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Abstract

Quality assessment is essential for the computational prediction and design of RNA tertiary

structures. To date, several knowledge-based statistical potentials have been proposed

and proved to be effective in identifying native and near-native RNA structures. All these

potentials are based on the inverse Boltzmann formula, while differing in the choice of the

geometrical descriptor, reference state, and training dataset. Via an approach that diverges

completely from the conventional statistical potentials, our work explored the power of a 3D

convolutional neural network (CNN)-based approach as a quality evaluator for RNA 3D

structures, which used a 3D grid representation of the structure as input without extracting

features manually. The RNA structures were evaluated by examining each nucleotide, so

our method can also provide local quality assessment. Two sets of training samples were

built. The first one included 1 million samples generated by high-temperature molecular

dynamics (MD) simulations and the second one included 1 million samples generated by

Monte Carlo (MC) structure prediction. Both MD and MC procedures were performed for a

non-redundant set of 414 RNAs. For two training datasets (one including only MD training

samples and the other including both MD and MC training samples), we trained two neural

networks, named RNA3DCNN_MD and RNA3DCNN_MDMC, respectively. The former is

suitable for assessing near-native structures, while the latter is suitable for assessing struc-

tures covering large structural space. We tested the performance of our method and made

comparisons with four other traditional scoring functions. On two of three test datasets, our

method performed similarly to the state-of-the-art traditional scoring function, and on the

third test dataset, our method was far superior to other scoring functions. Our method can

be downloaded from https://github.com/lijunRNA/RNA3DCNN.

Author summary

RNA is an important and versatile macromolecule participating in various biological pro-

cesses. In addition to experimental approaches, the computational prediction of RNA 3D
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structures is an alternative and important source of obtaining structural information and

insights into their functions. An important part of these computational prediction

approaches is structural quality assessment. For this purpose, we developed a 3D CNN-

based approach named RNA3DCNN. This approach uses raw atom distributions in 3D

space as the input of neural networks and the output is an RMSD-based nucleotide unfit-

ness score for each nucleotide in an RNA molecule, thus making it possible to evaluate

local structural quality. Here, we tested and made comparisons with four other traditional

scoring functions on three test datasets from different sources.

Introduction

RNA molecules consist of unbranched chains of ribonucleotides, which have various essential

roles in coding, decoding, regulation, expression of genes, and cancer-related networks via the

maintenance of stable and specific 3D structures [1–5]. Therefore, their 3D structural informa-

tion would help fully appreciate their functions. In this context, experiments such as X-ray

crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryoelectron micros-

copy are the most reliable methods of determining RNA 3D structures, but they are costly,

time-consuming, or technically challenging due to the physical and chemical nature of RNAs.

As a result, many computational methods have been developed to predict RNA tertiary struc-

tures [6–32]. These methods usually have a generator producing a large set of structural candi-

dates and a discriminator evaluating these generated candidates. A good generator should be

able to produce structural candidates as close to native structures as possible, and a good dis-

criminator should be able to recognize the best candidates. Moreover, a discriminator can

direct generator searching structural space in heuristic prediction methods. For protein or

RNA tertiary structure prediction, a discriminator generally refers to a free energy function, a

knowledge-based statistical potential, or a scoring function.

Several statistical potentials have been developed to evaluate RNA 3D structures, such as

RASP [33], RNA KB potentials [34], 3dRNAscore [35] and the Rosetta energy function [9, 16].

Generally, these potentials are proportional to the logarithm of the frequencies of occurrence

of atom pairs, angles, or dihedral angles based on the inverse Boltzmann formula. The all-

atom version of RASP defines 23 atom types, uses distance-dependent geometrical descrip-

tions for atom pairs with a bin width of 1 Å, and is derived from a non-redundant set of 85

RNA structures. The all-atom version of RNA KB potential defines 85 atom types, also uses

distance-dependent geometrical descriptions for atom pairs, and is derived from 77 selected

representative RNA structures. Moreover, RNA KB potentials are fully differentiable and are

likely useful for structure refinement and molecular dynamics simulations. 3dRNAscore also

defines 85 atom types and uses distance-dependent geometrical descriptions for atom pairs

with a bin width of 0.15 Å, and is derived from an elaborately compiled non-redundant dataset

of 317 structures. In addition to distance-dependent geometrical descriptions, 3dRNAscore

uses seven RNA dihedral angles to construct the statistical potentials with a bin width of 4.5˚,

and the final output potentials are equal to the sum of the two energy terms with an optimized

weight. The Rosetta energy function has two versions: one for low resolution and the other for

high resolution. The low-resolution knowledge-based energy function explicitly describing the

base-pairing and base-stacking geometries guides the Monte Carlo sampling process in

Rosetta, while the more detailed and precise high-resolution all-atom energy function can

refine the sampled models and yield more realistic structures with cleaner hydrogen bonds

and fewer clashes. As the paper on 3dRNAscore reported, 3dRNAscore is the best among
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these four scoring functions. Overall, the choices of the geometrical descriptors and the refer-

ence states in the scoring functions can affect their performance significantly, and the optimi-

zation of the parameters also influences this.

Recently, we have witnessed astonishing advances in machine learning as a tool to detect,

characterize, recognize, classify, or generate complex data and its rapid applications in a broad

range of fields, from image classification, face detection, auto driving, financial analysis, dis-

ease diagnosis [36], playing chess or games [37, 38], and solving biological problems [39–42],

to even quantum physics [43–45]. Even this list is incomplete, and has the potential to be

extended further in the future. Therefore, we expect that machine learning methods will be

able to help evaluate the structural candidates generated in the process of RNA tertiary struc-

ture prediction. Inspired by the successful application of 2D convolutional neural networks

(CNNs) in image classification, we believe that 3D CNNs are a promising solution in that

RNA molecules can be treated as a 3D image. Compared with other machine learning methods

employing conventional hand-engineered features as input, 3D CNNs can directly use a 3D

grid representation of the structure as input without extracting features manually. 3D CNNs

have been applied to computational biology problems such as the scoring of protein–ligand

poses [46, 47], prediction of ligand–binding protein pockets [48], prediction of the effect of

protein mutations [49], quality assessment of protein folds [50], and prediction of protein–

ligand binding affinity [51].

Here, we report our work on developing two new scoring functions for RNA 3D structures

based on 3D deep CNNs, which we name RNA3DCNN_MD and RNA3DCNN_MDMC,

respectively. Our scoring functions enable both local and global quality assessments. To our

knowledge, this is the first paper to describe the use of 3D deep CNNs to assess the quality of

RNA 3D structures. We also tested the performance of our approaches and made comparisons

with the four aforementioned energy functions.

Materials and methods

In our work, the evaluation of an RNA structure is divided into the assessment of each nucleo-

tide. The nucleotide to be evaluated and its surrounding atoms are treated as a 3D image that

is fed into the 3D CNNs, and the output is an RMSD-based nucleotide unfitness score charac-

terizing how poorly the nucleotide fits into its surrounding environment. The philosophy of

our method is that though the global structures of the RNAs differ from each other, the local

building blocks should recur frequently, such as helix, bulge, internal loops, and junctions, and

thus we used a cube of local atoms as our CNN input rather than the whole structures. The

well-trained networks can give an unfitness score to each nucleotide, and the evaluation score

for a structure is equal to the sum of the unfitness scores of all of its nucleotides. In the follow-

ing subsections, we elaborate on the definition of the surrounding environment, the input and

output, the architecture and configurations of the 3D CNNs, the training processes, the train-

ing and test datasets.

Environment surrounding a nucleotide

The environment surrounding a nucleotide refers to its neighboring. To determine the neigh-

boring atoms of a nucleotide, a local Cartesian coordinate system is specified first by its atoms

C1’, O5’, C5’, and N1 for pyrimidine or N9 for purine. Specifically, the origin of the local coor-

dinate system is located at the position of atom C1’. The x-, y-, and z-axes of the local coordi-

nate system, denoted as x, y, and z, respectively, are decided according to Eqs 1–6 where rC10,

rO50, rC50 and rN stand for the vectors pointing from the origin in the global coordinate system
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to the atoms C1’, O5’, C5’, and N1 or N9, respectively.

x ¼ rN � rC10 ð1Þ

x ¼
x
kxk ð2Þ

y ¼
rO50 þ rC50

2
� rC10

ð3Þ

z ¼ x � y ð4Þ

z ¼
z
kzk ð5Þ

y ¼ z� x ð6Þ

The environment surrounding a nucleotide consists of the atoms whose absolute values of x, y,

and z coordinates are less than a certain threshold. Here, the threshold is set to 16 Å, which

means that the environment surrounding a nucleotide contains the atoms within a cube of

length 32 Å centered at this very nucleotide, as shown in Fig 1A.

Input of CNN: A colorful 3D image

For a colorful 2D image, the input of a 2D CNN is an array of pixels of RGB channels. Simi-

larly, in our work, the nucleotide and its surrounding environment are transformed into a 3D

image consisting of an array of voxels. As shown in Fig 1A, the box of size 32 × 32 × 32 Å is

partitioned into 32 × 32 × 32 grid boxes. Each grid box represents a voxel of three channels

and its values are calculated by the accumulations of the occupation number, mass, or charge

of the atoms in the grid box. The mass and charge information of each type of atoms is listed

in S1 Table. After transformation, the input of the 3D CNN is a colorful 3D image of 32 × 32 ×
32 voxels with three channels corresponding to RGB channels presented in Fig 1B. Practically,

each channel is normalized to [0, 1] by min-max scaling.

Output of CNN: Nucleotide unfitness score

The output of our CNN is the nucleotide unfitness score characterizing how poorly a nucleo-

tide fits into its surroundings. For a nucleotide, its unfitness score is equal to the RMSD of its

surroundings plus the RMSD of itself after optimal superposition between its conformations

in the native structure and the assessed structure. The latter RMSD is generally very small, but

the former varies in a large range. Nucleotides with smaller unfitness scores are in a conforma-

tion closer to the native conformation, and a score of 0 means that the nucleotide fits into its

surrounding environment perfectly and is in its native conformation. Practically, the nucleo-

tide unfitness score is normalized to [0, 1] by min-max scaling. For the global quality assess-

ment, the unfitness scores of all nucleotides are accumulated.

The architecture of the CNN

Fig 1C exhibits the architecture of our CNN, a small VGG-like network [52] containing a stack

of convolutional layers, a maxpooling layer, a fully connected layer, and 4,282,801 parameters

in total. VGGNet is a famous image classification CNN. It is a very deep network and uses 19
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weight layers, consisting of 16 convolutional layers stacked on each other and three fully-con-

nected layers. The input image size 224 × 224 in VGGNet is much larger than our input size

32 × 32 × 32 in terms of the side length, and thus we used a smaller architecture.

There are only four 3D convolutional layers in our neural network. The numbers of filters

in each convolutional layer are 8, 16, 32, and 64, and the receptive fields of the filters in the

first two convolutional layers and in the last two convolutional layers are 5 × 5 × 5 voxels and

Fig 1. The input and architecture of the 3D deep CNN in this work. (A) Surrounding environment extraction. The

magenta color depicts the nucleotide under assessment. Based on the assessed nucleotide, a local Cartesian coordinate

system xyz is determined and accordingly a cube with sides of length 32 Å is drawn as yellow solid lines. See the section

Environment surrounding a nucleotide for details. The surrounding environment is precisely defined by the cyan-

colored atoms within the box and the gray atoms beyond the box do not influence the assessment of the magenta

nucleotide. (B) RNA voxelizations. The box in (A) is partitioned into 32 × 32 × 32 grid boxes drawn as yellow dashed

lines, but for visual convenience, only 3 × 3 × 3 grid boxes are drawn. Each grid box resembles a voxel of three

channels representing atomic occupation number, mass, and charge within the grid box. As shown in (B), an assessed

nucleotide and its surrounding environment are voxelated into a 3D image of 32 × 32 × 32 voxels. The RGB channels

are mapped to the three channels. The large and small spheres represent the voxels occupied by atoms and nothing,

respectively, while the size difference of the spheres does not represent anything but is only for visual comparison. (C)

CNN architecture. The network is arranged in the order of input layer, convolutional layer C1, convolutional layer C2,

maxpooling layer M3, convolutional layer C4, convolutional layer C5, and output layer. Blue, red, and green cubes

represent the input layer, convolutional layer, and maxpooling layer, respectively. The yellow stick represents the

output layer. m@n3 means that there are m channels and n3 voxels.

https://doi.org/10.1371/journal.pcbi.1006514.g001
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3 × 3 × 3 voxels, respectively. The convolution stride is set to one voxel. No spatial padding is

implemented in the convolutional layers. Moreover, a max-pooling layer of stride 2 is placed

following the first two consecutive convolutional layers.

Subsequently, one fully connected layer with 128 hidden units is stacked after the convolu-

tional layers. The final output layer is a single number, namely, the unfitness score. All units in

hidden layers are activated by the ReLU nonlinear function, while the output layer is linearly

activated.

CNN training

The neural network was trained to reduce the mean squared error (MSE) between the true and

predicted unfitness scores. A back-propagation-based mini-batch gradient descent optimiza-

tion algorithm was used to optimize the parameters in the network. Batch size was set to 128.

The training was regularized by dropout regularization for the second, fourth convolutional

layers, and the fully connected layer with a dropout ratio of 0.2. The Glorot uniform initializer

was used to initialize the network weights. The learning rate was initially set to 0.05, and then

decreased by half whenever the MSE of the validation dataset stopped improving for five

epochs. The training process stopped when the learning rate decreased to 0.0015625. Our 3D

CNN was implemented using the python deep learning library Keras [53], with Theano library

as the backend.

Training dataset

To construct the training dataset, first a list of 619 RNAs was downloaded with the search

options “RNA Only” and “Non Redundant RNA Structures” from the NDB website http://

ndbserver.rutgers.edu/, which means that our training dataset includes RNA-only structures

and the RNAs are non-redundant in both sequence and geometry. Second, the RNAs with an

X-ray resolution>3.5 Å were removed from the list above. Finally, the RNAs in the test dataset

were removed and the RNAs in the equivalence classes with the test dataset were also removed.

“Structures that are provisionally redundant based on sequence similarity and also geometrical

similarity are grouped into one equivalence class,” as Leontis et al. defined [54]. Thus, 414

native RNAs were left to construct the training dataset. According to their length, the 414

RNAs were randomly divided into two groups, namely, 332 RNAs for training and 82 RNAs

for validation in the CNN training process. Practically, the training samples were generated in

two ways, namely, by MD and MC methods elaborated as follows.

Training samples generated by MD methods. For each of the 414 RNAs, a 40-ns simu-

lated annealing molecular dynamics simulation was run, with temperature gradually rising from

300 to 600 K by using the software Gromacs. According to their RMSDs to the native structure,

300 structures were randomly picked out of each trajectory for each RNA. Each nucleotide and

its surrounding environment were treated as one sample. In total, 1 million training samples

and 0.2 million validation samples were extracted from the 332 × 300 and 82 × 300 structures

randomly based on their nucleotide unfitness scores, respectively. The training samples were

used to fit the parameters in the neural network and the validation samples were used to deter-

mine when to decrease the learning rate and to choose the final neural network.

Training samples generated by MC methods. We used a macromolecular structure

modeling software Rosetta to sample RNA 3D structures based on a fragment assembly

method, which is a MC process guided by a low-resolution knowledge-based energy function

[9, 16]. The models were further refined in an all-atom potential to yield more realistic struc-

tures. For each of the 414 RNAs, we fed the sequence and secondary structural information to

Rosetta. The predicted models were clustered and 300 structures were picked out for each
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RNA. And like in MD methods, there were 1 million training samples and 0.2 million valida-

tion samples extracted from the 332 × 300 and 82 × 300 structures randomly based on their

nucleotide unfitness scores, respectively.

Test dataset

To evaluate our CNN-based scoring function and make comparisons with the traditional sta-

tistical potentials, three test datasets were collected from different sources.

Test dataset I comes from the RASP paper [33] which is generated by the MODELLER

computer program from the native structures of 85 non-redundant RNAs given a set of Gauss-

ian restraints for dihedral angles and atom distances, and contains 500 structural decoys for

each of the 85 RNAs. The RMSDs are in different ranges for these RNAs. The narrowest are

from 0 to 3.5 Å, the broadest are from 0 to 13 Å, and the RMSDs of most decoys are less than

10 Å. This dataset can be downloaded from http://melolab.org/supmat/RNApot/Sup._Data.

html.

Test dataset II comes from the KB paper [34], which is generated by both position-

restrained dynamics and REMD simulations for 5 RNAs and the normal-mode perturbation

method for 15 RNAs. For the MD dataset, there are 3,500 decoys for each of four RNAs whose

RMSDs range from 0 to>10 Å, and 2,600 decoys for one RNA (PDB ID: 1msy) whose RMSDs

range from 0 to 8 Å. Meanwhile, for the normal-mode dataset, there are about 490 decoys for

each of the 15 RNAs, whose RMSDs range only from 0 to 5 Å. This dataset can be downloaded

from http://csb.stanford.edu/rna. One point that should be noted is that the downloaded pdb

files name atom O2 in pyrimidine bases as “O.”

Test dataset III comes from RNA-Puzzles rounds I to III [55–57], a collective and blind

experiment in 3D RNA structure prediction. Given the nucleotide sequences, interested

groups submit their predicted structures to the RNA-Puzzles website before the experimentally

determined crystallographic or NMR structures of these target sequences are published. There-

fore, the dataset is produced in a real RNA modeling scenario and can reveal the real perfor-

mance of the existing scoring function. Marcin Magnus compiled the submitted structures

from rounds I to III, and now the predicted models of 18 target RNAs can be downloaded

from https://github.com/RNA-Puzzles/RNA-Puzzles-Normalized-submissions. There are only

12–70 predicted models for the 18 RNAs, some of whose RMSDs range from 2 to 4 Å, while

some cover a wide range from 20 to 60 Å.

Two trained neural networks

Two neural networks were trained based on two sets of training samples. The first set included

only MD training samples and the second set included both MD and MC training samples.

And the two network models are named RNA3DCNN_MD and RNA3DCNN_MDMC,

respectively. We tested test datasets I and II using RNA3DCNN_MD, and tested test dataset

III using RNA3DCNN_MDMC.

The reason why we trained two neural networks is that the three test datasets come from

two kinds of methods. Test dataset I and II were produced by MD and normal-mode

methods initiated from native structures, while test dataset III was produced by MC structure

prediction methods, covering a broad structural space. After testing, for test datasets I and II,

RNA3DCNN_MD performed better than RNA3DCNN_MDMC. But for test dataset III,

RNA3DCNN_MDMC was superior. The results are reasonable. RNA3DCNN_MD is more

accurate in the region close to native structures in that most of the MD training samples are

not very far away from native structures or native topologies. However, when MC training

samples were included, the neural network RNA3DCNN_MDMC became not as accurate as
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RNA3DCNN_MD for the structures around native ones and biased the non-native. On the

contrary, RNA3DCNN_MD did not see the more random training structures far away from

native states and thus it did not perform as well as RNA3DCNN_MDMC for test dataset III.

Results and discussion

Evaluation metrics

In general, a scoring function with good performance should be able to recognize the native

structure from a pool of structural decoys and to rank near-native structures reasonably. Con-

sequently, two metrics were used for a quantitative comparison with other scoring functions.

One was the number of native RNAs with minimum scores in the test dataset, and the other

was the Enrichment Score (ES) [34, 35, 58], which characterizes the degree of overlap between

the structures of the top 10% scores (Etop10%) and the best 10% RMSD values (Rtop10%) in the

structural decoy dataset. The ES is defined as

ES ¼
jEtop10% \ Rtop10%j

0:1� 0:1� Ndecoys
ð7Þ

where |Etop10% \ Rtop10%| is the number of structures in both the lowest 10% score range and

the lowest 10% RMSD range, and Ndecoys is the total number of structures in the decoy dataset.

If the score and RMSD are perfectly linearly correlated, ES is equal to 10. If they are completely

unrelated, ES is equal to 1. If ES is less than 1, the scoring function performs rather poorly with

respect to that decoy dataset.

Performance comparisons for test dataset I

We compared our CNN-based scoring function with four traditional statistical potentials for

RNA, namely, 3dRNAscore, KB, RASP, and Rosetta.

First, the number of native RNAs with minimum scores was counted as listed in Table 1. As

the 3dRNAscore paper reported, 3dRNAscore identified 84 of 85 native structures, KB 80 of

85, RASP 79 of 85, and Rosetta 53 of 85. 3dRNAscore is thus clearly the best among the four

statistical potentials. Our RNA3DCNN identified 62 of 85 native structures, and the unidenti-

fied native structures generally had the second or third lowest scores, almost the same as the

lowest scores. Fig 2A shows an example in test dataset I in which the native structure was iden-

tified by our method, and Fig 2B shows an example in test dataset I in which the native struc-

ture had a slightly higher score calculated by our method than the structure of an RMSD of 0.9

Å. The RMSD-score plots of all 85 examples are provided in S1 Fig. The result that our method

identified fewer native structures is reasonable. Specifically, the input and output of our neural

network are geometry based, and thus similar structures have similar scores. The structures in

the 0–1 Å range generally resemble each other and thus, for our scoring function, all the non-

native structures with minimum scores have an RMSD *1 Å. Meanwhile, for the statistical

Table 1. The number of native structures with minimum scores calculated by our RNA3DCNN, 3dRNAscore, KB potential, RASP, and Rosetta methods in test data-

set I to III.

RNA3DCNN 3dRNAscore KB RASP Rosetta

Test dataset I 62/85 84/85 80/85 79/85 53/85

Test dataset II MD 4/5 5/5 5/5 1/5 2/5

Test dataset II normal-mode 15/15 12/15 15/15 11/15 10/15

Test dataset III 13/18 5/18 — 1/18 4/18

https://doi.org/10.1371/journal.pcbi.1006514.t001
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potentials, atom steric clashes, angle, or dihedral angle deviations from the native form may

quickly increase the potential values.

Second, the ES was calculated. The mean ES values of the 85 RNAs calculated by 3dRNA-

score, RASP, Rosetta, and our method RNA3DCNN were 8.69, 8.69, 6.7, and 8.61, respectively.

The mean ES calculated by KB is not given in that we cannot open its original website and

download its program, and the results of KB method shown in this paper come from the

papers on KB and 3dRNAscore. The ES values of 3dRNAscore and our method are almost the

same. The mean ES values of three methods are very large, suggesting that the RMSDs and

scores calculated by the different methods are highly linearly correlated and that this test data-

set is an easy benchmark to rank near-native decoys.

Performance comparisons for test dataset II

For the MD decoys in test dataset II, 3dRNAscore and KB identified 5 of 5 native structures,

RASP 1 of 5, Rosetta 2 of 5, and our method 4 of 5, as listed in Table 1. Our method gave the

lowest score to the decoy of an RMSD of 0.97 Å for RNA 1f27, as shown in Fig 3B. The ES val-

ues of the MD decoys using different scoring functions are listed in Table 2. Fig 3A shows the

relationship between RMSD and the score calculated by our method for the RNA 434d with

the best ES. The RMSD-score plots of all five examples are provided in S2 Fig. From the table,

we can see that our method performed better than 3dRNAscore for 2 of 5 RNAs, slightly worse

for 1 of 5 RNAs, and worse for 2 of 5 RNAs, especially for the RNA 1f27, in that the native

structure had a slightly higher score than the decoys of RMSD around 1 Å. Moreover, our

Fig 2. The relationship between RMSD and the score calculated by our method RNA3DCNN for two examples in

test dataset I. (A) and (B) correspond to RNA 1y39D and 1q96C, respectively.

https://doi.org/10.1371/journal.pcbi.1006514.g002

Fig 3. The relationship between RMSD and the score calculated by our method RNA3DCNN for two examples in

test dataset II. (A) and (B) correspond to RNA 434d and 1f27, respectively.

https://doi.org/10.1371/journal.pcbi.1006514.g003
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method performed better than KB, RASP, and Rosetta for 3 of 5 RNAs, comparably for 1 of 5

RNAs, and worse for the RNA 1f27, as explained above.

For the normal-mode decoys in this dataset, 3dRNAscore identified 12 of 15 native struc-

tures, RASP 11 of 15, Rosetta 10 of 15, KB and our method 15 of 15, as listed in Table 1. The

ES values of the normal-mode decoys using different scoring functions are also listed in

Table 2. From the table, we can see that our method performed better than 3dRNAscore for 7

of 15 RNAs, equally for 4 of 15 RNAs, and worse for only 4 of 15 RNAs. Moreover, our method

performed better than KB, RASP, and Rosetta for 12, 11, and 13 of 15 RNAs. The mean ES val-

ues of 3dRNAscore and our method were the same, and were greater than the other scoring

functions. The RMSD-score plots of all 15 examples are provided in S2 Fig.

Performance comparisons for test dataset III

The structures in test dataset III are derived from different groups by different RNA modeling

methods. There are only dozens of predicted models for each target RNA and the RMSDs are

almost always greater than 10 Å, and often even greater than 20, or 30 Å. Consequently, we did

not calculate the ES for this dataset and gave only the RMSDs of models with minimum scores

in Table 3. The results of method KB were not provided in that we could not open its website

and get the program. From the table, we can see that our RNA3DCNN identified 13 of 18

native RNAs, 3dRNAscore 5 of 18, RASP 1 of 18, and Rosetta 4 of 18. For puzzle 2, though the

native structures were not identified, our method gave the lowest RMSD among four methods.

And for puzzle 3, our method gave the RMSD as low as other two methods. Fig 4A shows an

example in test dataset III in which the native structure was well identified by our method, and

Table 2. The ES values of our RNA3DCNN, 3dRNAscore, KB potential, RASP, and Rosetta methods in test dataset II.

Decoy generation method RNA Length RNA3DCNN 3dRNAscore KB RASP Rosetta

MD 1duq 26 7.3 8.3 7.6 7.6 7.1

1f27 30 4.2 8.2 7.9 6.7 6.2

1msy 27 7.2 7.8 5.7 5.7 3.6

1nuj 24 8.3 7.2 7.3 5.0 6.9

434d 14 8.5 7.7 7.7 7.0 6.8

Mean values 7.1 7.8 7.2 6.4 6.1

Normal-mode 1duq 26 6.1 7.3 7.0 5.7 3.8

1esy 19 7.1 4.9 5.4 4.3 5.6

1f27 30 6.1 6.1 5.8 3.7 2.6

1i9v 76 5.7 5.3 2.6 5.5 3.0

1kka 17 3.3 6.1 4.6 3.9 4.6

1msy 27 6.9 6.1 5.6 2.2 4.6

1nuj 24 7.1 7.1 7.4 6.1 2.4

1qwa 21 4.5 3.9 3.2 2.0 3.8

1x9k 62 5.2 5.2 1.6 5.4 3.0

1xjr 46 5.6 7.3 5.4 7.7 2.2

1ykq 49 5.4 4.8 3.4 3.5 2.8

1zih 12 5.5 6.9 5.4 5.7 6.6

28sp 28 6.7 5.1 4.0 6.7 1.8

2f88 34 6.3 6.3 5.4 4.8 4.4

434d 14 7.8 7.3 7.4 7.3 5.2

Mean values 6.0 6.0 4.9 5.0 3.8

https://doi.org/10.1371/journal.pcbi.1006514.t002
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Fig 4B is the one not identified. The RMSD-score plots of all 18 examples are provided in S3

Fig.

For test datasets I and II, all decoys are obtained from native structures, which means that

they almost always stay around one local minimum in the energy landscape. But for test data-

set III, in the real modeling scenario, the structures are far from native topologies and are

located at different local minima in the energy landscape. For this reason, we trained two neu-

ral networks with two sets of training samples, that is, one set including only training samples

from MD simulations initiated from native structures and another set including both MD

training samples and MC training samples obtained in the broader and more complicated

structural space.

Nucleotide quality assessment

Our scoring function can evaluate each nucleotide, reveal the regions in need of further struc-

tural optimization, and guide the sampling direction in RNA tertiary structure modeling. Fig 5

Table 3. The RMSDs of structures with minimum scores calculated by our RNA3DCNN, 3dRNAscore, RASP, and Rosetta methods in test dataset III.

Puzzle-X Length RNA3DCNN (Å) 3dRNAscore (Å) RASP (Å) Rosetta (Å)

1 46 0.0 0.0 5.7 4.5

2 100 2.3 3.7 3.7 3.5

3 84 14.3 14.3 14.3 15.7

4 126 4.5 4.2 4.2 4.5

5 188 0.0 0.0 0.0 9.8

6 168 0.0 29.0 30.9 13.5

7 185 0.0 0.0 42.5 20.6

8 96 0.0 0.0 10.7 0.0

10 171 10.4 10.3 9.3 6.8

12 125 0.0 13.2 13.2 13.0

13 71 0.0 0.0 15.2 5.4

14-Bound 61 0.0 6.0 7.6 11.7

14-Free 61 0.0 11.4 11.4 9.8

15 68 0.0 19.8 16.3 8.7

17 62 0.0 8.6 15.1 0.0

18 71 0.0 16.4 12.5 5.6

19 62 16.5 16.5 16.5 0.0

21 41 0.0 18.0 18.0 0.0

https://doi.org/10.1371/journal.pcbi.1006514.t003

Fig 4. The relationship between RMSD and the score calculated by our method RNA3DCNN for two examples in

test dataset III. (A) and (B) correspond to Puzzle-14-Bound and Puzzle-3, respectively.

https://doi.org/10.1371/journal.pcbi.1006514.g004
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portrays how our scoring function helps locate the unfit regions. In this figure, a decoy of

RMSD 3.0 Å from test dataset II MD decoys and the native RNA 1nuj are superimposed, and

thicker tubes show larger deviations from the native structure. The rainbow colors represent

the calculated unfitness scores of each nucleotide, and the colors closer to red represent larger

unfitness scores. We can see that the tubes in nucleotides 1, 7, 8, 9, and 14 are much thicker,

and the colors of those regions are much closer to red, which means that our scoring function

can rank the nucleotide quality correctly. Nucleotides 1 and 14 are the terminal nucleotides in

two chains and are unpaired, so the deviations of these two are the largest. Nucleotides 7–9 are

in the internal loop, so the deviations are larger than those of the remaining helical regions.

The Pearson correlation coefficients between actual and predicted nucleotide unfitness

scores were 0.69 and 0.34 for MD decoys and NM decoys in test dataset II, respectively, as

shown in S4 Fig. The structures in NM decoys are all near native structures with RMSD rang-

ing from 0 to 5 Å, thus making the correlation not strong.

Fig 5. Nucleotide quality assessment. The colorful cartoon is a structural decoy of an RMSD of 3.0 Å with respect to

its native structure RNA 1nuj drawn as a white semi-transparent cartoon. The thickness of the colorful tube represents

the RMSD of each nucleotide from its native counterpart after optimal superposition between the decoy and the native

structure. A thicker tube means a larger RMSD. The rainbow colors represent the nucleotide unfitness scores

calculated by our RNA3DCNN method. From blue to red, the unfitness scores increase.

https://doi.org/10.1371/journal.pcbi.1006514.g005
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Network visualization: Saliency maps

Saliency maps were used to visualize the trained network and help understand which input

atoms are important in deciding the final output. In paper [59], an image-specific class saliency

map was first introduced to rank the pixels of an input 2D image based on their influence on

the class score by computing the gradient of output class score with respect to the input image.

The gradient can reveal how sensitive the class score is to a small change in input image pixels.

Larger positive gradients mean that a slight decrease in the corresponding pixels can cause the

true class score to drop markedly, and thus the corresponding pixels are more important in

determining the right output class. Meanwhile, for our regression problem and a near-native

conformation, the smaller output was better and the voxels of negative gradients were

highlighted and important. Moreover, we mapped the gradients of each voxel back to the cor-

responding atoms.

In Fig 6, examples of saliency maps for the three input channels are presented. A, B, and C

correspond to atomic occupation number, mass, and charge channels, respectively. The exam-

ple is used to calculate the unfitness score of the 12th nucleotide in a helical region for the

native RNA 1nuj. The nucleotide under assessment is drawn as spheres and sticks, its sur-

rounding environment is drawn as sticks, while the atoms beyond its surrounding environ-

ment are shown as a black cartoon. The redder atoms represent smaller negative gradients, the

bluer atoms represent larger positive gradients, and the nearly white atoms represent gradients

close to 0. The red regions are highlighted and more important in deciding the final output. In

the atomic occupation number channel, atomic category differences disappear and only shapes

count. From Fig 6A, we can see that the atoms in the nucleobases of the 10th–13th and 15th–

19th nucleotides are highlighted and atom N3 in the 16th nucleotide is the most important, in

accordance with the base-pairing and base-stacking interactions. In the atomic mass channel,

the importance of atoms in the nucleobases described above declines somewhat, while atom P

in the 12th nucleotide and atom N3 in the 16th nucleotide are the most important, in that

atom P is much heavier than atoms C, N, and O and atom N3 is in the A12’s paired-base U16.

In the atomic charge channel, the seven most important atoms are N1, P, N3, and O3’ in the

Fig 6. Saliency maps. (A), (B), and (C) are the saliency maps for the three input channels, namely, atomic occupation

number, mass, and charge channels, respectively. The 12th nucleotide of the native RNA 1nuj under assessment is

drawn as spheres and sticks, its surrounding environment is drawn as sticks, while the atoms left are drawn as a black

cartoon. The redder atoms represent smaller negative gradients, the bluer atoms represent larger positive gradients,

and the nearly white atoms represent gradients close to 0. The red atoms are highlighted and important in deciding the

final output.

https://doi.org/10.1371/journal.pcbi.1006514.g006
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12th nucleotide, atoms C4 and C2 in the 16th nucleobase, and atom N2 in the 17th nucleobase.

Overall, from the analyses of the salient maps, it was found that the neural networks can learn

the knowledge, such as the relevance of base pairing and stacking interactions to the score,

from the training data automatically without any priori knowledge. It would be very interest-

ing to see if neural networks can dig new knowledge out of data in the future work.

The computational speed

We tested the computational time of 100 decoys of 91 nucleotides. The total time was 321.0

seconds. For a comparison, the C++ version of 3dRNAscore method took only 19 seconds.

However, it was found that 99.6% of our computational time (319.7 seconds) was used to pre-

pare the input to CNN, and this time decreased to 2 seconds after we changed the code from

Python to C++. Therefore, the CNN-based approach is very efficient in terms of speed, and it

is estimated that the overall computational time of our method will be approximately 3 sec-

onds if we rewrite the entire code in C++. However, the computational time of our method in

Python version is acceptable for now, at least temporarily. We postpone the code rewriting

work to the future when necessary. Moreover, our method can be downloaded from https://

github.com/lijunRNA/RNA3DCNN.

Conclusion

Recently, we have witnessed the astonishing power of machine learning methods in

characterizing, classifying, and generating complex data in various fields. It is therefore inter-

esting to explore the potential of machine learning in characterizing and classifying RNA

structural data. In this study, we developed two 3D CNN-based scoring models, named

RNA3DCNN_MD and RNA3DCNN_MDMC, for assessing structural candidates built by two

kinds of methods. If the structural candidates are generated by MC methods such as fragment

assembly, RNA3DCNN_MDMC is suggested. If the structural candidates are not very far

away from the native structures, such as from MD simulations, the RNA3DCNN_MD model

is better. We also compared our method with four other traditional scoring functions on three

test datasets. The current 3D CNN-based approaches performed comparably with or better

than the best statistical potential 3dRNAscore on different test datasets. For the first test data-

set, the mean ES was almost the same as that of the best traditional scoring function, 3dRNA-

score. The reason why the number of native structures identified by our method was much

smaller than that by other scoring functions is that our method is structure-based and the

scores of native structures and decoys of RMSD less than 1.0 Å are almost the same. This sug-

gests that our method is robust if an RNA structure does not change much. For the second test

dataset, our method generally performed similarly to 3dRNAscore and outperformed the three

other scoring functions. For the MD decoys in the second test dataset, our method was slightly

worse than 3dRNAscore. For the normal-mode decoys in the second test dataset, our method

identified all the native structures, while 3dRNAscore identified only 12 of 15 native RNAs,

and our method outperformed 3dRNAscore for 7 of 15 RNAs and underperformed it for only

4 of 15 RNAs. For the third test dataset from blind and real RNA modeling experiments, our

method was far superior to the other scoring functions in identifying the native structures.

Our method has some novel features. First, it is free of the choice of the reference state,

which is a difficult problem in traditional statistical potentials. Second, it treats a cube of atoms

as a unit like a many-body potential, while traditional statistical potentials divide them into

atom pairs. Moreover, our method can evaluate each nucleotide, reveal the regions in need of

further structural optimization, and guide the sampling direction in RNA tertiary structure

prediction.
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Our method demonstrates the power of CNNs in quality assessments of RNA 3D structures

and shows the potential to far outperform traditional statistical potentials. There remains

great scope to improve the CNN models, such as by expanding them to include more input

channels (only three are considered currently), featuring more complex network architecture,

and involving larger training datasets. Moreover, more RNA-related problems can be dealt

with by 3D CNNs, such as protein–RNA binding affinity prediction and RNA–ligand docking

and virtual screening.
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