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The majority of medical workers are eager to obtain realistic and real-time CT 3D reconstruction results. However, autonomous or
involuntary motion of patients can cause blurring of CT images. For the 3D reconstruction scene of motion-blurred CT image, this
paper consists of two parts: firstly,a GAN image translation network deblurring algorithm is proposed to remove blurred results. This
algorithm adopts the clear image to supervise the training process of the blurred image, which creates solutions that are close to the
clear image. Secondly, this paper proposes a Marching Cubes (MC) algorithm based on the fusion of golden section and isosurface
direction smooth (GI-MC) for 3D reconstruction of CT images. The golden section algorithm is used to calculate the equivalent
points and normal vectors, which reduces the calculation numbers from four to one. The isosurface direction smooth algorithm
computes the mean value of the normal vector, so as to smooth the direction of all triangular patches in spatial arrangement. The
experimental results show that for different blurred angle and blurred amplitude, comparing the results of the Shannon entropy
ratio and peak signal-to-noise ratio, our GAN image translation network deblurring algorithm has better restoration than other
algorithms. Furthermore, for different types of liver patients, the reconstruction accuracy of our GI-MC algorithm is 9.9%, 7.7%,

and 3.9% higher than that of the traditional MC algorithm, Li’s algorithm, and Pratomo’s algorithm, respectively.

1. Introduction

The X-ray Computed Tomography (CT) [1] is an advanced
anatomical imaging technology, which provides clear images
with resolution less than 0.5mm. However, CT can only
provide 2D images of human organs, and doctors in most
cases have to rely on their experience to estimate the size
and shape of lesions from multiple 2D images. For most
doctors, there is a pressing need of the realistic and real-time
medical 3D organ results. The 3D visualization technology
can display the 3D shape of human organs [2], assisting
doctors to analyze the lesions and surrounding tissues, thus
providing anatomical structure information which cannot
be obtained via traditional ways. Based on this, the surgical
planning of orthomorphia and radiotherapy can be realized,
which greatly improves the accuracy of medical diagnosis.

In the process of CT imaging, autonomous or involuntary
motion of patients can cause blurring of CT images. The

autonomous motion includes unconscious movement or
body swing of the elderly or children. The involuntary motion
indicates the uncontrollable shake of patients (e.g., patients
with Parkinson’s Disease [3]). Due to the patient’s autono-
mous or nonautonomous movement, CT images will become
blurred, which will affect the accuracy of quantitative analysis
diagnosis and treatment. Motion blurring is a process in
which the pixel values of an image are linearly superposed
along the blur angle and magnitude [4]. And when the gray
value of each pixel of CT image changes by motion, as a result,
that the image has blurred ghosting in a certain direction.
This paper researches the CT blurred image caused by
patient’s motion. Sun et al. [5] proposed a method to
iteratively estimate and compensate motion during recon-
struction. In each iteration, the rigid body motion is analyzed
by CT image one by one; meanwhile, the system matrix is
updated. Zhang et al. [6] proposed a motion compensating a
total variation regularization approach, which conducts
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motion compensation by using interphase deformation
vector fields. The motion compensated results are viewed as
a static sequence, of which the regularization function was
imposed on. Wang et al. [7] used a sparse motion composition
method to obtain an estimation of pulmonary motion which
linearly combines the respiratory deformation vector field of
training samples, subsequently adopting parametric control
points on CT to refine the nonrigid pulmonary deformation.
Hernandez et al. [8] computed the cross-correlation between
every two successive projection images, which estimated the
motion waveform from the projection images. However, these
motion compensation methods obtain the patient’s motion
information by means of device tracking or multiframe merg-
ing, without saving effective information by its characteristics.
Consequently, it is difficult to be widely used in clinical setting.

To resolve the problem, we propose a GAN image transla-
tion network deblurring algorithm, which regards deblurring
as a special case of image-to-image translation. Therefore, our
GAN image translation network deblurring algorithm does
not require CT images with time sequence and can preserve
texture details in images. GAN is a semisupervised method
to train classifiers, which does not need many labeled training
sets. A generator is trained to generate realistic samples, while
a discriminator is trained to identify the differences between
real samples and generated samples [9].

For the 3D reconstruction scene of motion-blurred CT
image, this paper includes two parts: firstly, a GAN image
translation network deblurring algorithm is proposed to
remove blurred results. This algorithm matches the motion-
blurred CT images with the corresponding clear images
according to the pixels, and the clear image is used to supervise
the training process of the blurred image. Secondly, this paper
proposes a Marching Cubes (MC) algorithm [10] based on the
fusion of golden section and isosurface direction smooth (GI-
MC) for 3D reconstruction of CT images. The golden section
algorithm [11] calculates the equivalent points and normal
vectors, which reduces the calculation numbers from four to
one. The isosurface direction smooth algorithm calculates
the mean value of the normal vector, so as to smooth the direc-
tion of all triangular patches in spatial arrangement. The
experimental results show that for different blurred angle
and blurred amplitude, comparing the results of the Shannon
entropy ratio [12] and peak signal-to-noise ratio [13], our
GAN image translation network deblurring algorithm has
better restoration than other algorithms. Furthermore, for
different types of liver patients, the reconstruction accuracy
of our GI-MC algorithm is 9.9%, 7.7%, and 3.9% higher than
that of the traditional MC algorithm [14], Li’s algorithm
[15] and Pratomo’s algorithm [16], respectively.

2. Methodologies

2.1. Motion Blur Removal for CT Images. For CT imaging
system, there are many characteristics that would result in
the blurred image, such as ray width, ray interval, patient
motion, photon scattering, and system noise. It is a phenom-
enon of image degradation [17]. Ignoring the influence of
other characteristics, this paper only considers the image
blurring caused by patient motion.
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The blurred image caused by motion is described as
follows:

Iy(x,y) =P(x,y) * I.(x, ) + N, (1)

where I,(x,y) denotes the blurred image, (x,y) represents
the image pixel. P(x, y) denotes point spread function [18]
which describes the distribution characteristics of image
pixels. P(x,y) takes into account the change of angle and
amplitude caused by motion. I (x,y) represents the clear
image, * represents the convolution operation [19], and N
represents the noise component.

In order to restore clear CT images from motion-blurred
CT images, a GAN image translation network is proposed to
remove blurred results. Firstly, the U-net method is used to
construct the generator. The idea of skip connection in the
U-net method connects the coding network of blurred
images with the decoding network of clear images [20], so
that the features of the lower sampling layer of the coding
network can be transmitted directly to the upper sampling
layer of the decoding network, which makes the location of
the pixels in the network more accurate. Secondly, the loss
functions are selected. To restore clear images from blurred
images, both contour information and internal details need
to be considered. Therefore, this paper uses the combination
of reconstruction loss and adversarial loss. Reconstruction
loss is defined by L2 norm [21], which can excellently extract
high-frequency information in the image; thus, high-
precision image contour is obtained. Adversarial loss can
make the generator’s internal details closer to the real data
distribution [22]. As shown in Figure 1, when the training
process of GAN image translation network is completed,
the motion-blurred CT image is used as input, and the output
result is the clear CT image.

The generative adversarial networks (GAN) is proposed
by Goodfellow et al. [23], which consists of two competing
parts: the generator and the discriminator. The generator G
is a network for generating images, which generates images
G(z) by the input z. The discriminator D is used to judge
whether the image G(z) is “real.” Its input parameter x repre-
sents an image, and the output D(x) represents the probability
that x is a real image. In the training process, the goal of
generator G is to deceive discriminator D by generating
convincing perception samples. The goal of discriminator D
is to separate the generated images by G from the real ones.
Thus, G and D constitute a dynamic “game process.” The
game between G and D is the minimax value:

mGin Irjl)axg[log (D(x))] + g [Iog <1 - D(x”))], (2)

where E is the expectation and x~ = G(z).

2.1.1. Framework. The GAN image translation network
consists of a generator and a discriminator. Figure 2 shows
the framework of GAN image translation network. In the
training process, the generator is responsible for translating
CT blurred image into CT clear image, and its input is CT
blurred image. The discriminator identifies the difference
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F1GURE 2: The framework of our GAN image translation network.

between the clear image and the output image of the genera-
tor by the loss function. The input of the discriminator is the
clear image and the output image of the generator.

2.1.2. Network Architecture

(1) Generator. It includes the coding network of blurred
image and the decoding network of clear image [24]. The
idea of skip connection in U-net method is used to connect
the coding network of blurred image with the decoding
network of clear image.The features in the lower sampling
layer of the coding network can be directly transferred to
the upper sampling layer of the decoding network, which
can make the location of the pixels in the network more accu-
rate. The coding network adopts six convolution layers of
C64-C128-C256-C512-C512-C512, where C represents the
convolution layer and is represented by the blue box in
Figure 2. The decoding network uses six deconvolution layers
and one convolution layer of DC512-DC512-DC512-DC256-
DC128- DC64-C3, where DC represents the deconvolution
layer and is represented by the pink box in Figure 2. The size
of each convolution kernel is 5 x 5. The function of concate-
nation layer is to superimpose the lower sampling layer of
the coding network and the upper sampling layer of the
decoding network [25], which is represented by the green

box in Figure 2. In the convolution and deconvolution layers,
the LRelu activation function [26] is used after each layer,
while the tanh activation function [27] is used for the clear
image reconstruction of the last convolution layer.

(2) Discriminator. It is responsible for identifying the real or
fake effects of the input blurred images converted into clear
images. Our discriminator consists of four convolution layers
and two full connection layers. In Figure 2, the convolution
layer is represented by the blue box and the full connection
layer is represented by the yellow box. The input of the dis-
criminator consists of two parts: the clear image and the out-
put image of the generator. The output of the discriminator is
the probability of the similarity between the clear image and
the output image of the generator. In the convolution and full
connection layer, the LRelu activation function is used after
each layer, while the sigmoid activation function [28] is used
at the last layer of the full connection layer.

2.1.3. Objective Function. The objective function of this paper
consists of reconstruction loss and adversarial loss. The recon-
struction loss enables the generator to reconstruct according
to the characteristics of the discriminator, and its L2 norm
definition can better extract high-frequency information from



the image, consequently to obtain high-precision image con-
tours. The adversarial loss matches the generated image
according to each pixel and makes the internal details of the
generator be closer to the real data distribution. The objective
function is defined as follows:

+ ALadv’ (3)

L= LReconstruction

where set A = 0.01 according to the experience value.

(1) Reconstruction Loss. We express the pixel-wise Euclidean
distance between the generated image and the corresponding
clear image as follows:

_ 2
LReconstruction (IS’ If) = HG“’(IS) B Isz - Hf _f ‘2’ (4)

where f is the ground-truth of the clear image I and f repre-
sents the generated clear image which is the output of input
blurred image I after the generator G, that is f = G,,(I,).

(2) Adversarial Loss. The adversarial loss of our network is
defined as follows:

Ly (f.T) = ~E[tog D, ()] ~E|log (1-D, (7). (5)

where f and f have the same meaning in Formula (3). ¥ rep-
resents the parameters of the discriminator networks. D, (f)

and D, (f) are the output of the discriminator network. E
represents the expectation.

2.2. GI-MC Algorithm. To resolve the problems of low
computational efficiency and nonsmooth surface of the
reconstructed model of the traditional MC algorithm, this
paper proposes an MC algorithm based on the fusion of
golden section and isosurface direction smooth (GI-MC).
Firstly, the golden section algorithm calculates the equivalent
points and normal vectors, and the golden section points are
used to replace the intersection points of isosurfaces and edges
of cubes, which reduce the calculation numbers from four to
one. Secondly, due to the discontinuity of normal vectors of
triangular patches, there will be a “squamous effect” when
displaying the spatial isosurface generated by traditional MC
algorithm [29]. In order to get a better visual effect, this paper
proposes an isosurface direction smooth algorithm, which
smooths all triangular patches that constitute isosurface in
spatial arrangement. The flow chart of GI-MC algorithm is
shown in Figure 3.

2.2.1. Golden Section Algorithm. When calculating equivalent
points and normal vectors, it is complicated when using the
traditional linear interpolation algorithm. The edge shared
by adjacent cubes needs to be calculated twice, and one edge
shared by four cubes needs to be computed four times, which
seriously affects the running time. We adopt the golden
section algorithm [30] which determine the coordinates
and normal vectors of equivalent points through the golden
section points of edges.
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F1GuRre 3: The flow chart of GI-MC algorithm.

(1) Coordinates of Equivalent Points. If the intersection point
is on the x axis of the edge, the coordinates of the intersection
point are set as (i + (v/5 — 1)/2, j, k). If the intersection point
is on the y axis of the edge, the coordinates of the intersection
point are set as(i, j + (v/5 — 1)/2, k). If the intersection point
is on the z axis of the edge, the coordinates of the intersection
point are set as (i, j, k + (v/5 — 1)/2).

(2) Normal Vectors of Equivalent Points. If the intersection

point is on the x axis of the edge, the normal vector of the
intersection point is

N=N(ij.k)+ ((V5-1)/2) (N(i+ Lj k) = N(ivj. ).
(6)

If the intersection point is on the y axis of the edge, the
normal vector of the intersection point is

N =N(i,j, k) + ((\/5— 1)/2) (N(i,j+1,k) = N(i, j, k).
(7)

If the intersection point is on the z axis of the edge, the
normal vector of the intersection point is

N =N(i,j,k) + ((\/5— 1)/2) (N(irj,k+1) = N(i, j, k),
(8)

where N(i, j, k) represents the vector value of (i, j, k).

2.2.2. Isosurface Direction Smooth Algorithm. Step 1: obtain
the coordinate of any triangular patch ¢ on the isosurface,
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which is the 3D coordinate array P, of three vertex vectors of
the triangular patch ¢.

Step 2: calculate the unit normal vector N, [31] of the
triangular patch ¢.

Step 3: triangular patch direction smooth. By smooth-
ing all triangular patches that constitute isosurface in
spatial arrangement, the 3D results of the isosurface can
be obtained.

(1) Calculation of Unit Normal Vector. The data set { (¢,
N, )[i=1,2,---M} of the isosurface is obtained, where M is

the total number of triangular patches that construct the iso-
surface and N, is the unit normal vector of triangular patch

t;. Let P, be the 3D coordinate array of three vertex vec-
tors a;, b;, ¢; of any triangular patch t; on the isosurface:

xa, xb, xC
Po=1Ye W Vel 9)
Z, 2y 2

i

) _ |(bi_ai; X(Ci_at:) ) (10)

(2) Triangular Patch Direction Smooth. The main idea of
triangular patch direction smooth is to smooth the unit
normal vector field which constitutes the isosurface. Let
the arbitrary triangular patch be t;, where the triangular
patches in the neighborhood of the isosurface are, respec-
tively, ¢, 1, t,. N, ,N, ,---,N, “is the unit normal vec-
tor of ty,t,, -, t,. After smoothing the direction of the
isosurface with the mean of N, ,N, ,---,N, , the unit nor-

ne

mal vector N| of the triangular patch f, can be expressed
0

as follows:
1 & 1 &
N’ = N, = R(P, ), 11
o n+1];) t n+1k§') (P:,) (11)
(b —ay) x (¢ —ay)
R(P,) = , (12)
() [| (b —ag) x (¢ —a)||

where N, is the original unit normal vector of the trian-
gular patch t;, P, is the original 3D coordinate array of
triangular patch t;, and a;, by, ¢, are the three vertex vec-
tors of the triangular patch ¢,.

By traversing all triangular patches on the original
isosurface according to the above algorithm, the corre-
sponding new unit normal vector is {Nt/i|i= 1,2,---M}.
Therefore, the new geometric data set on the isosurface
is { (1, Ny)[i=1,2,---M}.

3. Experiments

In order to evaluate the effect of blurred parameter estima-
tion and motion-blurred restoration more accurately, the
motion-blurred image simulated by computer is used in the
experiment of this paper. The simulated blurred image is
generated on ThinkPad $3-490, of which the processor is
Intel® Core™ i5-8265U CPU at 1.60 GHz, and the memory
is 8 GB. The algorithm of the simulated blurred image is real-
ized by MATLAB 2018b. The GAN image translation net-
work deblurring algorithm runs on the computer equipped
with GeForce RTX 2080Ti GPU and is realized by Python.
Our GI-MC algorithm runs in ThinkPad S3-490 for 3D
reconstruction of the liver CT image, which is realized by
visual studio 2019.

For performance evaluation, we select 2000 CT images of
liver from the 3D-IRCADb-01 database [32] (https://www
.rcad.fr/research/3d-ircadb-01/). The 3D-IRCADb-01 data-
base is composed of the 3D CT-scans of 10 women and 10
men with liver tumours in 75% of cases. The 20 folders cor-
respond to 20 different patients, which, respectively, contain
about 100 images for each anonymized patient in DICOM
format. This paper takes the diagnosis results of a liver
tumour and a fatty liver patient as examples from the 3D-
IRCADD-01 database.

3.1. Experiment of Removing Motion Blur. To remove the
motion blur of CT image, we mainly research two aspects:
(1) identify the blurred angle, which is the direction of
motion, and (2) identify the blurred amplitude, which is the
amplitude of motion.

3.1.1. Generation of Simulated Blurred Image. The size of
the simulated blurred image is 512 x 512 pixels. Because
MATLAB has a library function of uniform linear motion,
which is the fspecial function. We use the fspecial function
to blur the image, and four different experimental param-
eters are set according to the blurred angle and amplitude.

(1) Blurred angle: set the blurred amplitude to 15
pixels, and the range of the blurred angle is 07,
30°, 60°, and 90°

(2) Blurred amplitude: set the blur angle to 45°, and
the range of the blurred amplitude is 5, 15, 20,
and 25 pixels.

As shown in Figure 4, (a) is one original CT image of the
liver tumour patient. The blurred amplitude was set to 15
pixels. (b) to (e) are the image results with blurred angles of
0%, 30°, 60°, and 90°. As shown in Figure 5, (a) is one original
CT image of the liver tumour patient. The blurred angle was
set to 45°. (b) to (e) are the image results with blurred ampli-
tudes of 5, 15, 20, and 25 pixels.

As shown in Figure 6, (a) is the original CT image of a
fatty liver patient. The blurred amplitude was set to 15 pixels.
(b) to (e) are the image results with blurred angles of 0°, 30°,
60°, and 90°. As shown in Figure 7, (a) is the original CT
image of the fatty liver patient. The blurred angle was set to
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(d)

F1GuURE 4: The results of different blurred angle of the liver tumour patient. (a) Original CT image. (b) Blurred angle of 0°. (c) Blurred angle of

30°. (d) Blurred angle of 60°. (e) Blurred angle of 90°.

()

(e)

F1GuRre 5: The results of different blurred amplitude of the liver tumour patient. (a) Original CT image. (b) Blurred amplitude of 5. (c) Blurred
amplitude of 15. (d) Blurred amplitude of 20. (e) Blurred amplitude of 25.

(b)

F1GURE 6: The results of different blurred angle of fatty liver patient. (a) Original CT image. (b) Blurred angle of 0°. (c) Blurred angle of 30°. (d)

Blurred angle of 60°. (e) Blurred angle of 90°.

(b)

F1GURE 7: The results of different blurred amplitudes of fatty liver patient. (a) Original CT image. (b) Blurred amplitude of 5. (c) Blurred
amplitude of 15. (d) Blurred amplitude of 20. (e) Blurred amplitude of 25.

45°. (b) to (e) are the image results with blurred amplitudes of
5, 15, 20, and 25 pixels.

3.1.2. Restoration of Blurred Image

(1) Qualitative Evaluation. For the CT image of the liver
tumour patient, Figure 8 shows the image restoration results
with blurred amplitude of 15 pixels and blurred angle of 90°.
Figure 8(a) is the clear image, and Figure 8(b) shows that the
image has ghosting in the moving direction, and the edge of
the image is blurred. Figure 8(c) is the restored image of our
algorithm, which found that the blurred edge of the image is

well recovered. Figure 8(c) is very close to Figure 8(a), which
shows our algorithm has a good restoration effect and almost
restore a clear image.

For the CT image of fatty liver patient, Figure 9 shows the
image restoration results with blurred angle of 45 and
blurred amplitude of 25 pixels. Figure 9(a) is a clear image.
Figure 9(b) shows that the motion blur makes the volume
of the liver larger and the CT image stretched, which will
cause errors in the clinical judgment. Figure 9(c) is the
restored image of our algorithm, which found that both the
interior and the edge of the image are well restored.
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FIGURE 9: The image restoration results of our algorithm of the fatty liver patient. (a) Clear image. (b) Blurred image. (c) Restored image.

F1GURE 10: The restored results of various algorithms of the liver tumour patient. (a) Clear image. (b) Blurred image. (c) Our approach. (d)
Sun et al.’s algorithm. (e) Zhang et al.’s algorithm. (f) Wang et al.’s algorithm. (g) Hernandez et al.’s algorithm.

For different image deblurring algorithms, our algorithm
is compared with Sun et al’s algorithm [5], Zhang et al’s
algorithm [6], Wang et al.’s algorithm [7], and Hernandez
et al.’s algorithm [8]. Figure 10 shows the comparison results
of the liver tumour patient of different algorithms with the
blurred amplitude of 25 pixels and blurred angle of 45°.
Figure 10(a) is a clear image. Figure 10(b) is a motion-
blurred image with a blurred amplitude of 25 pixels and a

blurred angle of 45°. Figure 10(c) is the restored image of
our algorithm. Figure 10(d) is the restored image of Sun et al.’s
algorithm. Figure 10(e) is the restored image of Zhang et al.’s
algorithm. Figure 10(f) is the restored image of Wang et al.’s
algorithm. Figure 10(g) is the restored image of Hernandez
et al’s algorithm. Compared with other four algorithms, the
edge blur of the image in our algorithm is restored better,
which is the most similar one to the one of clear image.
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FIGURE 11: The restored results of various algorithms of fatty liver patient. (a) Clear image. (b) Blurred image. (c) Our approach. (d) Sun
et al’s algorithm. (e) Zhang et al.’s algorithm. (f) Wang et al.’s algorithm. (g) Hernandez et al.’s algorithm.

Figure 11 shows the comparison results of fatty liver
patient of different algorithms with the blurred amplitude
of 25 pixels and blurred angle of 45°. Figure 11(a) is a clear
image. Figure 11(b) is a motion-blurred image with a blurred
amplitude of 25 pixels and a blurred angle of 45°. Figure 11(c)
is the restored image of our algorithm. Figure 11(d) is the
restored image of Sun et al.’s algorithm. Figure 11(e) is the
restored image of Zhang et al’s algorithm. Figure 11(f) is
the restored image of Wang et al.’s algorithm. Figure 11(g)
is the restored image of Hernandez et al.’s algorithm. Com-
pared with other four algorithms, both the interior and the
edge of the image are better restored.

(2) Quantitative Evaluation. We evaluate the effect of CT
image restoration using the following two evaluation indica-
tors: the Shannon entropy ratio [12] and the peak signal-
noise ratio (PSNR) [13].

(i) Shannon Entropy Ratio. Shannon entropy is a
method to measure uncertainty. Image restoration
will increase the information contained in the image,
and the corresponding entropy will be reduced. The
Shannon entropy ratio is defined as follows:

E =24, (13)

where E,; is the Shannon entropy of a blurred CT
image or restored CT image and the Shannon
entropy of clear CT image. The Shannon entropy is
defined as

N

E= ZPi log, (1/p;), (14)

i=1

where N is the number of histogram groups, and p; is
the frequency of the ith histogram of the image.

p;=Numy/(W * H), (15)

where W is the width of the image, H is the height
of the image, and Num; is the number of each his-
togram in the image. When p, =0, 0 x log,(1/0) =0
is set.

(ii) Peak Signal-Noise Ratio (PSNR). The PSNR is a sta-
tistical analysis indicator based on the gray value of
image pixels, which is defined by the mean square
error (MSE) between the original image I(i, j) and
the restored image K(i, j). Generally, the higher the
PSNR value, the better the image restoration.

2" -1y
PSNR =10 x log,, (%) (16)

MSE= — Y YL ) - K@ (17)

mn iz o

We use the Shannon entropy to describe the clarity of the
image. The process of image deblurring will increase the
information contained in the image, and the corresponding
entropy will be reduced. For the CT images of the liver
tumour patient, the results of the Shannon entropy ratio of
our algorithm, Sun et al.’s algorithm, Zhang et al.’s algorithm,
Wang et al.’s algorithm, and Hernandez et al.’s algorithm are
shown in Table 1. It can be seen that the Shannon entropy
ratio of the restored image is lower than the blurred image
before restoration. With the increase of the blurred ampli-
tude, the Shannon entropy ratio of the blurred image will
increase, and the Shannon entropy ratio of the restored
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TaBLE 1: The Shannon entropy ratio of different algorithms of the liver tumour patient.

Shannon entropy ratio

zl]l:;{leti de Bilrllglzd ]%lurred Our Sun et al’s Zhang et al’s Wang et al’s Hernand?z etal’s
image approach algorithm algorithm algorithm algorithm
0° 1.32 1.17 1.22 1.24 1.25 1.27
30° 1.37 1.21 1.25 1.27 1.28 1.29
5 pixels 45° 1.39 1.23 1.27 1.29 1.30 1.31
60° 1.41 1.26 1.30 1.32 1.33 1.35
90° 1.47 1.31 1.34 1.36 1.37 1.39
0° 1.49 1.22 1.27 1.30 1.31 1.33
30° 1.54 1.25 1.30 1.31 1.33 1.35
25 pixels 45° 1.58 1.27 1.33 1.35 1.36 1.39
60° 1.62 1.31 1.36 1.38 1.39 1.41
90° 1.67 1.34 1.40 1.42 1.44 1.47
TasBLE 2: The Shannon entropy ratio of different algorithms of the fatty liver patient.
Blurred Blurred ’ Shannon entrop),l ratio ) ’
amplitude angle Blurred Our Sun et al’s Zhang et al’s Wang et al’s Hernand§Z etal’s
image approach algorithm algorithm algorithm algorithm
0° 143 1.28 1.38 1.36 1.35 1.33
30° 1.48 1.32 1.40 1.38 1.37 1.35
5 pixels 45° 1.51 1.34 1.42 1.40 1.39 1.37
60° 1.54 1.37 1.45 1.43 1.42 1.40
90° 1.57 1.41 1.48 1.46 1.45 1.43
0 1.59 1.33 1.43 1.41 1.40 1.38
30° 1.63 1.36 1.46 1.44 1.43 1.41
25 pixels 45° 1.67 1.39 1.48 1.47 1.46 1.44
60° 1.71 1.42 1.51 1.49 1.48 1.46
90° 1.77 1.44 1.56 1.54 1.53 1.51

image will increase. With the increase of the blurred angle,
the Shannon entropy ratio of the blurred image and the
restored image also increase. The Shannon entropy ratio of
our algorithm is smaller than the other four representative
algorithms, which shows that our algorithm has the best
clarity.

For the CT images of the fatty liver patient, the results of
the Shannon entropy ratio of our algorithm, Sun et al.’s algo-
rithm, Zhang et al.’s algorithm, Wang et al.’s algorithm, and
Hernandez et al’s algorithm are shown in Table 2.With the
increase of the blurred amplitude, the Shannon entropy ratio
of the blurred image will increase, and the Shannon entropy
ratio of the restored image will increase. With the increase of
the blurred angle, the Shannon entropy ratio of the blurred
image and the restored image also increase. For different
blurred amplitudes and blurred angles, the Shannon entropy
ratio of our algorithm is smaller than the other four represen-
tative algorithms.

For the CT images of the liver tumour patient, when the
blurred amplitude is 25 pixels and blurred angle is 45°,
Figure 12 shows the PSNR value result of the blurred image,
our algorithm, and four other representative algorithms. The
PSNR value of the blurred image is 25.76, our algorithm is

29.39, Sun et al.’s algorithm is 28.13, Zhang et al.’s algorithm
is 27.62, Wang et al’s algorithm is 27.42, and Hernandez
et al.’s algorithm is 26.73. It can be seen that the PSNR value
of our algorithms is greater than the other four representative
algorithms, which achieves a better restoration effect.

For the CT images of fatty liver patient, when the blurred
amplitude is 25 pixels and the blurred angle is 45°, Figure 13
shows the PSNR value result of the blurred image, our algo-
rithm, and four other representative algorithms. The PSNR
value of the blurred image is 25.55, our algorithm is 29.72,
Sun et al’s algorithm is 26.83, Zhang et al.’s algorithm is
27.55, Wang et al’s algorithm is 27.71, and Hernandez
et al.’s algorithm is 28.44. It can be seen that the PSNR value
of our algorithm is greater than the other four representative
algorithms, which achieves a better restoration effect.

3.2. 3D Reconstruction of Liver. The abdominal CT image
contains multiple organs: liver, gallbladder, pancreas, spleen,
and kidney. Therefore, before 3D reconstruction of liver, it is
necessary to segment liver accurately in the abdominal CT
image. We use the region seeds growing algorithm [33] and
the histogram threshold [34] method to realize the segmenta-
tion of the liver in CT image. The region seeds growing
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algorithm can roughly determine the location of the liver and
avoid mistakenly segmenting other organs. The histogram
threshold method can determine the gray value range of liver
and segment it accurately. After the accurate segmentation of
the abdominal CT image, different algorithms can be used for
3D reconstruction.

We use the time and accuracy of 3D reconstruction as the
evaluation indicators to evaluate the performance of different
3D reconstruction algorithms. The comparison algorithms
mainly include the traditional MC algorithm [14], Li’s
algorithm [15], Pratomo’s algorithm [16], and our GI-MC
algorithm. Li’s algorithm is a typical mesh simplification
algorithm, which is a representative algorithm for speeding
up 3D reconstruction. Pratomo’s algorithm improves the
3D reconstruction accuracy by the denoising algorithm,

Computational and Mathematical Methods in Medicine

which is the representative algorithm to improve the 3D
reconstruction accuracy.

3D reconstruction is performed by CT images of liver
tumour and fatty liver patients. The size of the CT image
is 512 x 512 pixels. 135 CT images are selected for liver
tumour patient, and 113 CT images are selected for fatty
liver patient. In order to compare the influence of different
algorithms on the time and accuracy of 3D reconstruction,
we select four reconstruction algorithms mentioned above
for the experiments.

3.2.1. Time of 3D Reconstruction. In the time contrast exper-
iment of 3D reconstruction, two groups of CT images of liver
tumour and fatty liver patients are selected. The experiment
of each group is repeated 3 times, and then the average value
of three results is taken for research.

The computation of traditional MC algorithm is too
large, which seriously affects the computation time. For the
traditional MC algorithm, there are 135 CT images of 512
x 512 of a liver tumour patient, and 511 % 511 * 134 =
34990214 voxels need to be traversed. There are 113 CT
images of 512 x 512 of a fatty liver patient, and 511 * 511 =
112 = 29245552 voxels need to be traversed. Table 3 shows
the comparison results of 3D reconstruction time using four
algorithms. For two groups of liver patients, it can be seen
that the time of GI-MC algorithm has obvious advantages,
which greatly reduces the time of 3D reconstruction. It is
further found that with the increase of CT images, the num-
ber of scanning cubes increases, and our GI-MC algorithm
also brings a significant increase in speed.

3.2.2. Accuracy of 3D Reconstruction. The accuracy of 3D
reconstruction is the proportion of the liver 3D reconstruc-
tion area to the real liver area. To evaluate the results of liver
3D reconstruction, it is necessary to compare with the results
marked manually by doctors.

The 3D reconstruction results of four algorithms for CT
images of the liver tumour patient are shown in Figure 14.
The 3D reconstruction results of four algorithms for CT
images of the fatty liver patient are shown in Figure 15. It
can be seen that our GI-MC algorithm guarantees the recon-
struction quality, the liver surface is smooth, and the texture
is fine. There will be a “squamous effect” when displaying the
spatial isosurface generated by the traditional MC algorithm.
Li’s algorithm simplifies the mesh with the idea of edge dele-
tion, but the control of simplified process is difficult. It is easy
to lose the details of a small structure. Pratomo’s algorithm
improves the accuracy of 3D reconstruction by the denoising
algorithm, and its reconstruction result has less noise and
higher accuracy. Our GI-MC algorithm calculates the mean
value of the normal vector of each triangular patch and
smooths the direction of all triangular patches in spatial
arrangement; thus, the smooth surface of 3D reconstruction
of liver is ensured.

The 3D reconstruction results of the four algorithms are
compared with the results marked manually by doctors,
and then the accuracy of the 3D reconstruction is obtained.
From Table 4, the accuracy of the 3D reconstruction of differ-
ent algorithms can be clearly compared. For the liver tumour
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TaBLE 3: The comparison results of 3D reconstruction time using four algorithms.

3D reconstruction time(s)

Category Number of CT images Traditional MC algorithm  Li’s algorithm  Pratomo’s algorithm  GI-MC algorithm
Liver tumour patient 135 266.97 77.14 71.07 65.93
Fatty liver patient 113 213.62 61.97 56.57 52.27

(a) (b)

(©) (d)

FI1GURE 14: The 3D reconstruction results of four algorithms of the liver tumour patient. (a) Traditional MC algorithm. (b) Li’s algorithm. (c)

Pratomo’s algorithm. (d) Our GI-MC algorithm.

(© (d)

FiGure 15: The 3D reconstruction results of four algorithms of the fatty liver patient. (a) Traditional MC algorithm. (b) Li’s algorithm. (c)

Pratomo’s algorithm. (d) Our GI-MC algorithm.

TaBLE 4: The comparison results of 3D reconstruction accuracy of four algorithms.

3D reconstruction accuracy

Category Number of CT images Traditional MC algorithm  Li’s algorithm  Pratomo’s algorithm ~ GI-MC algorithm
Liver tumour patient 135 83.4% 85.7% 89.5% 93.8%
Fatty liver patient 113 82.2% 84.3% 88.1% 91.6%

patient, compared with the traditional MC algorithm, Li’s
algorithm, and Pratomo’s algorithm, the GI-MC algorithm
increases the reconstruction accuracy by 10.4%, 8.1%, and
4.3%, respectively. For the fatty liver patient, compared with
the traditional MC algorithm, Li’s algorithm, and Pratomo’s
algorithm, the GI-MC algorithm increases the reconstruction
accuracy by 9.4%, 7.3%, and 3.5%, respectively. For data from
two groups of liver patients, compared with the traditional
MC algorithm, Li’s algorithm, and Pratomo’s algorithm, the
GI-MC algorithm increases by an average of the reconstruc-
tion accuracy by 9.9%, 7.7%, and 3.9%.

4. Conclusion

In the process of CT imaging, influenced by patient’s auton-
omous or involuntary motion, CT images will be blurred. For
the 3D reconstruction scene of motion-blurred CT image,
this paper consists of two parts: firstly, a GAN image transla-
tion network deblurring algorithm is proposed to remove
blurred results. This algorithm adopts the clear image to
supervise the training process of the blurred image, which

creates solutions that are close to the clear image. Secondly,
this paper proposes an MC algorithm based on the fusion
of golden section and isosurface direction smooth (GI-MC)
for 3D reconstruction of CT images. The golden section algo-
rithm is used to calculate the equivalent points and normal
vectors, which reduce the calculation numbers from four to
one. The isosurface direction smooth algorithm computes
the mean value of the normal vector, so as to smooth the
direction of all triangular patches in spatial arrangement.
The experimental results show that for different blurred
angles and blurred amplitudes, comparing the results of the
Shannon entropy ratio and the peak signal-to-noise ratio,
our GAN image translation network deblurring algorithm
has better restoration than other algorithms. Furthermore,
for different types of liver patients, the reconstruction accu-
racy of our GI-MC algorithm is 9.9%, 7.7%, and 3.9% higher
than that of the traditional MC algorithm, Li’s algorithm, and
Pratomo’s algorithm, respectively.

When segmenting the liver region, the traditional manual
segmentation method depends on the doctor’s experience,
which may lead to the actual situation of the operation
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different from the previous analysis. If we can use the image
processing technology and 3D reconstruction technology to
accurately segment and reconstruct the abdominal CT
images and calculate the volume, the success rate of the oper-
ation will be improved. The volume is an important indicator
to judge liver disease, and it is also an important basis to
decide the operation. In the current clinical treatment, the
doctors estimate the volume roughly according to the 2D
CT image. Therefore, 3D reconstruction and volume calcula-
tion of liver will become a hot topic in the future.

Data Availability

For performance evaluation, we select 2000 CT images of liver
from the 3D-IRCADb-01 database [32] (https://www.ircad
Ar/research/3d-ircadb-01/). The 3D-IRCADD-01 database is
composed of the 3D CT-scans of 10 women and 10 men with
liver tumours in 75% of cases. The 20 folders correspond to 20
different patients, which, respectively, contain about 100
images for each anonymized patient in DICOM format. [32]
G. Pizaine, E. D. Angelini, I. Bloch and S. Makram-
Ebeid.Vessel geometry modeling and segmentation using
convolution surfaces and an implicit medial axis[C].2011
IEEE International Symposium on Biomedical Imaging:
From Nano to Macro, Chicago, IL, 2011:1421-1424.
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