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ABSTRACT
The widespread antigenic changes lead to the emergence of a new type of coronavirus (CoV) called
as severe acute respiratory syndrome (SARS)-CoV-2 that is immunologically different from the previous
circulating species. Angiotensin-converting enzyme-2 (ACE-2) is one of the most important receptors
on the cell membrane of the host cells (HCs) which its interaction with spike protein (SP) with a furin-
cleavage site results in the SARS-CoV-2 invasion. Hence, in this review, we presented an overview on
the interaction of ACE-2 and furin with SP. As several kinds of CoVs, from various genera, have at their
S1/S2 binding site a preserved site, we further surveyed the role of furin cleavage site (FCS) on the life
cycle of the CoV. Furthermore, we discussed that the small molecular inhibitors can limit the inter-
action of ACE-2 and furin with SP and can be used as potential therapeutic platforms to combat the
spreading CoV epidemic. Finally, some ongoing challenges and future prospects for the development
of potential drugs to promote targeting specific activities of the CoV were reviewed. In conclusion,
this review may pave the way for providing useful information about different compounds involved in
improving the effectiveness of CoV vaccine or drugs with minimum toxicity against human health.
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Introduction

At the end of December 2019, Chinese public health officials
announced to the World Health Organization (WHO) that a
new and unknown virus caused a disease with symptoms
similar to pneumonia in Wuhan (Khan & Fahad, 2020). They
immediately recognized that the virus was from the corona-
virus (CoV) family and was rapidly spreading out of Wuhan.
The WHO is seeking to identify, track and restrict a new dis-
ease from the CoV family called CoV disease 2019 (COVID-
19), which is still affecting many peoples in China and out-
breaking to other countries. This type of CoV is also spread-
ing in other countries such as Iran, Italy and South Korea
(Memberships & Join, 2020). With the number of CoVs cur-
rently increasing, the researchers are trying to figure out
what is the main cause of the virus to spread easily and
widely. Some genetic and structural analyzes have identified
the main characteristic of the virus, which could increase the
efficiency and speed of virus transmission between human

cells (Belouzard et al., 2012; Jaimes & Whittaker, 2018). Also,
some groups are investigating a receptor on cell membranes
that introduces the fusion of new CoV into human HCs
(Veljkovic et al., 2020; Zheng & Perlman, 2018). Both the cel-
lular and protein receptors of the virus provide potential tar-
gets for development of drugs against pathogen (Kaufmann
et al., 2018; Papadopoulos et al., 2017). However, some well-
developed experiments and promising data are required to
ensure such a mechanism. Indeed, exploring the transmission
mechanism of the virus is important to prevent its future
outbreaks. The COVID-19 spreads much more easily than the
SARS virus and infecting easily the people have been already
infected with SARS (Jiang et al., 2020; Lai et al., 2020; Liu
et al., 2020).

To infect a cell, viruses use spike protein (SP) to bind the
cell membrane, a process activated by specific cellular
enzymes such as trypsin, furin, and cathepsin L (Jaimes &
Whittaker, 2018; Li et al., 2017; Millet & Whittaker, 2015).
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Genomic analysis of the new CoV has shown that its SP dif-
fers from that of other viruses (Du et al., 2017; Li, 2016), indi-
cating that the protein has a site activated by a HC enzyme
called furin (Millet & Whittaker, 2015) (Figure 1).

This enzyme normally cleaves and activates a wide range
of substrates in different organisms (Figure 2a) (Braun &
Sauter, 2019). This enzyme is found in many human tissues,
including the lungs, liver and small intestine, which means
that the virus has the potential to invade different organs
(Belouzard et al., 2012; Heald-Sargent & Gallagher, 2012;
Scamuffa et al., 2006). The furin activation site (FAS) makes
the new CoV much different in cell entry than SARS, and
probably affects the stability of the virus and, consequently,
the transmission process (Li et al., 2015; Millet & Whittaker,
2014; Yamada & Liu, 2009). Several other groups have also
identified the site of activation to investigate how the virus
spreads among humans (Basak et al., 2007; Kim et al., 2016;
Kleine-Weber et al., 2018; Porter et al., 2014). They pointed
out that other viruses including influenza family viruses con-
tain these sites that are easily spread among people (Huang
et al., 2011; Menachery et al., 2014; Tang et al., 2020; Vlasak
et al., 1988 ). But in these viruses, the site of activation is
found on a protein called haemagglutinin, not on the SP
(Bernstein et al., 2020; Koopman et al., 2019; Lai et al., 2019).
However, some other researchers are more cautious about
the significant role of the activation site in helping CoV and
facilitating its spread (Amer et al., 2018; Van Doremalen
et al., 2013). Other scientists are also skeptical of comparing
the influenza viral activation sites with the new CoV trans-
mission channels (Heymann & Shindo, 2020; Yang et al.,
2005). The haemagglutinin protein at the surface of influenza
viruses is not the same as the SP in CoVs (Yin et al., 2016;
Zmora et al., 2018).

In other hand, the influenza virus that has caused the
deadliest recorded pandemic lacks even a FAS (Coutard
et al., 2020). Therefore, some studies on cellular or animal
models are required to assay the function of the activation
site. Indeed, CoVs are unpredictable and some experiments
should be developed to assess how to modify the activation
site. Some other experiments have done to explain why the
new CoVs successfully infects human cells (Huang et al.,
2020; Letko & Munster, 2020). Their experiments have shown
that the SP binds to the human cell receptor (Hulswit et al.,
2019). For example, a drug that blocks the receptor may
make CoV entry into cells difficult.

Interaction of furin and angiotensin converting
enzyme-2 (ACE-2) with SP

Furin and furin-like proteases belong to the group of propro-
tein convertases. Scientist have pointed out that among sev-
eral targets, the SP as fusogenic envelope glycoprotein of
SARS CoV, is a promising site for treatment of infectious dis-
eases (Li et al., 2018; Licitra et al., 2013). SPs mediate CoV
fusion and the entry of the CoV genetic material into the
human cell (Senathilake et al., 2020; Struck et al., 2012).
Afterwards, a SP-selective strategy, when used at the initial
phase of CoV infection is probably considered as a potential

approach to mitigate infection inside the body. The furin
induces the cleavage of SPs at the RNTR761#EV site
(Bergeron et al., 2005) and results in the production of two
segments: S1 and S2 (Figure 2b); each segment shows its
own biological activity. The S1 segment known as the globu-
lar section of SP mediates attachment of CoV to the receptor,
ACE-2 with dominance of a-helix structures (Li et al., 2003). A
193-resdiue fragment of SP has been determined as the pro-
tein-binding site (Wong et al., 2004). S2, known as the bio-
membrane-anchored stalk domain and leads to CoV–human
cell fusion (Prabakaran et al., 2004). Some other experiments
also exhibited that other biomembrane-anchored proprotein
convertases (PrCos), namely PoCo5B and PoCo7 cleave SPs.

In this regard, Basak et al. (2007) employing intramolecu-
larly quenched fluorogenic (IQF) proteins relied on SARS-CoV
SP claimed that PoCo5B and PoCo7 beside furin may result
in the cleavage of SPs. Kinetic studies showed that the cleav-
age of peptide occurred potentially by furin as well as
recombinant PoCo5B, but with a limited amount by PoCo7.
Furthermore, they demonstrated that the cleavage activity
could be inhibited by a PoCo-inhibitor, a1-PDX. Circular
dichroism intensities revealed that the content of b-sheet
conformation in PoCo increases after cleavage by furin
(Figure 2c). 1H nuclear magnetic resonance (NMR) spectros-
copy displayed that this peptide has a turn motif at its C-ter-
minal part, close to the cleavage site.

Coutard et al. (2020) revealed that the SP of the SARS-
CoV-2 possesses a furin-like cleavage site absent in CoV of
the same clade. The genome sequence revealed that SARS-
CoV-2 is included in lineage b of b-CoV (Figure 3a). Chen
et al. (2020) presented that SARS-CoV-2 as a newly detected
CoV shows a high level of similarity to SARS-CoV. The struc-
tural analysis of the receptor binding domain (RBD) of SP
from the two viruses show 72% similarity in residue sequen-
ces (Figure 3b). Molecular modeling studies depicted that
SARS-CoV-2 RBD provides a stronger attachment with ACE-2.
They found that a distinct Phe residue plays a key role in the
in the binding site due to its interaction with ACE-2.

Furin cleavage site

Several kinds of CoV, from various genera, have at their S1/
S2 binding site a furin cleavage site (FCS) (Belouzard et al.,
2012). An important phase in the life cycle of the CoV is the
human cell entry and fusion derived from proteolytic activity
of the relative fusion protein (FP) by respective proteases
(Jaimes & Whittaker, 2018). A conventional approach to
explore the CoV life cycle is to clone the FP gene into an
appropriate vector, transfect the cells, incubate with the
related protease, purify the protein and carry out the protein
assays (Cong et al., 2019; Li et al., 2019). This approach
shows a number of drawbacks: the need of viral genome,
expensive synthesizing process, availability of monoclonal
antibodies, and time-consuming process. Therefore, Jaimes
et al. (2019) reported the fluorogenic peptide cleavage ana-
lysis to assay the proteolytic activity of recombinant FP
which can be applied in the case of CoV SP in a less labor
and time intensive way.
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In another study, Xi et al. (2020) isolated one strain of
SARS-CoV-2 (ZJ01) in mild COVID-19 patient and reported
the presence of more than 30 specific gene mutation. The
theoretical analysis of FCS and the case alignment of CoV
family determined that FCS may be a crucial site of CoV evo-
lution. ZJ01 showed mutations close to FCS (F1-2), which led
to alterations in the conformation and the charge distribu-
tion on the surface of the SP. They employed Adaptive

Poisson-Boltzmann Solver (APBS) analysis and exhibited that
the binding site of furin was covered with a number of nega-
tive residues (Figure 4a). The F1 site of SARS-CoV-2, namely
ZJ01, Wuhan-Hu-1 and RaTG13 were almost covered with
positive moieties while SARS was covered by both mixed
negative and positive residues. F1 site of ZJ01 showed more
positive charge distribution in its head and more negative
residues in its basal site in comparison with Wuhan-Hu-1.

Figure 1. Schematic presentation of CoV (i), schematic of a protease cleavage site (ii), ribbon presentation of the structures of three HC proteases (iii), diagram of a
CoV life cycle (iv). Abbreviation: transmembrane serine protease (TMPRSS). Reprinted with permission form Ref. (Millet & Whittaker, 2015).

Figure 2. (a) Schematic illustration of peptide cleavage induced by furin in different organisms (Braun & Sauter, 2019). (b) Schematic illustration of the residue
sequence of SP from human SARS CoV [SP: signal peptide; FP: fusion peptide domain; HR-N: heptad repeat domain NH3þ terminal; HR-C: heptad repeat domain
COO- terminal; TMD: transmembrane domain; CT: cytosolic tail (Basak et al., 2007). (c) CD signals of QSARS-4 peptide after incubation with different concentrations
of recombinant furin (Basak et al., 2007). Reprinted with permission from Refs. (Basak et al., 2007; Braun & Sauter, 2019).
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The F2 site of GZ02 had negative charge distribution while
F2 site of Wuhan-Hu-1 and RaTG13 demonstrated a limited
level of positive moieties. ZJ01 displayed more positive
charge distribution in F2 site than the other species, most
likely derived from gene deletion. GZ02 presented a number
of negative charge distribution in F3 site while limited nega-
tive charge distribution was observed in SARS-CoV-2-associ-
ated virus (Figure 4a). Hence, they deduced that, the
mutation close to FCS site lead to a significant change in the

protein conformation and surface charges, which further
affected its interaction with the ligands (Xi et al., 2020).

Hoffmann et al. (2020) depicted that SARS-CoV-2 cell entry
relied on ACE-2 and TMPRSS2 and is limited by a protease
inhibitor. Indeed, exploring the cellular factors employed by
SARS-CoV-2 for entry might result in providing useful infor-
mation about viral outbreak and a number of therapeutic
approaches. Hoffmann et al. (2020) exhibited that SARS-CoV-
2 utilizes the SARS-CoV receptor ACE-2 for specific cellular

Figure 3. (a) Phylogenetic tree of some CoV from genera a-Cov and b-CoV, lineages a, b, c and d: SARS-CoV-2 (NC_045512.2), CoV-ZXC21 (MG772934), SARS-CoV
(NC_004718.3), SARS-like BM4821 (MG772934), HCoV-OC43 (AY391777), HKU9-1 (EF065513), HCoV-NL63 (KF530114.1), HCoV229E (KF514433.1), MERS-CoV
(NC019843.3), HKU1 (NC_006577.2) (i), code alignment and residue sequences of the S-protein from CoV-ZXC21 and SARS-CoV-2 (2019-nCoV) at the S1/S2 site
(Coutard et al., 2020). (b) Comparison of the structures SARS-CoV RBD and its interaction with ACE-2 by the obtained molecular models of SARS-CoV-2 RBD (Chen
et al., 2020). Reprinted with permission from Refs. (Chen et al., 2020; Coutard et al., 2020).
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internalization and the TMPRSS2 as a serine protease for SP
cleavage. A TMPRSS2 inhibitor can be developed in clinical
application to block the cellular internalization and might
result in the advancement of a therapeutic approach. In
general, they demonstrated crucial similarities between
SARS-CoV-2 and SARS-CoV infection and reported a promis-
ing target for development of anti-viral platforms (Figure 4b)
(Hoffmann et al., 2020).

Enzyme inhibitors as therapeutic platforms

The design of enzyme inhibitors as therapeutic platforms
against CoV require the control of multiple pharmacologic
features beyond the interaction and ACE-2- and furin-target-
ing drugs (Baron et al., 2020; Kong et al., 2020). A number of
these pharmacologic characteristics show their molecular
underpinning in chemical pathways within the biological sys-
tems. Examples of this include drug transport pathways,
blood circulation of drug, drug metabolism, and side effects
derived from the interactions of drug with a wide range of
enzymes (Zumla et al., 2016). Thus, some thermodynamic
and kinetic data in the pharmacological development of
drugs during preclinical studies are required.

As we overviewed so far, reducing the levels of ACE-2,
might provide a great deal of interest in fighting the CoV. In
a point of fact, ACE-2 can induce a protective impact against
CoV-stimulated lung damage by enhancing the formation of
the vasodilator angiotensin (Imai et al., 2005). Indeed, the
attachment of the SP of the CoV to the ACE-2 triggers a
reduction in the levels of ACE-2 (Kuba et al., 2005), most
likely stimulating lung injury. Xu et al. (2017) reported that
vitamin D can be used as a potential candidate to mitigate

lipopolysaccharide-induced acute lung damage via control of
the renin-angiotensin system. Therefore, it could be sug-
gested that vitamin D can control the outbreak of CoV
through inhibition of ACE-2. Gurwitz (2020) claimed that
angiotensin receptor blockers can be used as promising
SARS-CoV-2 therapeutics. Also, it has been suggested that
probable way of fighting the CoV could be the injection of
ACE-2 which will result in the preventing the interaction of
the CoV to off-infected cells and replenishing ACE-2 in
infected cells (Zhang et al., 2020). Some other studies have
indicated a close correlation between hypertension and heart
disease and CoV infection which may be associated with the
prescription of ACE-2 inhibitors (Fang et al., 2020). Indeed,
treatment of CoV infection with ACE-2 inhibitors leads to an
upregulation of this receptor especially by epithelial cells of
the lung followed by facilitation of infection with different
kinds of SARS-CoV (Li et al., 2017).

Based on these reports, some attention has been given to
the development of furin inhibitors as potential therapeutics
platform against SARS-CoV-2 infection. Although, a great
deal of research is required to exhibit experimentally this
assertion, the inhibition of furin or furin-like enzymes may
display a promising anti-viral platform. Actually, it has been
recently demonstrated that HCs infected by several kinds of
viruses stimulate an interferon-based activity to block the
enzymatic activity of furin-like enzymes (Lodermeyer et al.,
2013). It was also revealed that virus infection triggers the
upregulation of some receptors (Braun & Sauter, 2019; Kim
et al., 2015) that inhibit the furin trafficking in post-Golgi
compartments.

Also, based on the crystal structure of furin, some potent
inhibitors like 2,5-dideoxystreptamine-mediated inhibitor

Figure 4. (a) APBS studies pointed out the mutation close to FCS may lead to the changes in the charge distribution of SP (Xi et al., 2020). The similarity between
SARS-CoV and SARS-CoV-2 (Hoffmann et al., 2020). Reprinted with permission from Refs. (Hoffmann et al., 2020; Xi et al., 2020).
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were developed to be used in clinical trials (Dahms et al.,
2017). Because, furin-like enzymes contributed in a several
pathways, one crucial point would be to limit the systemic
inhibition that may lead to some adverse effects.
Consequently, it is most likely that such small molecule or
other active agents as promising drugs, probably adminis-
tered by inhalation and presenting a strong interaction with
furin to stimulate a prolonged inhibition, deserve to be
quickly analyzed to examine their anti-viral impact against
SARS-CoV-2 . In general, these details disclosed that inhibi-
tors of furin or furin-like enzymes may play a key role in
blocking virus outbreak.

Ongoing challenges and future perspective

ACE-2 exhibited the same primary structures patterns in ver-
tebrates’ lineages (Imai et al., 2005). Structural investigations
indicated that ACE-2 from these systems can efficiently inter-
act with RBD of SARS-CoV-2, inducing them all to serve as
promising hosts for the virus infection (Mathewson et al.,
2008; Poon & Peiris, 2020). Furthermore, it can be deduced
that small molecular and ligands inhibitors that can limit the
interaction of ACE-2 with RBD should be developed to com-
bat the spreading CoV epidemic (Chen et al., 2020;
Senathilake et al., 2020). Isolating and cultivating CoV in vitro
may not usually be practical or demand particular facilities
that are not accessible in every bioresearch laboratory.
Therefore, there is a necessity for developing some strategies
to assay the human health response to spread of emerging
CoV that can be performed in normal laboratory systems.
Apart from viruses targeting humans, several animal viruses
also have identical FPs, hence, exhibiting the comparable
features than their human sites. Purifying these kinds of
viruses can display some inevitable biological challenges,
making the application of pioneering devices to examine
them unavoidable.

Current drugs have limited efficacy in treating CoV in dif-
ferent populations and species. Given the high incidence of
CoV resistance, especially in immunocompromised patients,
the design of new drugs that target specific activities of the
virus and stop one or more stages of its infection cycle is
essential (Prajapat et al., 2020; Yang et al., 2020; Zhou &
Zhao, 2020). In recent years, most research has focused on
blocking virus transmission to the HC, RNA polymerase activ-
ity of the virus, and HC-virus interactions (Schaack & Mehle,
2019). Genetic changes, reappearance and emergence of
antigenic variants and transmission of CoV to humans
require extensive measures to control globalization.
Vaccination, drug follow-up, and immediate protection are
important tools for dealing with viral infections (Ahmed
et al., 2020).

Due to the possible genetic modification of CoV, produc-
ing a suitable vaccine against this disease is difficult (Kim
et al., 2016). Any changes in the antigenic sites of surface
proteins, especially SP, which is the most important surface
antigen of the virus, give rise to appearance of new strains
(Du et al., 2017; Kleine-Weber et al., 2018). ; Changes in these
regions affect the antibodies produced against the former

strains, and therefore have no role in the immunity against
this disease (Stebbing et al., 2020).

The emergence of resistant strains under drug selective
pressure and their limited availability in high-risk cases fur-
ther exacerbates the need for new therapeutic strategies (Zu
et al., 2020). In recent years, compounds affecting different
stages of the virus’s life cycle have been introduced and a
wide range of anti-viral strategies have been proposed,
including inhibiting the entry and stopping of viral replica-
tion or targeting intracellular signal transduction pathways
(Peeri et al., 2020). In recent decades, targeting viral proteins
inducing humoral and cellular immune responses have
received a great deal of attention in development of anti-
viral compounds (Zumla et al., 2016). The ability of biomolec-
ular systems such as cytokines, interleukins, and bacterial
derivatives to improve immunogenicity and xenografts is
being evaluated as a novel strategy, although immune sys-
tem regulatory proteins have received more attention.

Conclusion

CoVs are RNA viruses replicating in the cytoplasm of HCs. To
transfer their genetic materials into the human HCs, they are
dependent on the interaction of their envelope with the
human HC biomembrane. The SP mediates CoV entry and
conducts the interaction of CoV with receptor (ACE-2) on the
HCs as well as mediating the fusion of HC biomembrane and
viral envelope. Also, SARS-CoV-2 furin substrate site can
facilitate the cleavage of the SP. This review discussed an
overview on the role of ACE-2 and furin in the binding of
CoV with HC biomembrane mediated by SP. Also, we sur-
veyed the contribution of FCS on the CoV outbreak.
Moreover, we considered the ability of small molecular inhib-
itors on the limiting the interaction of ACE-2 and furin with
SP to be used as promising antiviral drugs or vaccines. This
paper may provide promising information about the devel-
opment of useful strategies to combat the spreading
CoV epidemic.
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