be orthogonally converted into a benzotriazole moiety with

NaNO2 and then displaced by the thiol additive in the ligation buffer

to afford the peptide thioester in situ.73 The TFA‐cleaved product 3a

showed satisfactory homogeneity (~60%) (Scheme 5).
SCHEME 6 Synthesis of [Thz‐371, Ser‐Nbz‐428]‐IgG1‐Fc 371‐428
(5). The fragment was prepared on a Fmoc‐Dbz NovaSyn TGR resin
by using four pseudoproline dipeptides (in red). The RP‐HPLC profile
of the crude product was obtained with method B (MALDI‐TOF‐MS
peak for M + H+. Mcalc. for C308H445N77O94S1: 6762.50 Da)
3.6 | Synthesis of [Thz‐371, Ser‐Nbz‐428]‐IgG1‐Fc
371‐428 (5)

Fragment 5 was prepared by following the same protocol used for the

synthesis of fragment 1c (Scheme 3). To maintain a periodic distribu-

tion of the pseudoprolines, an additional pseudoproline dipeptide

(Glu‐386‐ψSer‐387) was incorporated. After activation of the Dbz
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linker and TFA cleavage, the desired 58‐residue long C‐terminal Nbz

peptide was obtained with poor homogeneity (~25%), as shown in

Scheme 6. In an attempt to purify 5 by HPLC, we encountered some

difficulties that were associated with the tendency of the C‐terminal

Nbz moiety to hydrolyze as well as with the poor solubility of the

crude peptide in the HPLC elution system (TFA/ACN/H2O).
3.7 | Assembly of [Cys(Acm)‐371,429, Cys‐
390,428]‐IgG1‐Fc 371‐450 (10)

Although known strategies addressing the synthesis of C‐terminal

salicylaldehyde peptide esters offer a solution to the epimerization

risk of fragment 2,71,72 its very poor solubility in pyridine/AcOH

prompted us to explore a way to perform the assembly of the IgG1

fragment 371 to 450 in aqueous solution by Cys‐based NCL.

However, this requires the presence of cysteine residues at

suitable ligation sites, which is not the case for the native Cys‐371

and Cys‐429 (see Scheme 3 for ligation at Cys‐429: although the

ligation product was quickly built, concurrent side‐reactions leading

to thioester degradation were also fast). Therefore, Ser‐428 and

Gln‐390 were substituted with cysteine, in order to exploit highly

ligation‐favourable sites at Phe‐427 and Gly‐38942 and also to have

the possibility to achieve the assembly of the native IgG1 CH3
SCHEME 7 Synthesis of the fragment precursors 6, 7a, and 8 for the N
371‐450 (10). A, Fragment 6 was prepared on a 2‐chlorotrityl resin preloa
obtained with method A (MALDI‐TOF‐MS peak for M + H+. Mcalc. for C110H
sodium and potassium adducts and plus tBu group. Lower masses were also
8 was prepared on a 2‐chlorotrityl resin preloaded with glycine. The RP‐HP
TOF‐MS peak for M + H+. Mcalc. for C106H151N23O30S2: 2291.65 Da. The o
a tBu group). C, Fragment 7a was prepared on a Fmoc‐Dbz NovaSyn TGR
profile of the crude product was obtained with method B (MALDI‐TOF‐M
domain in the future (Scheme 1C). Indeed, desulfurization/

deselenization protocols allow performing NCL also in the absence

of native cysteine residues. In this specific case, selenocysteine54 and

γ‐mercapto‐glutamine74 would be suitable precursors for Ser‐428

and Gln‐390. With this in mind, we incorporated the native Cys‐429

and Cys‐371 in the Acm‐protected form.

For the synthesis of [Cys(Acm)‐371,429, Cys‐390,428]‐IgG1‐Fc

371–450 (10), we prepared three new fragments (6–8) as shown in

Scheme 7. Fragment 6 was obtained with ~60% homogeneity. Frag-

ment 7a (the N‐terminally Thz‐protected version of 7) was obtained

by Fmoc‐SPPS on low‐loaded Fmoc‐Dbz NovaSyn TGR resin that

was preloaded manually with Fmoc‐Phe‐OH. Three pseudoproline

dipeptides were incorporated (Lys‐418‐ψSer‐419, Tyr‐411‐ψSer‐

412, and Asp‐403‐ψSer‐404). Fragment 8 was prepared by C‐terminal

thioesterification of the fully protected peptide acid in solution, and its

homogeneity was ~60%.

Then, we proceeded with the ligation of the three peptides,

starting with 6 and 7a that were mixed together in phosphate buffer

(pH 7) containing 6 M GuHCl (Scheme 8A). MPAA was added for in

situ conversion of the N‐acyl‐Nbz moiety into an aryl thioester. After

2‐hour reaction, methoxylamine was added at pH 4 and left react

for 6 hours to convert the N‐terminal thiazolidine into cysteine and

deliver peptide 9. Some impurities were present, which arose from
CL‐mediated assembly of [Cys(Acm)‐371,429, Cys‐390,428]‐IgG1‐Fc
ded with glycine. The RP‐HPLC profile of the crude product was

173N33O36S3: 2630.00 Da. The other annotated masses correspond to
detected, indicating the presence of deleted sequences). B, Fragment
LC profile of the crude product was obtained with method B (MALDI‐
ther annotated masses indicate the presence of deleted sequences and
resin by using three pseudoproline dipeptides (in red). The RP‐HPLC
S peak for M + H+. Mcalc. for C207H299N53O62S1: 4554.07 Da)



SCHEME 8 Synthesis of [Cys(Acm)‐371,429, Cys‐390,428]‐IgG1‐Fc 371‐450 (10) by tandem chemoselective ligation. A, Fragments 6 and 7a
were ligated in the presence of MPAA. The ligation product 9 was obtained after treatment with NH2OMe. The RP‐HPLC profile of the crude
product was obtained with method B. The mass spectrum of the major HPLC peak is shown (MALDI‐TOF‐MS peak for M + H+. Mcalc. for
C308H465N83O96S4: 6994.89 Da). The HPLC peaks labelled with * were attributed to the N‐terminally deprotected peptide acid deriving from
hydrolysis of peptide 7a (MALDI‐TOF‐MS peak for M + H+ = 4384.76 Da. Mcalc. for C198H294N50O61S1: 4382.91 Da) and its C‐terminal
methoxylamide derivative (MALDI‐TOF‐MS peak for M + H+ = 4414.20 Da. Mcalc. for C199H297N51O61S1: 4411.96 Da). B, The second ligation
between 9 and 8 was performed after removal of excess NH2OMe by gel filtration. Also, in this case, MPAA was added to convert the benzyl
thioester into an aryl thioester in situ. After 2.5 h, the ligation product 10 was isolated by RP‐HPLC. The RP‐HPLC profile of the collected fraction
was obtained with method B (MALDI‐TOF‐MS peak for M + H+. Mcalc. for C407H608N106O126S5: 9162.34 Da. The annotated lower masses
indicate the presence of deleted sequences)
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the hydrolysis and methoxylaminolysis of the residual amount of

unreacted peptide 7a. Before performing the second ligation with

the peptide thioester 8, the mixture was eluted through a pre‐

packed gel‐filtration column to remove the excess of methoxylamine

that, otherwise, would have reacted with 8. The eluate was
lyophilized, re‐dissolved in the ligation cocktail at pH 6.8 in the pres-

ence of MPAA, and left react with the peptide thioester 8 till full

consumption of the latter (Scheme 8B). The ligation product 10

was finally isolated by RP‐HPLC; however, some MPAA as well as

some impurities due to deleted sequences were still present.



FIGURE 2 Summary of the synthetic IgG1 Fc CH3 fragments of this study. All fragment precursors were obtained with homogeneity of ~60% as
crude products, except those colored in grey that were less homogeneous. The red/black ovals represent the ligation sites. The * represents
Met(O)‐432. On the top, the secondary structure (β‐strands and helical turns) composition of the IgG1 Fc CH3 domain is shown (based on the
crystal structure with PDB ID 1OQO)
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4 | CONCLUSIONS

In this work, we evaluated the synthesis of different fragments of the

IgG1 Fc CH3 domain with regard to peptide‐chain length and prepara-

tion of C‐terminal thioesters or thioester precursors. Stepwise elonga-

tion from the C‐terminal Gly‐450 by Fmoc‐SPPS became challenging

after Asn‐425. However, the simultaneous use of pseudoproline

dipeptides and a polar, low‐loaded resin allowed reaching Ser‐407

(fragment 1aTGT+ψ with 44 residues). Unfortunately, this fragment

could not be elongated further, but it was possible to assemble the

C‐terminal fragment 398 to 450 (1) by using NCL between an Nbz‐

activated peptide (1c, 398‐428) and an N‐terminal Cys‐peptide (1b,

429‐450). These results suggest that the C‐terminal region, once

reached a length of more than 22 residues, starts to aggregate, thus

preventing an efficient stepwise elongation. The presence of β‐sheet

breakers like pseudoprolines and the use of low‐loaded, highly swell-

ing resins partially reduced the formation of aggregates, but this was

not sufficient to obtain sequences larger than 44 residues, as also

shown for the 58‐residue long fragment 371 to 428 (5) (Figure 2).

However, optimization of the protocol for the stepwise Fmoc‐SPPS

might still be possible by the application of polyethylene glycol resins

like ChemMatrix,75 backbone‐amide protecting groups like Dmb

(dimethoxybenzyl)76,77 and Hmb (hydroxymethoxybenzyl),78 or the

O‐acyl isopeptide method.79-83 Moreover, heat‐assisted SPPS has

been recently very successful in the synthesis of very difficult

sequences.84-91

We did not investigate the accessibility of the N‐terminal frag-

ment 345 to 397 by stepwise elongation, but rather prepared the

two shorter fragments 2 and 3. Unfortunately, the Sal‐activated pep-

tide 2 was poorly soluble in the ligation solvent (pyridine/AcOH).

Thus, the assembly route to obtain the IgG1 Fc CH3 sequence was

redesigned on the base of only Cys‐based NCL. To test the feasibility

of this route, besides using the native Cys‐371, we decided to incor-

porate two non‐native Cys residues in place of Ser‐428 and Gln‐

390. The choice of the ligation points at these sites was dictated by

the following reasons: (1) the length of the four fragment precursors

was between 19 and 38; (2) the presence of the non‐native Cys‐428

allows the ligation with a fast‐reacting C‐terminal glycine thioester;

(3) the ligation at the native Cys‐429 was not ideal due to fast
degradation of the thioester precursor, which led us move the ligation

site at the non‐native Cys‐428; and (4) in future, the use of Sec‐428

and γ‐mercapto‐Gln‐390 would allow obtaining the native Ser‐428

and Gln‐390 residues upon deselenization/desulfurization. Three of

these fragments were ligated in a tandem reaction to give the

sequence 371–450 (10). Although this tandem ligation looks promis-

ing, the third ligation might be challenging, due to the presence of

threonine at the ligation site (Scheme 1). We conducted preliminary

ligation experiments between 3a (Scheme 5) and the C‐terminal

free acid of 8 (Scheme 7B). Peptide 3a contains the Dbz moiety at

the C‐terminal Thr‐370. As the Dbz peptide precursor 3a could not

be converted into the Nbz form by using 4‐nitrophenylchloroformate

in DCM, we repeated the reaction in DMF: indeed, Brik and coworkers

reported that the use of DMF instead of DCM could convert Dbz into

Nbz on a peptide bearing a C‐terminal leucine.63 Unfortunately, in our

case, the use of DMF did not solve the problem, and no Nbz peptide

was formed (probably, because of the presence of the β‐branched

threonine). Thus, we activated the Dbz peptide 3a by converting it

into an N‐acyl‐benzotriazole peptide by using NaNO2 at pH~3, as pre-

viously shown by Liu and coworkers.73 For the Acm cleavage from the

C‐terminal free acid of 8, we used the Pd‐catalyzed reaction reported

by Brik and coworkers.92 Both reactions were successful, but, unfortu-

nately, no ligation product was detected after 18‐hour reaction. We

did not try to change further the protocol, as the slow ligation rate

of the C‐terminal threonine is likely to prevent an efficient

synthesis. An alternative would be to move the third ligation site

between Gly‐375 and Phe‐376, which would be advantageous for

the preparation of the C‐terminal Nbz peptide precursor as well as

for the ligation rate. However, β‐mercapto‐Phe must be used, whose

synthesis and use in NCL have been previously reported.93 Another

way would be the stepwise synthesis of the segment 345 to 389,

which would avoid a third ligation.

In conclusion, this explorative study has shed light on the

behaviour of different fragments of the IgG1 Fc CH3 domain during

the standard Fmoc‐SPPS as well as NCL, which will be useful to plan

future syntheses. Once completed the CPS of the CH3 domain, it

will be necessary to test, if the synthetic bis(cysteinyl)‐polypeptide

chain can undergo oxidative folding and build the expected non‐

covalent homodimer.
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