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Abstract: Apurinic/apyrimidinic endonuclease 1/redox effector-1 (Ape1/Ref-1) is the major apurin-
ic/apyrimidinic (AP) endonuclease in mammalian cells. It functions mainly in the base excision
repair pathway to create a suitable substrate for DNA polymerases. Human Ape1 protein can activate
some transcription factors to varying degrees, dependent on its N-terminal, unstructured domain,
and some of the cysteines within it, apparently via a redox mechanism in some cases. Many cancer
studies also suggest that Ape1 has potential for prognosis in terms of the protein level or intracellular
localization. While homozygous disruption of the Ape1 structural gene APEX1 in mice causes
embryonic lethality, and most studies in cell culture indicate that the expression of Ape1 is essential,
some recent studies reported the isolation of viable APEX1 knockout cells with only mild phenotypes.
It has not been established by what mechanism the Ape1-null cell lines cope with the endogenous
DNA damage that the enzyme normally handles. We review the enzymatic and other activities of
Ape1 and the recent studies of the properties of the APEX1 knockout lines. The APEX1 deletions
in CH12F3 and HEK293 FT provide an opportunity to test for possible off-target effects of Ape1
inhibition. For this work, we tested the Ape1 endonuclease inhibitor Compound 3 and the redox
inhibitor APX2009. Our results confirmed that both APEX1 knockout cell lines are modestly more
sensitive to killing by an alkylating agent than their Ape1-proficient cells. Surprisingly, the knockout
lines showed equal sensitivity to direct killing by either inhibitor, despite the lack of the target protein.
Moreover, the CH12F3 APEX1 knockout was even more sensitive to Compound 3 than its APEX1+

counterpart. Thus, it appears that both Compound 3 and APX2009 have off-target effects. In cases
where this issue may be important, it is advisable that more specific endpoints than cell survival be
tested for establishing mechanism.

Keywords: Ape1; APEX1; base excision repair; redox; Ape1 inhibitor; knockout; CH12F3; HEK293
FT; Compound 3; APX2009

1. Introduction

Genomic DNA is under the relentless threat of molecular decay due to endogenous
and exogenous damage, which threatens genetic stability. Reactive oxygen species (ROS),
notably the byproducts of aerobic metabolism, produce an array of DNA lesions, including
8-oxoguanine (8-oxoG) and thymine glycol. Hydrolysis and various other reactive metabo-
lites add many other DNA lesions to this burden [1]. Many of these lesions disrupt DNA
structure only slightly or not at all, but they nonetheless can exert mutagenic or cytotoxic
effects if left unrepaired. Ring-opened aldehyde apurinic/apyrimidinic (AP) sites can form
a covalent bond with neighboring nucleotides or histone lysines, which can result in highly
toxic DNA interstrand cross-links and histone-DNA cross-links [2,3].

Base excision DNA repair (BER) is the frontline process that deals with most of the
small lesions. Following the removal of a damaged base by a DNA glycosylase, the 5′-
phosphodiester bond of the resulting apurinic/apyrimidinic (AP) site is cleaved by Ape1;
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that enzyme also cleaves spontaneous hydrolytic AP sites. The gap-filling reaction is
finished by other BER proteins. Ape1 is also reported to be involved in activating some
transcription factors by maintaining their reduced forms; for this, the protein is also called
Redox effector-1 (Ref-1). This role may contribute to cellular defenses against oxidative
stress. For example, Ape1 can induce the tetramerization and expression of transcrip-
tion factor p53, which can then upregulate the expression of superoxide dismutase 2 [4].
However, the detailed mechanism by which Ape1 modulates transcription factors remains
unclear. A current model is via thiol exchange, with one Ape1 cysteine attacking a disulfide
bond in the target protein, eventually resolving to yield the reduced target protein (and
oxidized Ape1). Cysteine-65 of Ape1 has been implicated in this process, despite its being
sequestered inside the protein structure [5].

Despite broad interest in the roles of Ape1 in BER and transcriptional control, animal
studies have been limited because the APEX1 gene is essential and knockouts are embryonic-
lethal. APEX1 conditional knockout mice have been generated by the Cre/lox method,
but they still retain considerable amounts of Ape1 in some organs even after the knockout
system is activated. Mice haploinsufficient for Ape1 are more sensitive to oxidative stress
and have a higher chance of developing adenocarcinoma and lymphoma [6]. Surprisingly,
a human APEX1 transgene could not compensate for the murine APEX1 knockout (APEX1-
KO) during mouse embryo development, suggesting the importance of dynamic Ape1
expression regulation [7]. This review will summarize the biological function of Ape1 in
the order of its activities based on knockout studies, and we will assess the prospects for
Ape1 as a target for cancer therapy.

2. Ape1 Overview
2.1. Base Excision Repair and DNA End Processing

BER corrects much of the oxidatively-induced and other endogenous base damage in
most organisms, including humans. The first step of BER is the removal of the damaged
base by a DNA glycosylase, which results in an AP site. If the DNA glycosylase is monofunc-
tional, in mammalian cells the AP site will first be processed by Ape1. Ape1 hydrolyzes the
5′ phosphodiester bond at the AP site, leaving a normal 3′-OH nucleotide on one side and a
5′-deoxyribose-5-phosphate (5′-dRP) on the other. Some DNA glycosylases are bifunctional,
able to further process the AP site through a β-lyase activity (e.g., OGG1) or a β,δ-lyase
activity (e.g., NEIL1). β-elimination produces a 3′-terminal unsaturated hydroxyaldehyde,
which must be removed by Ape1 to allow DNA synthesis, and a normal 5′-phosphate.
β,δ-elimination leaves a 3′-phosphate and a 5′-phosphate, bracketing a small gap. In that
case, polynucleotide kinase phosphatase (PNKP) provides a DNA synthesis primer by
removing the 3′-phosphate, which Ape1 does very inefficiently [1]. The next step is gap
filling. During short patch BER (SP-BER), Ape1, Polβ, X-ray repair cross-complementing
protein 1 (Xrcc1) in complex with DNA ligase IIIα (Lig3), and Poly(ADP-ribose) polymerase
(PARP) are consecutively recruited to the lesion for repair. Polβ also removes the 5′-dRP by
using a dRP lyase activity in its separable N-terminal domain, with the polymerase insert-
ing a nucleotide to replace the damaged one. Finally, Lig3 can seal the nick. Proliferating
cell nuclear antigen (PCNA), Ape1, Polβ (or DNA polymerase δ/ε in proliferating cells),
DNA ligase I (Lig1), PARP, and Flap endonuclease 1 (Fen1) work together to conduct long
patch BER (LP-BER), which involves strand replacement DNA synthesis. The resulting flap
is cleaved by Fen1 and the nick sealed by Lig1.

Ape1 uses the same active site to conduct exonuclease and endonuclease activity.
For correctly paired nucleotides, the Ape1 exonuclease activity is only ~1% of the AP
endonuclease activity; for mismatched nucleotides the activity can be up to 10% of the AP
endonuclease. The Ape1 exonuclease may contribute to the fidelity of BER, since Polβ lacks
intrinsic or other associated 3′-exonuclease proofreading activity, with an error rate around
10−4 (vs. 10−6 or better for replication polymerases) [8]. Ape1 exonuclease activity can act
on a variety of other substrates, including the nucleoside analog β-l-dioxolane-cytidine and
a biotinylated nucleotide [9,10]. However, Ape1′s exonuclease activity varies on different
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substrate structures. For example, the Ape1 exonuclease activity is lower for blunt-end
substrates than for substrates with recessed 3′-ends [10]. It is worth mentioning that Ape1
cannot excise nucleotides from substrates containing more than one mismatched 3′-residue.

Ape1 acts as an end processor in single-strand break repair. Single-strand breaks (SSB),
which can result from free radical attack or spontaneous β-elimination at an AP site, is
another prevalent type of lesion. Unlike the SSB generated during BER, these SSB are not
sheltered by proteins and they need to be end-processed before DNA polymerases and
DNA ligases can act [11]. Although most bulky adducts and double helix-distorting lesions
are repaired by nucleotide excision repair, that pathway is unable to remove lesions at
the end of single-strand breaks or double-strand breaks. Ape1 can excise bulky lesions
on recessed 5′ ends, blunt ends, and 3′ overhangs shorter than two nucleotides [12]. In
addition, Lin et al., pointed out that Ape1 can initiate 3′ end resection on SSB and is
indispensable for inducing the ATR-Chk1 signaling pathway in Xenopus extracts [13]. The
homologous Ape2 protein has much weaker AP endonuclease activity than does Ape1, but
Ape2 operates to remove certain types of blocked DNA 3′ termini [14]

2.2. Redox Signaling and Oxidative G-Quadruplex Formation in Gene Expression

Genome instability, resistance to cell death, senescence, and angiogenesis are some
of the hallmarks of cancer, and Ape1 may function in most of these processes. A meta-
analysis study concluded that a high Ape1 expression level is associated with a short
overall survival rate of patients with solid tumors [15]. This seems paradoxical because the
primary role of Ape1 seems to be helping maintain genetic stability by repairing damaged
DNA and inducing cell apoptosis by activating p53. However, some cancer cells may hijack
this process to resist DNA damage induced by chemotherapy. Part of the reason for the
upregulation of Ape1 could relate to the high ROS level in cancer cells [16]. For example,
knockdown of Ape1 by siRNA in B-lymphoblastoid TK6 cells and colon tumor HCT116
cells dramatically sensitized the cells to killing by the antitumor drug bleomycin or to X-ray
treatment [17].

Ape1 has been reported to activate various transcription factors, including AP-1, HIF-
1α, and NF-κB. The mechanism of this activation is thought to be via a redox reaction [18–20].
According to the Ape1 co-crystal structure with DNA [21], no disulfide bond can form
between any two cysteine residues. Homology analysis revealed that, except for Cys 65,
which is unique to mammals, the rest of the cysteines are conserved among vertebrates.
Single cysteine-to-alanine mutations revealed that only C65A abolished Ape1-induced
AP-1 DNA binding [22,23]. In addition, cysteine substitution of zebrafish Ape1 Thr58,
equivalent to Cys65 in mammalian Ape1, conferred redox activity on the zebrafish protein
expressed in human cells [24]. Further cysteine-to-alanine substitutions showed that Ape1
C93A/C99A double mutations lost redox activity and Ape1 with all cysteines substituted
except Cys65, Cys93, and Cys99 retained the redox activity [25]. Two other studies [20,26]
found that Cys65 (Cys64 in murine Ape1) was unnecessary for the Ape1 redox activity.

Ape1 is also proposed to modulate transcription by stabilizing G-quadruplexes in
certain promotors. Guanine is the DNA base most susceptible to oxidative damage due
to its low redox potential [27]. Therefore, lesions such as 8-oxoG can form throughout the
genome when ROS accumulates. Within a gene body, 8-oxoG can stall transcription [28,29].
However, 8-oxoG in a promotor can induce the formation of BER-stabilized G-quadruplexes
that enhance gene expression [30]. In this scenario, Ogg1 first excises the 8-oxoG base and
hands the AP repair intermediate to Ape1. The AP site and BER machinery destabilize the
normal double helix structure and lower the energy barrier for forming G-quadruplexes
in some sequences [31]. The AP endonuclease of Ape1 is highly attenuated at abasic sites
in certain parts of a G-quadruplex structure, compared with its activity on double-strand
DNA [32]. In such cases, rather than incising the phosphodiester bond, Ape1 now helps
stabilize these G-quadruplexes. The natively unstructured Ape1 N-terminus is essential for
this type of binding, with the acetylation of N-terminal lysines fine-tuning the residence
time of bound Ape1 [33]. Recent studies found that some key oncogenes, including HIF-1α,
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VEGF, and c-MYC, have at least one G-quadruplex in their promoter [34–36]. These dual
and overlapping functions (repair and gene expression) highlight the potential of Ape1 as
a cancer therapy target. Ape1 inhibitors that separately target either the redox activity or
the nuclease activity are available, some of them now undergoing clinical trials, which will
be discussed in a later section.

2.3. RNA Processing

RNA accounts for 80–90% of a cell’s total nucleic acid and is more vulnerable to
damage than is DNA [37]. All the same sources of damage mentioned earlier for DNA also
act on RNA, which is further susceptible to many nucleases in the cell. Damaged gene-
coding mRNA can produce truncated or misfolded proteins, while damaged non-coding
mRNAs can compromise gene regulation [38,39].

AP endonuclease activity for RNA and the ribonuclease H activity were first observed
for Ape1 in the context of lesion-containing DNA/RNA hybrids [40]. In addition, single-
strand RNA endonuclease, weak 3′-phosphatase, and 3′-exoribonuclease activities have
also been reported for Ape1, and they depend on the same active site as the DNA-cleaving
nuclease [40,41]. Therefore, impairing the RNase H activity without disturbing the AP
endonuclease activity is a significant barrier to determining the biological relevance of
these activities.

Lee et al., first reported that Ape1 could cleave c-Myc rRNA between UA and CA
in single-strand or weakly paired regions to control the amount of the transcript [42,43].
Tell et al., [44] found that Ape1, through its N-terminal domain, physically interacts with
nucleophosmin (Npm1) and colocalizes in the nucleolus. This interaction is disrupted by
the acetylation of some N-terminal Ape1 lysine residues, which releases additional enzyme
into the rest of the nucleus, suggesting that this response allows a rapid deployment of
BER in the face of DNA damage [44]. Suppression of Ape1 results in the accumulation
of oxidized RNA and reduced protein synthesis [45]. Although Ape1 lacks the canonical
mitochondrial targeting signal, it has been found in mitochondria [45] and protects the
organelle’s DNA and RNA [46–48].

2.4. Ape1 Knockout Cell Lines: How Do They Survive?

The biological function of Ape1 has been studied using genetic knockout and RNAi-
mediated knockdown approaches. Independent studies in two different mouse strains
both showed that the homozygous deletion of murine APEX1 leads to embryonic degen-
eration after implantation, in one case by day 5.5 and in others by day 9.5 [49–51], with
degeneration occurring throughout the embryo. However, these studies merely indicated
the critical importance of Ape1 without shedding light on which of its activities might be
the essential one(s).

Recently, two APEX1 conditional knockout mouse models were developed to study
the relationship between Ape1 and senescence or nervous system development. A tissue-
specific APEX1-KO in the central and peripheral nervous system did not discernibly affect
embryonic development and pups were born in Mendelian ratios [51]. However, the rapid
accumulation of DNA damage, accompanied by neuronal degeneration, was observed
soon after birth, with all the animals dead by 3 weeks of age [51]. Li et al., [52] induced
APEX1-KO in all tissues using an inducible Cre/lox system. Mice that lost APEX1 earlier
(day 7 or day 12 after birth) exhibited severe dysfunction phenotypes, including impaired
growth, reduced organ size, and premature senescence, with more than 80% of the animals
dying before day 28. Mice that lost APEX1 later (6 weeks) exhibited milder defects but
did show clear signs of premature aging by 8 months [52]. Although both studies failed to
eliminate Ape1 protein completely, they indicated that the effects of Ape1 deficiency vary
in different developmental stages and organs.

Generally, APEX1 haploinsufficiency or knockdown phenotypes are similar to but
milder than those with APEX1 homozygous knockouts. Heterozygous APEX1-KO mice
showed an increased sensitivity to DNA-damaging agents (e.g., ultraviolet-B radiation,
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2-nitropropane, and azoxymethane) and redox dysregulation, accompanied by an increased
frequency of spontaneous tumors [6,53–55]. Given the limitations of animal studies, efforts
to identify the Ape1 activities required for survival have been addressed by manipulating
cells in culture. Two independent studies confirmed the vital role of the Ape1 endonuclease
in a mouse line [7] and in multiple human cell lines [56], with the cysteine-64/65 residue
being unnecessary for cell survival. Suppression of Ape1 via siRNA in HCT116 (colon
tumor), MCF7 (breast tumor), or TK6 (normal but immortalized human lymphoblasts)
led to cell cycle arrest within 48 h, accompanied by the accumulation of abasic damage
in genomic DNA and the activation of apoptosis [56]. These defects were all reversed
by the expression of the non-homologous and structurally unrelated yeast Apn1 protein,
providing very clear confirmation of the importance of supporting BER. Izumi et al., used
vectors expressing different mutant Ape1 proteins in cells expressing an inducible APEX1-
KO system. The results showed that the expression of Ape1 lacking the redox activity
rescued the apoptotic phenotype, while nuclease-defective Ape1 or Ape1 mutated in Lys6
and Lys7 did not [7].

Interestingly, emerging studies reported that partial Ape1 deficiency did not detectably
affect the replication of HeLa cells, CH12F3 cells, HEK293 FT cells, HCT116 cells, and
HCC1937 cells [57–60]. The first report of a viable APEX1-KO was in a study addressing
the role of Ape1 in AID-mediated class switch recombination in Ig genes [61], in which a
rescue vector expressing Ape1 was maintained while all 3 APEX1 copies in the hypotriploid
mouse line CH12F3 were deleted. Surprisingly, removal of the rescue plasmid did not
affect cell proliferation, although the complete APEX1-KO did sensitize cells to the simple
alkylating agent methylmethane sulfonate (MMS) [61]. Recently, a total knockout of APEX1
in (human) HEK293 FT cells (which also have three copies of the gene) gave a very similar
result to that of CH12F3 cells; there was no impact on cell proliferation and only a modest
increase in MMS sensitivity [59]. A severe Ape1 knockdown leads to more unrepaired AP
sites in genomic DNA [56], but the mRNA levels of both monofunctional DNA glycosylases
(e.g., MutyH, Ung) and multifunctional DNA glycosylases (e.g., Ogg1 and Neil2) were not
significantly changed [54,59,62]. Thus, DNA glycosylase expression was not changed to
compensate for the Ape1 deficiency and the extra unrepaired AP sites most likely reflect
sluggish BER, with an accumulation of this intermediate. In this context, Ape1-deficient
cells might have increased tolerance of AP sites in the genome. Another possibility is
that other DNA repair pathways are elevated as a compensating mechanism for the loss
of Ape1.

2.5. Off-Target Effects in Cell Killing by Ape1 Inhibitors

Inhibitors are simple and effective tools with which to study the biological functions of
a protein, although their effectiveness can be limited by their targeting specificity. For Ape1,
inhibitors have been important reagents in efforts to distinguish which of its activities
underlies which phenotype. Inhibitors have been developed with specificity for either the
nuclease [63–67] (Table 1) or the redox activity [23,68–71] (Table 2). Moreover, an inhibitor
of the Ape1 redox activity is now also in clinical trials for a rare ocular disease [69]. While
it may not matter for the clinical effectiveness of current applications, off-target effects of
inhibitors could produce misleading conclusions during further drug development. As
best we can tell from the published literature, the Ape1 inhibitors have not been thoroughly
tested for possible off-target effects. Here we list some of the widely used Ape1 inhibitors
and summarize the data on their possible off-target effects (Tables 1 and 2).
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Table 1. Major Ape1 endonuclease inhibitors and their characteristics.

Inhibitor Name Ape1 AP
Endonuclease Assay

AP Site Reactivity
of Compound

Ape1 Redox
Activity Other Ape1 Activity Other DNA

Repair Pathways

Compound 3 [63] HeLa WCE * incision
assay NA * NA Ape1 AP site

binding not affected NA

Lucanthone
[64,65]

U251-MG
glioblastoma

multiforme cell WCE
incision assay

Enzyme digestion
assay; no binding No effect Did not affect

exonuclease activity NA

CRT0044876 [66] Recombinant Ape1
incision assay

Enzyme digestion
assay; no binding NA

3′-phosphatase and
3′-phosphoglycolate
diesterase activities

not affected

Did not potentiate
the cytotoxicity of
ionizing radiation

or UV light

AR03 (Synonym:
BMH-23) [67]

SF767 cell WCE
incision assay

Fluorescence
intercalation
displacement

assay; no binding

Did not affect
AP-1 DNA

binding in vitro
NA NA

* Note: WCE—whole cell extract; NA—data not available.

Table 2. Major Ape1 redox inhibitors and their characteristics.

Inhibitor Name
Transcription Factor Target Ape1 Endo

ActivityNF-kB AP-1 HIF-1a

APX2009 [68,69]
Transactivation in a
cell-based reporter

assay system

Electrophoretic
mobility shift assay

(EMSA *)
NA * In vitro AP site

cleavage increased

E3330 (APX3330)
[23,70]

Transactivation in a
cell-based reporter
assay system and

EMSA

Transactivation in a
cell-based reporter
assay system and

EMSA

EMSA In vitro AP site
digestion; no effect

C10 [71] NA EMSA; Inhibited NA In vitro AP site
digestion; no effect

* Note: EMSA—electrophoretic mobility shift assay; NA—data not available.

3. Materials and Methods
3.1. MTT Cell Viability Assay

HEK293 FT wild-type and APEX1-KO cells were plated into 96-well plates at a den-
sity of 1.3 × 104 cells/well in DMEM with 10% fetal bovine serum (FBS) and antibi-
otic/antimycotic mix (Sigma, A5955-100, St. Louis, MI, USA). CH12F3 wild-type and
APEX1-KO cells were collected by centrifugation and resuspended in phenol red-free
RPMI-1640 with L-glutamine, 10% FBS, and antibiotic/antimycotic mix (Sigma, A5955-100,
St. Louis, MI, USA) and then plated on 96-well plates at a density of 2.2 × 104 cells/well.
The plates were incubated for 24 h at 37 ◦C in a 5% CO2 humidified incubator. Immediately
prior to use, the Ape1 inhibitors and methylmethane sulfonate (MMS) were diluted with
a culture medium containing 3% FBS. For both HEK293 FT and CH12F3 cells, the FBS in
the medium was reduced from 10% to 3% before the addition of inhibitors or MMS. After
24 h of treatment, MTT (3-(4,5-dethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was
then added at a concentration of 0.5 mg/mL, followed by a 3-h incubation. Stop solution
(1% SDS and 0.01 M HCl) was used to dissolve formazan crystals, and the absorbance was
measured at 590 nm.

3.2. Western Blotting

Cells were collected by scraping (HEK293 FT) or centrifugation (CH12F3) and lysed
in radioimmunoprecipitation assay (RIPA) buffer (150 mM NaCl, 1% NP-40, 0.5% sodium
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deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 50 mM Tris-HCl, pH = 8.0, and complete
protease inhibitor cocktail (Roche, 11697498001, Indianapolis, IN, USA). An aliquot of
each protein sample was used to determine the protein concentration by Bradford assay
(Bio-Rad, 5000006, Hercules, CA, USA). The remainder of the protein samples were boiled
in Laemmli buffer (2% SDS, 5% 2-mercaptoethanol, 10% glycerol, 0.01% bromophenol
blue, and 0.062 M Tris-HCl, pH 6.7) for 5 min and diluted to a protein concentration of
1 mg/mL. Protein samples were resolved in 10% SDS- polyacrylamide gels according to
the Thermo-Fisher gel casting protocol (Thermo-Fisher Document Part 0909.INS, Waltham,
MA, USA) and transferred to hydrophilic polyvinylidene fluoride membranes (Sigma,
IPFL20200, St. Louis, MI, USA). The membranes were blocked in 5% non-fat milk for
1 h at room temperature and incubated with rabbit polyclonal anti-Ape1 antibody (1:800,
Novus, #NB100-101SS, Centennial, CA, USA) and rabbit polyclonal anti-GAPDH antibody
(1:1,000, Rockland, 600-401-A33, Limerick, PA, USA) at 4 ◦C overnight. The blots were then
washed with blocking buffer and incubated with IRDye 800CW labeled goat anti-rabbit
IgG (1:10,000, LI-COR, 926-32211, Lincoln, NE, USA) at room temperature for 30 min before
imaging on a LI-COR Odyssey.

4. Evaluation of Compound 3 and APX2009 for Possible Off-Target Effects

We addressed the question of Ape1 inhibitor targeting by employing the two published
APEX1-KO cell lines—mouse CH12F3 [61] and human HEK293 FT [59]—both of which
appear to function as well without Ape1 protein as they do with it. We verified the APEX1-
KO lines by Western blotting, which confirmed the absence of Ape1 protein (Figure 1A).
We also confirmed that, compared with the parental lines, both types of APEX1-KO cells
had increased sensitivity to cell killing by MMS, noting that CH12F3 was inherently more
MMS-sensitive than HEK293 FT (Figure 1B,C).
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Figure 1. Ape1 deficiency sensitizes HEK293 FT and CH12F3 cells to methylmethane sulfonate
(MMS). (A) Ape1 protein levels in HEK293 FT wild-type, HEK293 FT APEX1-KO, CH12F3 wild-type,
and CH12F3 APEX1-KO cells. Cell viability of HEK293 FT wild-type and HEK293 FT APEX1-KO
(B) and CH12F3 wild-type and CH12F3 APEX1-KO (C) cells after 24 h treatment with the indicated
amount of MMS. Cell viability was determined using the MTT assay. * p < 0.01. Data are presented as
the mean ± SD, with n = 4 per group, and analyzed by Student t-test.
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Following this confirmation of their Ape1 status, we measured these cell lines for the
direct toxicity of Ape1 inhibitors that target two different functions: the AP endonuclease
inhibitor Compound 3 [63] and the redox inhibitor APX2009 [68]. These agents can kill
Ape1-proficient cells; therefore, if they are highly targeted, the expectation was that this tox-
icity would be lost in the absence of Ape1. Instead, CH12F3 APEX1-KO cells exhibited even
greater sensitivity to direct killing by Compound 3 than did their APEX1+ counterparts,
but with a seemingly narrow window around 10 µM inhibitor treatment (Figure 2A). For
the APX2009 inhibitor, we observed no APEX1-dependent difference for CH12F3 killing
(Figure 2B).
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Figure 2. Direct cell killing and off-target effects of Compound 3 or APX2009. CH12F3 APEX1+

cells and APEX1-KO cells were treated for 24 h with the indicated amounts of Compound 3 (A) or
APX2009 (B). HEK293 FT cells were treated with compound 3 (C) or APX2009 (D) alone or combined
with 0.2 mM MMS (E,F). Cell viability was determined using the MTT assay. * p < 0.01. Data are
presented as mean ± SD, with n = 4 per group, and analyzed by Student t-test.

For HEK293 FT cells, the survival of the APEX1+ and APEX1-KO versions was the
same under all concentrations tested for both Compound 3 and APX2009 (Figure 2C,D).
Thus, it appears that the direct killing of cells by either Compound 3 or APX2009 includes
substantial off-target effects.

To test whether the reduction of cell viability resulted from insufficient BER, we used
a combined treatment of HEK293 FT cells with 0.2 mM MMS and either of the inhibitors.
MMS generates numerous base lesions that are processed by BER. The Compound 3 plus
MMS treatment reduced the viability of wild-type and APEX1-KO cells to a similar extent
for Compound 3 concentrations up to 10 µM (Figure 2E). That result is compatible with
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inhibition of Ape1 activity in vivo [67], with the Compound 3-treated APE1+ cells being a
phenocopy of APE1-KO cells. Note that there was cytotoxic synergy between Compound 3
and MMS (compare Figure 2C,E). The biological significance of the difference seen at 20 µM
Compound 3 combined with MMS is hard to judge, as the survival of the Ape1-expressing
cells was already quite low (Figure 2E). Because APX2009 is an inhibitor of the Ape1 redox
activity rather than the nuclease, we expected that it would not sensitize APEX1+ cells to
MMS, which was the case, and with no additional effect in the APEX1-KO cells (compare
Figure 2D,F). Kelley et al., [68] reported that APX2009 enhanced Ape1 DNA repair activity
in human fibroblasts and rodent neuronal cells; however, we did not find evidence for this
effect in HEK293 FT cells.

5. Discussion: Mechanism of Off-Target Effects of Ape1 Inhibitors

The Ape1 inhibitors examined in our work were developed based on their ability to
suppress specific Ape1 activities [63,68]. For their potential as cancer therapy agents, cell
killing was explored as a biological endpoint, although that is inherently a crude readout
of toxic effects, because numerous pathways can lead to that single endpoint. While the
effects of the nuclease inhibitor Compound 3 in Ape1-expressing cells were consistent with
its interference with DNA repair (sensitization to MMS), it was unexpected that the agent’s
direct killing effects were essentially independent of the cellular Ape1 status.

Given the verified importance of Ape1 in routine DNA maintenance [51,52,56,72],
the surprising viability of the two APEX1-KO lines tested here could reflect in those
cases the mobilization of other repair enzymes or pathways. For cells undergoing DNA
replication, as in our experiments, the accumulation of unrepaired AP sites would lead
to blocked replication forks, with a constant need for the activation of fork protection
pathways to prevent the formation of double-strand breaks [73]. Thus, it is possible that,
in addition to their known targeting of Ape1, Compound 3 and perhaps APX2009 also
interfere with the fork protection systems. Another possibility is that the accumulation of
such unrepaired AP residues leads to the formation of some sites that have other lesions
positioned nearby (clustered lesions [74–76]), which could require the participation of
additional repair systems. However, such explanations do not account very well for the
lack of difference in toxicity between the APEX1+ and the APEX1-KO lines.

Clearly, future work on this issue will have to center on determining whether addi-
tional DNA repair pathways are indeed marshalled in Ape1-deficient cells to enable their
survival. Alternative possibilities include the suppression of apoptosis pathways or other
cell death mechanisms. Furthermore, the off-target effects of the inhibitors may actually
have advantages in tumor treatment, provided that cancer cells are shown to be more
sensitive to them than normal cells in the same tissues. Indeed, such off-target effects could
even help identify new pathways of cell survival in the face of DNA damage.

6. Concluding Points

• Discovered as a DNA repair enzyme, Ape1 has been associated with multiple other
roles, including both redox and non-redox activation of transcription factors;

• Ape1 can stabilize G-quadruplexes by binding but not cleaving AP sites in certain
positions, which can mediate some transcriptional effects;

• Ape1 is essential for embryonic development in mice and probably for mammals
in general;

• Genetic knockdown and knockout experiments indicate that the DNA repair function
is essential in most cell types in culture;

• Inhibitors have been developed to target either the nuclease activity of Ape1 or its
redox activity;

• Two viable cell lines have been developed with the Ape1-coding gene APEX1 deleted;
these lines have mild phenotypes, the basis of which is unknown;

• The Ape1 inhibitors show similar toxic effects in APEX1-knockout cells and their
APEX1+ counterparts, indicating that the compounds have significant off-target effects.
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