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An adaptive shortest‑solution 
guided decimation approach 
to sparse high‑dimensional linear 
regression
Xue Yu1, Yifan Sun1* & Hai‑Jun Zhou2,3,4*

High‑dimensional linear regression model is the most popular statistical model for high‑dimensional 
data, but it is quite a challenging task to achieve a sparse set of regression coefficients. In this paper, 
we propose a simple heuristic algorithm to construct sparse high‑dimensional linear regression 
models, which is adapted from the shortest‑solution guided decimation algorithm and is referred 
to as ASSD. This algorithm constructs the support of regression coefficients under the guidance 
of the shortest least‑squares solution of the recursively decimated linear models, and it applies 
an early‑stopping criterion and a second‑stage thresholding procedure to refine this support. Our 
extensive numerical results demonstrate that ASSD outperforms LASSO, adaptive LASSO, vector 
approximate message passing, and two other representative greedy algorithms in solution accuracy 
and robustness. ASSD is especially suitable for linear regression problems with highly correlated 
measurement matrices encountered in real‑world applications.

Detecting the relationship between a response and a set of predictors is a common problem encountered in 
different branches of scientific research. This problem is referred to as regression analysis in statistics. A major 
focus of regression analysis has been on linear regression models, which search for a linear relationship between 
the responses and the predictors. Consider the linear regression model of the following form

where y ∈ R
n is the response vector, X = (X1, . . . ,Xp) ∈ R

n×p is an n× p measurement matrix with 
X i = (X1i ,X2i , . . . ,Xni)

⊤ ∈ R
n being the i-th column, β0 = (β0

1 , · · · ,β0
p )

⊤ ∈ R
p is the vector of p true regres-

sion coefficients, and ε = (ε1, . . . , εn)
⊤ ∈ R

n are random errors with E(εi) = 0 . The variance of εi is E(ε2i ) = σ 2 
with σ 2 being the variance of the noise level ( σ being the typical magnitude of the noise). Let s0 be the number of 
nonzero entries in β0 . We focus on the case where p > n and s0 < n , and the goal is to construct a sparse vector 
β which serves as the best approximation to the hidden truth vector β0 , given y (the measurement results) and 
X (the measurement matrix) but with ε (the noise vector) unknown.

Such linear regression models are widely adopted in many practical applications because of their simplicity 
and interpretability. With the advancement in measurement technologies, high-dimensional data are nowadays 
accumulating with fast speed in a variety of fields such as genomics, neuroscience, systems biology, economics, 
and social science. In these high-dimensional data, the number p of predictors is often larger than the number n 
of samples or measurements ( p > n ), making the solution of the linear regression problem far from being unique. 
Additional criteria need to be imposed to reduce the degeneracy of solutions and to select the most appropri-
ate linear regression model. One of the most important criteria is sparsity. Motivated by empirical findings in 
genomics and other fields, we usually assume that the high-dimensional regression models are sparse, in the 
sense that only a relatively small number of predictors are important for explaining the observed  data1. Associated 
with this sparsity criterion are two highly nontrivial issues in high-dimensional linear regression: (1) variables 
selection, namely to specify the most relevant predictors; and (2) parameters or coefficients estimation, namely 

(1)y = Xβ0 + ε,
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to determine the individual contributions of the chosen predictors. Sparse high-dimensional linear regression 
has also been studied from the angle of compressed  sensing2.

In principle, the regression coefficients can be specified by searching for the solution with the least number 
of nonzero elements, but this non-convex l0 minimization problem is intractable in practice. Over the years 
a variety of approaches have been proposed to approximate the optimal l0 solution. The existing approaches 
can roughly be divided into three categories: relaxation methods, physics-inspired message-passing methods, 
and greedy methods. The basic idea of the relaxation methods is to replace the non-smooth l0-norm penalty 
with a smooth approximation. Among them the Least Absolute Shrinkage and Selection Operator (LASSO)3,4, 
which uses the l1-norm penalty, is the most popular one. LASSO is a convex optimization problem, which can 
be solved by methods such as  LARS5–7, coordinate  descent8 and proximal gradient  descent9. However, due to 
the over-shrinking of large coefficients, LASSO is known to lead to biased estimates. To remedy this problem, 
some alternative methods have been proposed, including multi-stages methods such as adaptive  LASSO10 and 
the three-stage  method11, and non-convex penalties such as the smoothly clipped absolute deviation (SCAD) 
 penalty12 and the minimax concave penalty (MCP)13.

An alternative strategy comes from the approximate message-passing (AMP) methods, which are closely 
related to the Thouless-Anderson-Palmer equation in statistical physics that is capable of dealing with high-
dimensional inference problems. They have shown remarkable success in sparse regression and compressed 
 sensing14–17. However, the convergence issue limits the practical application of the AMP methods, especially on 
problems with highly correlated predictors. Recently, several algorithms such as Generalized AMP (GAMP)18, 
 SwAMP19, adaptive  damping20, mean  removal20 and direct free-energy  minimization21 were proposed to fix 
this problem. Especially, the orthogonal or vector AMP (VAMP)  algorithm22,23 offers a robust alternative to the 
conventional AMP.

Another line of research focuses on greedy methods for l0 minimization such as orthogonal least squares 
(OLS)24 and orthogonal matching pursuit (OMP)25. The main idea is to select a single variable vector that has 
the largest magnitude of (rescaled) inner product with the current residual response vector at each iteration step. 
A sure-independence-screening (SIS) method based on correlation learning was proposed to improve variable 
 selection26, and an iterative version of this SIS approach (ISIS) could be adopted to enhance the performance of 
variable  selection27. Several more recently developed greedy methods proposed to select several variables at a 
time, including the iterate hard thresholding (IHT)  algorithm28,29, the primal-dual active set (PDAS)  methods30, 
and the adaptive support detection and root finding (ASDAR)  approach31.

Most of the above-mentioned approximate methods generally assume that the measurement matrix satisfies 
some regularity conditions such as the irrepresentable condition and the sparse Riesz condition, for mathematical 
convenience or good algorithmic performance. Roughly speaking, these conditions require that the predictors 
should be fully uncorrelated or only weakly correlated. But these strict conditions are often not met in real-world 
applications. As such, it is desirable to develop an efficient and robust method applicable for more general correla-
tion structures of the predictors. Recently, the shortest-solution guided decimation (SSD)  algorithm32 is proposed 
as a greedy method for solving high-dimensional linear regression. Similar to OLS and OMP, at each iteration 
step SSD selects a single variable as a candidate predictor. The difference is that this selection is based on the 
dense least-squares (i.e., shortest Euclidean length) solution of the decimated linear equations. Initial simulation 
results demonstrated that this SSD algorithm significantly outperforms several of the most popular algorithms 
( l1-based penalty methods, OLS, OMP, and AMP) when the measurement matrices are highly correlated.

Although the SSD algorithm is highly competitive to other heuristic algorithms both for uncorrelated and 
correlated measurement matrices, a crucial assumption in its original implementation is that there is no meas-
urement noise ( ε = 0 ). As we will demonstrate later, when the measurement noise is no longer negligible, the 
naive noise-free SSD algorithm fails to extract the sparse solution of linear regression. To overcome this difficulty, 
here we extend the SSD algorithm and propose the adaptive SSD algorithm (ASSD) to estimate the sparse high-
dimensional regression models. Compared with the original SSD, the new ASSD algorithm adopts a much more 
relaxed termination condition to allow early stop. Furthermore and significantly, we add a second-stage screening 
to single out the truly important predictors after the first-stage estimation is completed.

We test the performance of ASSD both on synthetic data (predictors and responses are both simulated) and 
on semi-synthetic data (real predictors but simulated responses, using the gene expression data from cancer 
samples). In comparison with the representative algorithms LASSO, adaptive LASSO (ALASSO), VAMP, and two 
greedy methods (ASDAR and SIS-LASSO), our extensive simulation results demonstrate that ASSD outperforms 
all these competing algorithms in terms of accuracy and robustness of variables selection and coefficients estima-
tion. It appears that ASSD is especially suitable for linear regression problems with highly correlated measurement 
matrices encountered in real-world applications. On the other hand, ASSD is generally slower than these other 
algorithms, pointing to a direction of further improvement. It may also be interesting to analyze theoretically 
the SSD and ASSD algorithms.

Methods
The shortest solution as a guidance vector. We first briefly summarize the key ideas behind the SSD 
 algorithm32. Consider the singular value decomposition (SVD) of the measurement matrix X : X = UDV⊤ , 
where U = (u1, . . . , un) is an n× n orthogonal matrix, and V = (v1, . . . , vp) is a p× p orthogonal matrix, and 
D is an n× p diagonal matrix of the singular values �1 ≥ �2 ≥ . . . ≥ �n . Here {u1, . . . , un} and {v1, . . . , vp} 
form a complete set of orthonormal basis vectors for the n- and p-dimensional real space respectively, so the 
vectors ui = (u1i , . . . , uni)

⊤ satisfy u⊤i uj = δij , and vectors vi = (v1i , . . . , vpi)
⊤ satisfy v⊤i vj = δij , where δij is the 

Kronecker symbol: δij = 0 for i  = j and δij = 1 for i = j . We can express the true coefficient vector β0 as a linear 
combination of the basis vectors vj:
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Substituting the above expression into the regression function E(y|X) = Xβ0 of model (Eq. 1), we obtain that

with the parameter ci for i = 1, 2, . . . , n being

Here �(x) is the Heaviside function: �(x) = 1 for x > 0 and �(x) = 0 for x ≤ 0 . We define a vector γ as

Then

We call γ the guidance  vector32. This vector γ is dense and it is not the true coefficient vector β0 we are seeking. 
However, interestingly, this dense vector γ does provide information about the locations of nonzero elements of 
β0 (see Fig. 1 and also the earlier empirical  observations32). To understand this important property of γ , firstly, 
we reformulate the matrices V  and D as partitioned matrices: V = (V1,V2) with V1 ∈ R

p×n and V2 ∈ R
p×(p−n) , 

and D = (D1, 0) with D1 = diag(�1, . . . , �n) . Then, we have

We define Q := V1V
⊤
1  , which is a p× p symmetric matrix. According to Eq. (7), each element γi of γ is

(2)β0 =
n

∑

i=1

civi +
p

∑

j=n+1

cjvj .

(3)E(y|X) = UDV⊤β0 =
n

∑

i=1

�iciui ,

(4)ci = �(�i)
E(y|X)⊤ui

�i
.

(5)γ :=
n

∑

i=1

�(�i)
E(y|X)⊤ui

�i
vi .

(6)β0 = γ +
p

∑

j=n+1

cjvj .

(7)
γ =V1D

−1

1
U⊤

E(y|X) = V1D
−1

1
U⊤UDV⊤β0

=V1V1
⊤β0.
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Figure 1.  Estimated guidance vector γ̂ on an uncorrelated Gaussian measurement matrix with p = 1000 
and n = 200 . Each nonzero coefficient is uniform distributed in [0.5, 1]. Top: rank curves for the estimated 
guidance vector. Bottom: proportion q(r) of nonzero elements of β0 among the r top-ranked indices i. In the two 
subfigures on the left panel, σ 2 = 1 and s0 = 10, 20, 30 ; and in the two subfigures on the right panel, s0 = 20 and 
σ 2 = 0, 0.5, 1.
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where Qii =
∑n

l=1 v
2
il , and Qij =

∑n
l=1 vilvjl . Since ||vl||2 = 1 , we may expect that vil ≈ ±1/

√
p , and thus 

Qii ≈ n/p ≡ α (here α is the compression ratio). Expecting that vil and vjl are almost independent of each other, 
we get that Qij ≈ ±√

n/p , where ± means that Qij is positive or negative with roughly equal probability. Define 
ρ := s0/p as the sparsity of β0 . Because β0 is a sparse vector with only ρp nonzero entries, the summation in the 
right hand side of Eq. (8) contains at most ρp terms. Neglecting the possible weak correlations among Qij ( j  = i ), 
we have 

∑

j  =i Qijβ
0
j ≈ ±

√
n
p

√
ρpm0 = ±√

αρm0 , where m0 =
√

1
ρp

∑p
i=1(β

0
i )

2 is the mean magnitude of the 
β0
i  coefficients. Putting the above approximations together, we finally get

Notice that the second term in the right hand side of the Eq. (9) is independent of the index i. For the element 
γk that has the largest magnitude among all the elements of γ , we expect that the two terms in the right hand 
side of Eq. (9) have the same sign, and thus it will have a relatively large magnitude. It then follows that the cor-
responding β0

k is very likely to be nonzero and also |β0
k | � m0.

The above analysis offers a qualitative explanation on why the guidance vector γ can help us to locate the 
nonzero elements in the sparse vector β0 . When there is no noise ( ε = 0 ), this guidance vector is easy to deter-
mine and it is the shortest Euclidean-length solution of an underdetermined linear equation. In the presence of 
measurement noise ( ε  = 0 ), however, the conditional expectation E(y|X) is unknown. Then we cannot get the 
exact value of the guidance vector γ but can only get an approximate γ . Consider the estimator

where X+ = V1D
−1
1 U⊤ is the Moore-Penrose inverse of X . Notice that γ̂ is nothing but the shortest length (i.e., 

minimum l2 norm) least-square solution of linear model (Eq. 1) (hereinafter referred to as the “shortest-solu-
tion”). It can be proved that γ̂ is the best linear unbiased estimator to γ (see Supplementary Section A). Combined 
with the above theoretical analysis, we conjecture that γ̂ is also helpful for us to guess which elements of the 
true coefficient vector β0 are nonzero. The validity of this conjecture has been confirmed by simulation results. 
Figure 1 shows the magnitude of elements γ̂k of the estimated guidance vector γ̂ in descending order (top) and 
the proportion q(r) of nonzero elements of β0 among the r top-ranked indices i (bottom) for datasets generated 
from models with uncorrelated Gaussian measurement matrices with n = 200 , p = 1000 , s0 = 10, 20, 30 and 
σ 2 = 0, 0.5, 1 . It can be seen that γ̂ indeed contains important clues about the nonzero elements of β0 : for the 
indices k that are ranked in the top in terms of magnitude of γ̂k , the corresponding β0

k values have high prob-
abilities to be nonzero. In particular, for the 10 top-ranked indices in the examples of s0 = 20 , the corresponding 
entries in β0 are nearly all nonzero.

In practice, the estimated guidance vector γ̂ can be solved through LQ decomposition or convex optimization 
which is more efficient than SVD. In our simulation studies, we employ the convex optimization  method32, see 
Supplementary Section B for the explicit formula.

Shortest‑solution guided Decimation. Based on the above theoretical analysis and empirical results, 
we now try to solve the linear model (Eq. 1) through a shortest-solution guided decimation algorithm. Specifi-
cally, let β = (β1, . . . ,βp)

⊤ be a p-dimensional coefficient vector. Assume that the k-th element of the guidance 
vector γ̂ has the largest magnitude. If all the other (p−1) elements βi of the vector β are known, βk can be 
uniquely determined as the solution of the minimization problem

Plugging Eq. (11) into model (Eq. 1), we obtain that

where β−k = (β1, . . . ,βk−1,βk+1, . . . ,βp)
⊤ ,  namely the vector formed by deleting βk from β ; 

X ′ = (X ′
1, . . . ,X

′
k−1,X

′
k+1, . . . ,X

′
p) is an n× (p− 1) decimated measurement matrix with its column vector 

X ′
i being

and y′ is the residual of the original response vector,

(8)γi = Qiiβ
0
i +

∑

j �=i

Qijβ
0
j ,

(9)γi ≈ αβ0
i + (±√

αρm0).

(10)γ̂ = V1D
−1
1 U⊤y = X+y,

(11)

βk := argmin
β



y − Xkβ −
�

i �=k

X iβi





2

= y⊤Xk

X⊤
k Xk

−
�

i �=k

X⊤
i Xk

X⊤
k Xk

βi .

(12)y′ = X ′β−k + ε,

(13)X ′
i = X i −

X⊤
i Xk

X⊤
k Xk

Xk ,
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Notice that Eq. (12) has the identical form as that of the original linear model (Eq. 1). Therefore, we can obtain 
the corresponding estimated guidance vector through the least-squares solution of Eq. (12). Then, we repeat the 
above decimation process (Eqs. 11–14) to further shrink the residual response vector, until the certain stopping 
criterion is met. Suppose that a total number L of elements of β have been picked during this whole decimation 
process. We can uniquely and easily determine the values of these L elements by setting all the other (p−L) ele-
ments to be zero and then backtracking the L constructed equations of the form Eq. (11).

Up to now, this above SSD algorithm is the same as the original  algorithm32. In the original SSD algorithm, 
the stopping criterion is that the magnitude of the residual response vector becomes less than a prespecified 
threshold (e.g., 10−5 ). We test the performance of SSD on a single noisy problem instance, to test if this stopping 
criterion is still appropriate for the noisy situation. Figure 2 shows the trace of the SSD process on two datasets 
with noise level σ 2 = 0 (left) and σ 2 = 1 (right). The two datasets have the identical 200× 1000 measurement 
matrix X and the true coefficient vector β0 with s0 = 30 nonzero elements, which are sampled from uniform 
distribution U[0.5, 1] . We see that, for the noise-free situation, the decimation stops (i.e., 1n ||y′||1 < 10−5 ) after 
L = 30 steps (top left) with all the nonzero elements of β0 being recovered exactly (bottom left). However, once 
the noise is added, there is a significant increase in the number of decimation steps ( L = 187 , top right), and the 
resulting coefficient vector β is dense and is dramatically different from β0 (bottom right). These results suggest 
that the stopping criterion used in the original SSD algorithm is no longer appropriate for the linear regression 
model with noise and needs to be improved.

Adaptive shortest‑solution guided decimation (ASSD). Modified stopping criterion. With an ad-
ditional examination on the bottom right panel of Fig. 2, we find that during the early steps of the decima-
tion process the identification of the nonzero elements of β0 is highly accurate. Specifically, there are only four 
mistakes in identification in the initial 30 decimation steps. In later decimation steps, however, the index k of 
the largest-magnitude element γ̂k is no longer reliable, in the sense that the true value of β0

k may be zero. These 
misidentified elements are too numerous to be corrected by the subsequent backtracking process of SSD, and the 
resulting coefficient vector β is then quite different from β0 . These observations indicate the necessity of stopping 
the decimation process earlier.

Firstly, we set an upper bound Lmax for the number of decimation steps. It has been established that the 
true coefficient vector β0 cannot be reconstructed consistently with a sample of size n if there are more than 
O
(

n/ ln(n)
)

 nonzero  elements33. We therefore take

(14)y′ = y − y⊤Xk

X⊤
k Xk

Xk .
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Figure 2.  Simulation results of SSD with the naive stopping criterion 10−5 on a single uncorrelated Gaussian 
measurement matrix ( p = 1000 , n = 200 ). Top: trace of l1-norm of the residual response vector y′ . The red 
stars on the horizontal axis signify that the identified element β0

k of β0 , with k being the index of the largest 
magnitude element γ̂k of γ̂ , is indeed nonzero. Bottom: results of coefficient estimation. The two subfigures on 
the left panel display the noise-free situation ( σ 2 = 0 ), and those on the right panel display the noise situation 
( σ 2 = 1).
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We repeat the shortest-solution guided decimation only up to Lmax steps. Additionally, we estimate β0 by the 
solution of the l1 minimization  problem34

Under certain conditions on the RIP (restricted isometry property) constant of X , the estimation error measured 
in l2-norm of β0 is of the order of η/

√
n34. Inspired by this insight, we terminate the SSD process earlier than Lmax 

steps once the Euclidean length of the residual response vector (i.e., �y′�2 ) is smaller than a prespecified value η.

Second‑stage thresholding after SSD. Even after the early stopping strategy is applied to the decimation process, 
we find that some of the zero-valued coefficients β0

i  are still predicted to be nonzero by the algorithm. To reduce 
this false-positive fraction as much as possible, we propose a second-stage thresholding procedure to the SSD 
algorithm. The idea is to manually reset some of the coefficients βi = 0 if the value predicted by the SSD algo-
rithm is below a certain threshold value. This refinement procedure turns out to be rather effective in improving 
the variable selection accuracy. 

Suppose that after early stopping L elements of β are assigned with nonzero values, and the indices of all the 
zero-valued coefficients form a set A (i.e., βi = 0 if and only if i ∈ A ). We sort the absolute values of these L esti-
mated coefficients in an ascending order (say |βr1 | ≤ |βr2 | ≤ . . . |βrL | ), and use the first L/2 of them to calculate 
an empirical measure σ̂ of coefficients uncertainty as

(15)Lmax =
n

ln n
.

(16)min
β∈Rp

∥

∥β
∥

∥

1
subject to

∥

∥y − Xβ
∥

∥

2
≤ η.
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where m means the average value of the considered L/2 elements, m = (2/L)
∑L/2

j=1 βrj . Notice σ̂ is distinct in 
meaning from the the noise magnitude σ of the original model system (Eq. 1). We adopt a data-driven procedure 
to determine the optimal thresholding level. First we set

to be the basic thresholding  level35(see also the initial work on thresholding to wavelet  coefficients36). Next, we 
take the actual thresholding level θ to be θ = τθ0 with τ taking discrete values. As τ increases from zero to a 
relatively large value R (e.g., R = 20 ), the threshold value θ becomes more and more elevated. At a given value of 
τ , we first update the index set A by adding some indices i to A if |βi| < τθ0 , and then we update the remaining 
elements of β by solving the minimization problem

Finally, we compute the BIC (Bayesian Information Criterion)  index33 as

where pnz means the number of nonzero elements in the vector β , namely pnz = p− |A| . The BIC value is a 
trade-off between the prediction error and the model complexity. We choose the value of τ such that BIC achieves 
the minimum value, and consider the corresponding coefficient vector β as the final solution of the linear regres-
sion problem (Eq. 1).

An initial demonstration of ASSD performance. We summarize the above ideas in the pseudo-code of Algo-
rithm 1. This ASSD algorithm has two parts: decimation with early stopping, followed by refinement by second-
stage thresholding.

Let us work on a small example case to better appreciate the working characteristics of ASSD. We generate an 
n× p random Gaussian matrix X with n = 200 and p = 1000 , whose elements are i.i.d. N (0, 1) distributed. The 
truth coefficient vector β0 has s0 = 30 nonzero elements, each of which is sampled from uniform distributions 
U[−1,−0.5] and U[0.5, 1] with equal probability, and 970 zero elements. The response vector y is generated from 
the linear regression model (Eq. 1) with error level σ 2 = 1 . We compare the performance of ASSD with that of 
the original SSD which does not conduct early-stopping nor the second-stage thresholding, and that of SSD1, 
which only adopts early-stopping but skips the second-stage thresholding.

The algorithmic results shown in Fig. 3 reveal that all these three algorithms assigned good approximate values 
for the nonzero elements of β0 . SSD has a high false-positive rate (154 of the zero elements of β0 are misclassified 
as nonzero), and early-stopping dramatically reduces this rate (only 8 false-positive predictions in SSD1). By 
applying the second-stage thresholding, ASSD achieves a zero false-positive rate. In addition, ASSD and SSD1 
are more efficient than SSD (SSD, 27.2 s; SSD1, 7.83 s; ASSD, 8.2 s). Overall, the presence of the measurement 
noise usually renders SSD to produce a solution with a high false-positive rate, and two modifications of ASSD, 
i.e., a modified early-stopping criterion, coupled with a second-stage thresholding, are proposed to reduce the 
false-positive rate as much as possible.

Results
Model implementation. To better gauge the performance of ASSD, we compare ASSD with five different 
methods: LASSO, Adaptive LASSO (ALASSO) , VAMP, SIS+LASSO, and ASDAR. We implemented all these 
methods in Matlab. Our implementation of LASSO uses the function lasso. For ALASSO, we use the LASSO 
solution β̂

LASSO
 as the initial estimator, and set the weight as ωj = 1/|β̂LASSO

j | , j = 1, . . . , p . For VAMP, we use 
the publicly available Matlab  package37. The algorithm SIS+LASSO first selects (n ln n) variables based on SIS 
and then runs LASSO to further reduce the number of falsely identified nonzero coefficients. We implement 
ASDAR by using the Matlab package sdar31.

For ASSD, we set R = 20 , Lmax = n/ ln n (if not specified) and η = √
nσ (in practical applications, if σ (the 

s.d. of noise) is unknown, we can set η to be a small value, e.g. 0.1 as used in Fig. 3). For LASSO, ALASSO, and 
SIS+LASSO, the tuning parameters are selected by using 10-fold cross validation. For ASDAR, we set τ = 5 
and stop the iteration if the number of identified nonzero elements is greater than L = 0.5n , or the residual 
norm is smaller than 

√
nσ , or the distance of two subsequent solutions (measured in l2-norm) is smaller than 

1. For VAMP, a small amount of damping is useful when the measurement matrix is ill-conditioned. We set the 
dampling parameter to be 0.95. Other parameters of VAMP, including the maximum number of iterations, the 
tolerance for stopping, are the default values in public-domain GAMPmatlab  toolbox37.

We focus on four metrics for algorithmic comparisons: (1) the relative error (RE) of estimation, defined as 
∥

∥β − β0
∥

∥

2
/
∥

∥β0
∥

∥

2
 ; (2) the true positive counts (TP) and (3) the false positive counts (FP) of variable selection, 

and (4) the CPU time in seconds. In each scenario, we calculate the average and standard deviation of these four 
metrics over 96 independent runs.
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Results on three types of measurement matrices. We first consider different types of measurement 
matrices X of the same size. In our numerical experiments we set n = 300 and p = 2000 . The number of nonzero 
coefficients in β0 is set to be s0 = 40 , with each of them being generated from the uniform distribution U[0.5, 1] . 
Three types of measurement matrix are considered:

• Correlated Gaussian matrix: Each row of the matrix X is drawn independently from N (0,�) , where 
�ij = π |j−i| , 1 ≤ i, j ≤ p with π = 0 and 0.7 corresponding to no and strong correlations.

• Structured matrix: The matrix X is the product of an n× r matrix X1 and an r × p matrix X2 . Both X1 and 
X2 are random Gaussian matrices whose elements are independently generated from N (0, 1) . The rank r 
is closely related to the degree of correlation between elements in matrix X . When r ≫ n , the elements in 
matrix X are weakly correlated or even uncorrelated. As r approaches n from above, the elements in matrix 
X are more and more correlated. We consider two scenarios: r = n+ 2000 = 2300 and r = n+ 5 = 305 
corresponding to weakly correlated and highly correlated (or structured) matrices, respectively.

• Real‑world matrix: We choose the gene expression data from The Cancer Genome Atlas (TCGA) ovarian 
cancer  samples38 and we use the dataset provided by two earlier  studies39,40. The dataset is available athttps:// 
bioin forma tics. mdand erson. org/ Suppl ements/ Resid ualDi sease/. There are 594 samples and 22, 277 genes in 
the original dataset. We randomly subsample the samples and genes to obtain a 300× 2000 measurement 
matrix X.

The response vector y is generated via the linear regression model Eq. (1), in which the random errors are inde-
pendently generated from normal distribution with means 0 and variance σ 2 = 1.

Correlated Gaussian matrix. Table 1 shows the results on Gaussian matrices. Here and hereinafter, the stand-
ard deviations of metrics are shown in the parentheses, and in each column, the numbers in boldface indicate 
the best performers. It is observed that ASSD has the best performance in variable selection. ASDAR achieves 
similar performance with ASSD when there is no correlation ( π = 0 ), but it suffers from identifying more false 
positives when π increases to π = 0.7 . For estimation, ASSD again has the best or close-to-the-best performance 
compared with VAMP. Although VAMP produces a smaller relative error than ASSD when π = 0 , its perfor-
mance deteriorates significantly when the correlation π is high.

ASSD shows no advantage in speed. ASSD is similar to LASSO and ALASSO in computation time, but it is 
much slower than ASDAR and VAMP.

Structured matrices. Results on the structured matrices are reported in Table 2. We see that when the rank 
number r of the matrix X is large, i.e. r = 2300 , VAMP, ASDAR, and ASSD are on the top of the list in metrics 
for variable selection (TP and FP) and the metric for estimation (RE). As the rank number r approaches n 
( r = 305 ), ASDAR becomes less accurate in variable selection and coefficient estimation than VAMP and ASSD. 
The favorable performance of VAMP is not unexpected because it can achieve Bayes-optimal estimation for a 
class of structured measurement matrix, namely that of the rotationally-invariant matrix. It is encouraging to 
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Figure 3.  Performance comparison on the original SSD (left), SSD1 which is SSD with early-stopping, and 
ASSD. The measurement matrix is 200× 1000 , while the noise level is σ 2 = 1 . The blue crosses mark the 30 
nonzero elements of the true coefficient vector β0 , the red circles mark the elements of the estimated coefficient 
vector β . In ASSD, we set R = 20 and η = 0.1.
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observe that ASSD performs comparably well in variable selection and estimation, even when the measurement 
matrix is highly structured.

Real‑world matrix. Table  3 shows the results on a real measurement matrix which is a subsample of gene 
expression data from TCGA ovarian cancer samples. ASSD again has the best performance both in variable 
selection and in coefficient estimation. LASSO, ALASSO, SIS+LASSO, and VAMP do not work well on the real 
matrix as they identify too many false positives and produce significantly larger estimation errors. ASDAR is 
similar to ASSD in terms of estimation error, but it is inferior to ASSD in terms of variable selection. It is indeed 
quite a remarkable observation that only the ASSD algorithm achieves almost perfect accuracy for this real-
world problem instance.

We conduct additional simulation to examine dependence of the proposed ASSD on the distribution of coef-
ficients. First, consider strict sparsity case. The nonzero coefficients are sampled from the uniform distribution 

Table 1.  Simulation results on Gaussian measurement matrices with p = 2000 , n = 300 , σ 2
= 1 , s0 = 40 , and 

π = 0 or 0.7. Significant values are in bold.

π Methods TP FP RE Time

0

LASSO 40(0.23) 111(22.63) 3.28E−01 (4.91E−02) 24.33 (11.06)

ALASSO 40 (0.32) 105 (20.95) 2.95E−01 (4.09E−02) 36.41 (18.83)

VAMP 40 (0) 1 (1.74) 7.31E-02 (8.40E-03) 0.12 (0.07)

SIS+LASSO 23 (2.16) 26 (3.04) 6.89E−01 (5.20E−02) 0.59 (0.11)

ASDAR 40 (0) 0 (0) 7.90E−02 (9.24E−03) 0.23 (0.10)

ASSD 40 (0.49) 0 (1.34) 9.37E−02 (3.95E−02) 76.82 (52.29)

0.7

LASSO 40 (0.20) 114 (22.33) 3.44E-01(5.05E-02) 27.10 (13.37)

ALASSO 40 (0.20) 104 (20.11) 3.25E−01 (4.69E−02) 41.42 (24.76)

VAMP 40 (0.14) 461 (607.04) 7.76E−00 (5.87E+01) 0.25 (0.08)

SIS+LASSO 18 (2.28) 21 (3.60) 7.83E−01 (4.93E−02) 1.05 (0.11)

ASDAR 40 (0.71) 4 (3.22) 1.51E−01 (6.13E−02) 0.37 (0.16)

ASSD 39 (0.71) 1 (1.68) 1.45E−01 (6.98E−02) 72.98 (53.95)

Table 2.  Simulation results on structured measurement matrices with p = 2000 , n = 300 , σ 2
= 1 , s0 = 40 , 

and r = 2300, 305. Significant values are in bold.

r Methods TP FP RE Time

2300

LASSO 40 (0) 32 (9.53) 4.05E−02 (3.59E−03) 9.40 (2.05)

ALASSO 40 (0) 32 (9.50) 4.03E−02 (3.17E−03) 12.66 (2.67)

VAMP 40 (0) 0 (0) 1.69E-03 (2.06E-04) 0.09 (0.05)

SIS+LASSO 22 (2.10) 26 (3.47) 7.02E−01 (5.16E−02) 0.80 (0.05)

ASDAR 40 (0) 0 (0) 1.69E−03 (2.06E−04) 0.13 (0.03)

ASSD 40 (0) 0 (0) 1.69E−03 (2.04E−04) 15.76 (2.67)

305

LASSO 40 (0) 101 (19.64) 9.41E−02 (2.43E−02) 30.38 (15.04)

ALASSO 40 (0) 100 (19.47) 9.31E−02 (2.28E−02) 44.84 (22.98)

VAMP 40 (0) 0 (0) 4.98E−03 (6.40E−04) 0.08 (0.05)

SIS+LASSO 14 (2.36) 30 (3.88) 8.70E−01 (4.43E−02) 0.99 (0.07)

ASDAR 38 (5.26) 30 (41.50) 1.25E−01 (3.06E−01) 0.37 (0.26)

ASSD 40 (0) 0 (0) 4.99E−03 (6.36E−04) 17.22 (7.06)

Table 3.  Simulation results on a real-world measurement matrix with p = 2000 , n = 300 , σ 2
= 1 and s0 = 40.

Methods TP FP RE Time

LASSO 39 (1.84) 118 (15.87) 4.80E− 01 (9.02E−02) 32.10 (3.34)

ALASSO 39 (1.84) 103 (14.70) 4.36E−01 (8.12E−02) 48.07 (5.99)

VAMP 40 (0.32) 90 (375.89) 5.40E−00 (4.11E+01) 0.18 (0.10)

SIS+LASSO 7 (2.36) 20 (4.05) 9.46E−01 (3.77E−02) 2.14 (0.73)

ASDAR 35 (6.09) 18 (16.46) 4.01E−01 (2.79E−01) 0.33 (0.16)

ASSD 36 (4.79) 8 (7.81) 3.55E−01 (2.06E−01) 31.16 (3.52)
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U[0.5, 1] and U[−1,−0.5] with equal probability; and (b) sampled from uniform distribution U[0.2, 1] . The 
other settings are the same as above. We use the real-world matrix as a representative and present the results 
in Supplementary Table S1-S2. Second, consider weak sparsity case, where the s0 = 40 coefficients are sampled 
from uniform distribution U[0.5, 1] and other coefficients are set to be 0.001. Supplementary Table S3 reports 
the results on the real-world matrix. We also consider a larger noise with σ 2 = 1.5 . The nonzero coefficients are 
sampled from uniform distribution U[0.5, 1] . The simulation results on the real-world matrix are displayed in 
Supplementary Table S4. Under the above four scenarios, ASSD generally have favorable performance in vari-
able selection and coefficient estimation, in particular, it has the lowest false positives. It is noted that, compared 
to LASSO and ALASSO, ASSD identifies less true nonzero coefficients. A possible reason is that the adopted 
stopping criterion is a little bit too strict (i.e., L is too small), and the values of TP are expected to increase with 
looser stopping criterion. These results demonstrate that ASSD is especially well-suited to scenarios which put 
a higher value on precision than recall of variable selection.

Influence of model parameters. We now investigate more closely the effect of each of the model param-
eters (the sample size n, the number of predictors p, and the sparsity level s0 ) on the performance of LASSO, 
VAMP, SIS+LASSO, ASDAR, and ASSD. From the above simulation results, we observe that ALASSO performs 
better than LASSO in variable selection; however, the improvements over LASSO is not large, but with greater 
computational cost. As such, we do not report the results of ALASSO in this section. The same three types of 
measurement matrices are examined: Gaussian matrix with π = 0.7 , structured matrix with the rank number 
r = n+ 5 , and the real-world matrix. The nonzero elements of β0 are i.i.d. random values drawn from the 
uniform distribution over [0.5, 1]. We generate the response vector from the linear regression model (1). The 
random errors are generated independently from N (0, 0.5) . The simulation results are based on 96 independent 
repeats.

Figure 4 shows the influence of sample size n on the relative errors (top left panel), true positives (top right 
panel), false positives (bottom left panel), and probability of exact identification of nonzero coefficients (bottom 
right panel) when the measurement matrix is a correlated Gaussian one. Results obtained on the other two types 
of measurement matrices can be found as Supplementary Fig. S1 and Supplementary Fig. S2 . (For the real-world 
matrix and the structured measurement matrices, the results of VAMP are too unstable to be shown here and 
hereinafter.) As expected, the performances of all the methods improve as n increases. For the real-world and 
the correlated Gaussian matrices, ASDAR and ASSD perform comparably well in estimation accuracy. How-
ever, ASSD performs significantly better than ASDAR in the accuracy of variable selection. Specifically, ASSD 
can exactly recover the support when n = 300 , whereas the success probability of ASDAR is only 42% . Similar 
observations are obtained for the real-world measurement matrix. For the structured measurement matrices, 
VAMP has the best performance, and ASSD again has close-to-the-best performance compared with ASDAR, 
LASSO, and SIS+LASSO.

Figure 5 shows the influence of the number of covariates p on the performances of the four methods for a 
correlated Gaussian measurement matrix. Data are generated from the model with s0 = 30 and n = 300 . We see 
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that ASSD always produces the lowest relative errors and FP, and the highest TP. In particular, the probability of 
exactly recovering the support of the true coefficient vector β0 of ASSD is higher than that of the other methods 
as p increases, which indicates that ASSD is more robust to the number of covariates. Similar observations are 
also made for the other types of measurement matrices as Supplementary Fig. S3  and Supplementary Fig. S4 .

The influence of the sparsity level s0 on the performance of the four methods for a correlated Gaussian meas-
urement matrix is presented in Fig. 6. The corresponding results obtained for the other types of matrices are 
presented as Supplementary Fig. S5  and Supplementary Fig. S6 . Data are generated with n = 300 and p = 2000 . 
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Figure 5.  Simulation results on a correlated Gaussian measurement matrix ( π = 0.7 , n = 300 , s0 = 30 , 
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We use L = 0.5n for ASSD and ASDAR as well since the maximum s0 = 100 . When the number of nonzero 
elements s0 increases, the performances of all the four methods become worse. When s0 is small (e.g. s0 ≤ 40 ), 
ASSD generally has the best performance in the accuracy of estimation and variable selection (i.e., has highest 
TP and probability of exact identification of nonzero coefficients). However, when s0 is large, ASSD performs 
worse than some comparison methods. For example, when s0 ≤ 70 , ASSD produces higher RE and lower TP 
than LASSO. These results indicate that ASSD is well-suited to “strong sparsity” scenario where the number of 
nonzero coefficients is small.

In summary, our simulation results demonstrate that the proposed ASSD is more accurate and robust in vari-
able selection and coefficient estimation than LASSO, VAMP, SIS+LASSO, and ASDAR. This ASSD algorithm is 
a promising heuristic method for highly correlated random and real-world measurement matrices.

Discussion
In this paper, we proposed the adaptive shortest-solution guided decimation (ASSD) algorithm to estimate high-
dimensional sparse linear regression models. Compared to the original SSD algorithm which is developed for 
linear regression models without  noise32, the ASSD algorithm takes into account the effect of measurement noise 
and adopts an early-stopping strategy and a second-stage thresholding procedure, resulting in significantly better 
performance in variables selection (which columns X i are relevant) and coefficients estimation (what are the 
corresponding regression values βi ). Extensive simulation studies demonstrate that ASSD has favorable perfor-
mance, and outperforms the comparison methods in variable selection, and is competitive with or outperforms 
VAMP and ASDAR in coefficient estimation. It is robust to the model parameters, and it is especially robust 
for different types of measurement matrices such as those whose entries are highly correlated. These numerical 
results suggest that ASSD can serve as an efficient and robust tool for real-world sparse estimation problems.

In terms of speed, ASSD is slower than VAMP and ASDAR and this is an issue to be further improved in 
the future. To accelerate ASSD, on the one hand, we can select a small fraction of elements in coefficient vec-
tor instead of just one of them in each decimation step, and on the other hand, we can adopt a more delicate 
early-stopping strategy to further reduce the unnecessary decimation steps. In addition, the rigorous theoretical 
understanding of ASSD needs to be pursued. We have only considered the linear regression model in this paper. 
It will be interesting to generalize ASSD to other types of models, such as the logistic model and cox model.

Data availability
The data supporting this study are provided within the paper.

Code availability
The ASSD code is available as a Matlab code at Github: https:// github. com/ sugar- xue/ ASSD.
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