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Abstract

Background and aims

Postnatal maturation of the immune system is largely driven by exposure to microbes, and
thus the nature of intestinal colonization may be associated with development of childhood
diseases that may persist into adulthood. We investigated whether antepartum antibiotic
(ATB) therapy can increase offspring susceptibility to experimental colitis through alteration
of the gut microbiota.

Methods

Pregnant C57BI/6 mice were treated with cefazolin at 160 mg/kg body weight or with saline
starting six days before due date. At 7 weeks, fecal samples were collected from male off-
spring after which they received 4% dextran sulfate sodium (DSS) in drinking water for 5
days. Disease activity index, histology, colonic IL-6, IL-13 and serum C-reactive protein
(CRP) were determined. The V3-V4 region of colonic and fecal bacterial 16S rRNA was
sequenced. Alpha-, beta-diversity and differences at the phylum and genus levels were
determined, while functional pathways of classified bacteria were predicted.

Results

ATB influenced fecal bacterial composition and hence bacterial functional pathways before
induction of colitis. After induction of colitis, ATB increased onset of clinical disease, histo-
logic score, and colonic IL-6. In addition, ATB decreased fecal microbial richness, changed
fecal and colon microbial composition, which was accompanied by a modification of micro-
bial functional pathways. Also, several taxa were associated with ATB at lower taxonomical
levels.
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Conclusions

The results support the hypothesis that antepartum antibiotics modulate offspring intestinal
bacterial colonization and increase susceptibility to develop colonic inflammation in a
murine model of colitis, and may guide future interventions to restore physiologic intestinal
colonization in offspring born by antibiotic-exposed mothers.

Introduction

The use of antibiotics during pregnancy or around the time of delivery is a common practice in
clinical settings in North America, more so due to the fear of newborn colonization with
Group B streptococci (GBS) during passage through the birth canal or when the membranes
rapture. The GBS is the leading cause of life-threatening neonatal bacterial infections in devel-
oped countries [1]. Efforts to prevent GBS infections in newborns [2] and to reduce the inci-
dence of postpartum maternal infection after caesarean section [3] have led to the use of pre-
delivery antibiotics in a large number of women in labor, resulting in exposure of the unborn
fetus to the antibiotics. Although pre-partum antibiotics are generally recommended for pre-
mature rupture of membranes or when vaginal colonization by group B streptococci is
detected, antibiotics are also frequently used in other clinical situations in which a clear benefit
has not been demonstrated [4], and this has raised some concerns [5]. Also, even though anti-
biotics are designed to target bacterial pathogens, they often indiscreetly halt commensal
human microbiota, allowing pathogens and opportunistic members of the bacterial commu-
nity to propagate [6]. Perinatal antibiotics may also influence the initial microbial colonization
of the newborn intestine, which is essential for the normal host development,[7] since the early
neonatal period represents the most important opportunity for microbiota-induced host-
homeostasis [8]. As such, intrapartum antibiotics have been associated with infant gut micro-
biota dysbiosis [9].

Antepartum antibiotics may affect the bacterial composition of the mother’s birth canal and
or skin, which will be transmitted to the babies during and following delivery [10-12]. In this
context, although antepartum antibiotics are short-term, they are given at a critical time when
newborn acquisition of gut bacteria, which is also known to influence the initial immune sys-
tem development, is just beginning. Thus, antepartum antibiotic exposure may have far-reach-
ing implications on neonatal immune system maturation [13, 14]. The use of broad-spectrum
antibiotics in the perinatal period has been shown to alter the expression of genes involved in
gastrointestinal (GI) tract development, with major consequences on the architecture and
functionality of the intestinal barrier [15]. Moreover, antibiotics given to pregnant mothers in
the days before delivery have been shown to significantly alter the composition of the preterm
newborn microbiota, reducing intestinal microbial diversity on the first stool samples [16]. It is
therefore apparent that changes in the composition of the newborn indigenous microbiota
may have the potential to influence childhood development and also their risk of disease [17].

The rapid increase in illnesses that have their onset in childhood (including asthma, aller-
gies, type 1 diabetes, obesity and autism) suggests that an environmental cause could be present
[13, 18, 19], and the loss of key constituents of the indigenous microbiota after maternal antibi-
otic exposure could be a contributing factor. For example, the use of antibiotics in the perinatal
period have been associated with delayed colonization of neonates gut by several bacteria espe-
cially Bifidobacteria and Lactobacillus species [15, 20], and by decreased numbers of Bifidobac-
teria spp. and Bacteroides spp.[21]. This may have long-term impacts since these species are

PLOS ONE | DOI:10.1371/journal.pone.0142536 November 25, 2015 2/22



@’PLOS ‘ ONE

Antepartum Antibiotic & Offspring Susceptibility to Colitis

considered to have beneficial properties and therefore, their absence may predispose to infec-
tions. In this regard, increased incidence of atopic diseases, irritable bowel syndrome [22],
and inflammatory bowel disease (IBD) have all been reported in antibiotic-exposed children
[23-29].

Despite the high association between the impacts of perinatal or neonatal antibiotic use on
the microbial colonization and future risk for asthma, other allergic reactions and disease con-
ditions, the effects of antepartum antibiotic use on the process of intestinal microbiota develop-
ment and future susceptibility to ulcerative colitis remain elusive or poorly understood. We
assessed the susceptibility to colitis and compositional and functional alterations of fecal and
colon mucosa-associated microbiota (MAM) in mice that were exposed to antepartum antibi-
otics and treated with dextran sulfate sodium (DSS) to induce acute colitis later in life.

Materials and Methods
Animals

Four pregnant C57Bl/6 mice were obtained from University of Manitoba breeding facility and
maintained in the animal care facility at the Faculty of Health Sciences, University of Manitoba.
These mice were treated with cefazolin (Midwest Veterinary Purchasing Cooperative Ltd, Win-
nipeg, MB, Canada) at 160 mg/kg/d (ATB group; 2 mice) or with saline (Control group; 2
mice) starting six days before due date. After delivery, the pups were left with their mothers
until they were weaned on d 22. Upon weaning, the mice were housed in cages without mixing
mice from different mothers and received a standard chow diet. The experimental protocol
was approved by the University of Manitoba Animal Ethics Committee (10-073) and animals
were cared for in accordance with the guidelines of the Canadian Council on Animal Care

[30].

Induction of DSS colitis

At 7 weeks of age, fecal samples were collected from male offspring from the two groups (ATB,
n = 10 and Control, n = 10) after which they received DSS in their drinking water for 5 days
(ATB-DSS, Control-DSS). The DSS (molecular weight; MW 40 kDa: MP Biomedicals, Soho,
OH, USA) was added to the drinking water at a final concentration of 4% (wt/vol). Ten mice
were included in each ATB-DSS and Control-DSS groups with five mice from each mother.
Fig 1 shows the experimental design and timelines for different activities.

Evaluation of inflammation

During the period of colitis, the weights of the mice were recorded daily, and were expressed as
a percentage of body weight prior to induction of colitis. Disease activity index comprised of
the percentage of body weight lost score in combination with stool consistency, and blood in
feces scores. The scoring system was defined as follows: Weight: 0, no loss; 1, 5-10%; 2, 10-
15%; 3, 15-20%; and 4, >20%; stool: 0, normal; 2, loose stool; and 4, diarrhoea; and bleeding: 0,
no blood; 2, presence of blood; and 4, gross blood, and the scores have historically correlated
well with the pathological findings in DSS-induced model of colitis.[31]. The DAI scoring was
performed from day 0 to day 5 over the period of DSS treatment. Presence of blood in the stool
was assessed using the Hemoccult II test (Beckman coulter, Oakville, ON, Canada).

The colon was opened longitudinally and macroscopic damage was evaluated on the full
section of the colon. The macroscopic scoring was performed immediately after the mice were
sacrificed using previously established scoring system [31, 32], and the categories evaluated for
macroscopic scores included, rectal bleeding, rectal prolapse, diarrhea and colonic bleeding.
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Fig 1. Experimental design and timelines for different experimental activities.

doi:10.1371/journal.pone.0142536.9001

For histology analysis and scoring, formalin (10%; Sigma, Mississauga, ON, Canada)-fixed
colonic segments collected during sacrifice were paraftin (Sigma, Mississauga, ON, Canada)-
embedded and 3-mm sections were stained using hematoxylin-eosin (H&E) (Sigma, Missis-
sauga, ON, Canada). Colonic damage was assessed based on a published scoring system that
considered loss of architectural, degree of inflammatory cell infiltrate, goblet cell depletion, and
crypt abscess [31, 32].

For the analysis of serum C-reactive proteins, blood was collected by intracardiac puncture
under isoflurane (Abbot, Mississaugua, ON, Canada) anaesthesia. Also, in order to assess
colonic inflammatory cytokines, colonic samples were homogenized in 700 ul Tris-HCI buffer
containing protease inhibitors (Sigma, Mississauga, ON, Canada), centrifuged at 13000 x g for
20 min at 4°C and the supernatant was frozen at—80°C until assay. Serum C-reactive protein
(CRP) and colonic cytokine levels (IL-6, IL-1B) were determined using an ELISA commercial
kit (R&D Systems, Minneapolis, MN, USA).

DNA extraction and quality control

DNA was extracted from fecal and colon samples using ZR DNA extraction kits and quality
was checked by PCR as described by Khafipour et al. [33]. Amplicons were verified by agarose
gel electrophoresis. DNA extraction details are shown in S1 Appendix.

Library construction and lllumina sequencing

The V3-V4 region of the 16S rRNA gene was targeted for PCR amplification using modified
F338 primer (5"-AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTACTCC
TACGGGAGGCAG-3") for forward primer and modified bar coded R806 [34] as described
previously [35]. S2 Appendix shows full library construction details, and the sequencing data are
uploaded into the Sequence Read Archive (SRA) of NCBI (http://www.ncbi.nlm.nih.gov/sra) and
can be accessed through accession number SRR2728570.
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Bioinformatic analyses

The FLASH assembler [36] was used to merge overlapping paired-end Illumina fastq files. The
output fastq file was then analyzed by downstream computational pipelines of the open source
software package QIIME (Quantitative Insights Into Microbial Ecology) [37]. Chimeric reads
were filtered using UCHIME [38] and sequences were assigned to Operational Taxonomic
Units (OTU) using the QIIME implementation of UCLUST [39] at 97% pairwise identity
threshold. Taxonomies were assigned to the representative sequence of each OTU using RDP
classifier and aligned with the Greengenes Core reference database [40] using PyNAST algo-
rithms [41]. The phylogenetic tree was built with FastTree 2.1.3. [42] for further comparisons
between microbial communities.

Alpha-, beta-diversity analyses, partial least square discriminant
analysis and metagenome prediction

Alpha-diversity was calculated using Chao 1 [43]. Beta-diversity was measured by calculating
the unweighted and weighted UniFrac distances using QIIME [44] and the P values were calcu-
lated using PERMANOV A analyses of Bray-Curtis distances [45].

Partial least square discriminant analysis (PLS-DA; SIMCA P+ 14, Umetrics, Umea, Swe-
den) was performed on genus data to identify the effects of antepartum antibiotic treatment on
the offspring as described previously [46]. Data was presented in loading scatter plots and the
PLS-DA regression coefficients were used to identify taxa that were positively or negatively cor-
related with each treatment group. More details are shown in S3 Appendix.

Prediction of functional metagenome was done using the open source software PICRUSt
[47] and STAMP [48] as described in S4 Appendix.

Statistical analysis

Alpha-diversity and phylum percentage data were used to assess the effect of treatment using
MIXED procedure of SAS (SAS 9.3). Disease activity index, weight loss, rectal bleeding and
stool consistency were analyzed by applying two-way ANOVA followed by Sidak multiple
comparison post hoc. Student ¢ test was used to compare the macroscopic scores, histological
scores and inflammatory markers between antibiotic and control groups using Graphpad
Prism 5.0c (Graphpad Prism, La jolla, CA, USA). The significance level was adjusted at level
0.05.

Results
Fecal microbiota alterations before DSS treatment

As described below our results showed that antepartum use of antibiotics modified the ecology
of offspring’s indigenous microbiota, and the effects persisted up to and possibly beyond seven
weeks of age.

Alpha-diversity. As shown in Fig 2, there was no difference between ATB and control
groups.

Beta-diversity. Fig 3 presents the three-dimensional PCoA of unweighted and weighted
UniFrac distances. Fecal samples were distinctly clustered according to their treatment group
when plotted and analyzed using unweighted UniFrac (P = 0.0003). The clustering was not as
distinct (P = 0.06) when PCOA and PERMANOVA analyses were performed on weighted Uni-
Frac distances. The mother also influenced the clustering pattern of fecal samples and offspring
from each mother clustered closer together in both ATB and Control groups. (P = 0.001).
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Fig 2. Alpha-diversity analysis on Chao 1, a measure of species richness based on operational taxonomic unit (OTU) for fecal samples collected
before induction of colitis with DSS. No significance difference between the Control and the ATB group was observed. 10 mice per group.

doi:10.1371/journal.pone.0142536.9002

Microbiota composition. A total of 9 phyla were identified, of which 3 were abundant
(> 1% of population), including Firmicutes, Bacteroidetes and Proteobacteria. The low-abun-
dance phyla (< 1% of population) included Actinobacteria, Cyanobacteria, Deferribacteres,
Tenericutes, Verrucomicrobia and TM7. Among the abundant phyla, Firmicutes and Proteo-
bacteria populations were lower (P = 0.01, and 0.04, respectively), while Bacteroidetes popula-
tion was higher (P = 0.007) in the antibiotic group compared to the control (Fig 4).

Classification of the OTUs at the lower taxonomical levels resulted in identification of 102
taxa. Some taxa were only classified at the Phylum (p.), Class (c.), Order (o0.), Family (f.), or
Genus (g.) levels. Of the 102 taxa, 40 had abundances greater or equal to 0.01% of population,
while 62 were below 0.01% of population. Bacterial taxa with relative abundance of > 0.01% of
population were analyzed using PLS-DA to identify bacteria that were most characteristic of
the control or antibiotic groups. As shown in Fig 5, g. Allobaculum, Bacteroides acidifaciens,
Suterella, Prevotella, rc4-4;, and unclassified members of f. S24-7; and o. RF32 were positively

PLOS ONE | DOI:10.1371/journal.pone.0142536 November 25, 2015 6/22



el e
@ ' PLOS ‘ ONE Antepartum Antibiotic & Offspring Susceptibility to Colitis

A) Unweighted B) Weighted
@ ControlM1
PC2 (10.61 %) @ ControlM2
. PC2 (15.77 %)
® ATBm1 0 °

o ° ® ATBm2 [

4 °

°

° ° ° [} ° ¢

° ()
. % d 4] Q °
[
oo
° o (]
o
o
[ . °
. () PC1 (52.28 %)
PC1 (22.06 %)
PC3 (10.82 %)
PC3 (7.79 %)

Fig 3. Principle coordinate analysis (PCoA) of (A) Unweighted (P = 0.0003) and (B) Weighted (P = 0.06) UniFrac distances, an OTU based
unsupervised measure of beta-diversity in fecal samples collected before induction of colitis. Fecal samples clustered according to the treatment.
The clustering was further influenced by the mother especially in the unweighted analysis (P = 0.001). The P values were determined using PERMANOVA.
10 mice per group. ControlM1 and ControlM2 shows mice in the control group but from two different mothers; ATBm1 and ATBm2 shows mice in the ATB
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doi:10.1371/journal.pone.0142536.9003

associated with antibiotic (ATB) group but negatively associated with control group. In addi-
tion, g. Odoribacter, Bacteroides, Enterococcus, Desulfovibrio, Helicobacter, Dehalobacterium,
Mucispirillum; and unclassified members of f. Rikenellaceae, Helicobacteraceae, Lachnospira-
ceae, and Peptococcaceae were positively correlated with the control group but negatively asso-
ciated with ATB treatment. S1 Table shows a summary of mean abundances of all the taxa.

Functional metagenome of fecal microbiome. As shown in Fig 6, several pathways
including oxidative phosphorylation, folate biosynthesis, pantothenate and CoA biosynthesis,
energy metabolism, alanine, aspartate and glutamate metabolism, glycine, serine and threonine
metabolism and histidine metabolism were highly enriched in the fecal microbiome of the
ATB group compared to Control. In contrast, flagellar assembly and secretion system were
highly enriched in the Control group compared to the ATB group.

Impact of antepartum antibiotics on development of colitis

Disease activity index, macroscopic and histological scores. Following DSS treatment,
the onset of clinical disease, as assessed by disease activity index (stool consistency, weight loss
and rectal bleeding) on d 2, 4, and 5 of the study increased in the ATB-DSS compared to the
Control-DSS group (Fig 7A). S1 Fig. presents the stool consistency, weight loss and rectal
bleeding. As shown in Fig 7B, DSS treatment increased colonic macroscopic damage score at d
5 in the ATB-DSS compared to the Control-DSS (P = 0.03). In addition, mucosal inflammation
and infiltration was assessed through histological scoring as shown in Fig 7C and 7D, antepar-
tum antibiotic exposure increased the severity of colitis associated with the loss of tissue archi-
tecture and increased immune cell infiltration.

IL-6, IL-1PB, and C-reactive protein. Antepartum antibiotic exposure increased IL-6 levels
(P =0.04; Fig 7E in the colon of ATB-DSS mice compared to the Control-DSS, but did not
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Fig 4. Relative abundances of bacterial phyla in fecal samples collected before induction of colitis.
Antepartum antibiotic exposure significantly decreased Firmicutes and Proteobacteria but increased
Bacteroidetes population. 10 mice per group.

doi:10.1371/journal.pone.0142536.g004

affect IL-1p (Fig 7F), and reduced CRP levels (P = 0.002) (Fig 7G) in ATB-DSS compared to
the Control-DSS.

Colonic and fecal microbial alterations following DSS treatment

Colon and fecal alpha-diversity. Antepartum antibiotic exposure did not influence
colonic alpha-diversity (Fig 8A), but decreased fecal species richness (Fig 8B), 5 d after induc-
tion of colitis.

Colonic beta-diversity. Fig 9 shows a three-dimensional PCoA of unweighted and
weighted UniFrac distances. Colonic samples clustered separately according to their treatment
group when plotted and analyzed using unweighted UniFrac (P = 0.0004). The clustering was
not as distinct (P = 0.06) on weighted UniFrac distances. The mother also influenced the clus-
tering pattern of colon samples and offspring from each mother clustered closer together
(P < 0.001), which was more evident in the ATB-DSS group compared to the Control-DSS
group (P = 0.009).

Fecal beta-diversity. As shown in Fig 10, fecal samples clustered distinctly according to
treatment group for both unweighted and weighted UniFrac distance analysis (P = 0.0001).
The mother also influenced the clustering as offspring samples from each mother clustered
closer to each other (P = 0.001) in both the ATB-DSS and the Control-DSS groups. Two sam-
ples were omitted from the analysis due to very low sequencing depth.

Microbiota composition at phylum level in the colon and fecal samples. A total of 10
phyla were identified in the colon mucosa samples, of which 4 were abundant (> 1% of popula-
tion), including: Firmicutes, Bacteroidetes, Proteobacteria, and Deferribacteres. The low-
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doi:10.1371/journal.pone.0142536.9005

abundance phyla (< 1% of population) included Actinobacteria, Cyanobacteria, Tenericutes,
Thermi, Verrucomicrobia and TM7. No difference was observed between the antibiotic and
the control group among the abundant phyla (Fig 11A).

In the fecal samples, a total of 10 phyla were identified, of which 4 were abundant (> 1% of
population), including: Firmicutes, Bacteroidetes, Proteobacteria, and Cyanobacteria. The low-
abundance phyla (< 1% of population), included Actinobacteria, Deferribacteres, Tenericutes,
WS6, Verrucomicrobia and TM7. No significant difference was observed between the
ATB-DSS and the Control-DSS group among the abundant phyla (Fig 11B).

Microbiota composition at lower taxonomic levels in the colonic samples. Classification
of the OTUs at the lower taxonomical levels resulted in identification of 93 taxa. Of the 93 taxa,
60 had abundance grater than or equal to 0.01% of population, while 33 were below 0.01%.
Bacterial taxa with relative abundance of > 0.01% of population were analyzed using PLS-DA
to identify bacteria that were most characteristic of the Control-DSS or ATB-DSS groups. As
shown in Fig 12A, g. Clostridium, Allobaculum, Bacteroides acidifaciens, Parabacteroides dista-
sonis, Clostridium perfrigens, rc4-4; and unclassified members of f. S24-7 were positively associ-
ated with the ATB-DSS group but negatively associated with the Control-DSS group. In
addition, g. Bacteroides, Coprobacillus, Odoribacter, Desulfovibrio, Gnavus, Dehalobacterium,
Oscillospira, Desulfovibrio C21_c20; and unclassified members of o. RF32, YS2,

PLOS ONE | DOI:10.1371/journal.pone.0142536 November 25, 2015
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doi:10.1371/journal.pone.0142536.9006

Erysipelotrichales, and Bacteroidales were positively associated with the Control-DSS group
but negatively associated with the ATB-DSS group. S2 Table shows a summary of mean abun-

dances of all the taxa.
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Fig 7. Impacts of dextran sulfate sodium (DSS) and antepartum antibiotics on colitis induction and disease severity. DSS caused a significant
increase in the disease activity index (A), macroscopic score (B), and histology score (C). Antepartum antibiotic exposure increased histological score in
DSS-induced colitis as assessed by appearance of colon (D) in mice without antibiotic exposure (Control-DSS) (a), and in mice exposed to antibiotics
(ATB-DSS) (b). Antepartum antibiotic exposure increased IL-6 (E), but did not effect IL-1B (F), and reduced C-reactive protein (CRP) (G). Values are shown
as mean + SEM. 10 mice per group.

doi:10.1371/journal.pone.0142536.9007

Microbiota composition at lower taxonomic levels in the fecal samples. Classification of
the OTUs at the lower taxonomical levels resulted in identification of 87 taxa. Of the 87 taxa, 55
had abundances greater than or equal to 0.01% of the population whilst 32 taxa were below
0.01% of the population. Bacterial taxa with relative abundance of > 0.01% were analyzed using
PLS-DA to identify bacteria that were most characteristic of the control or antibiotic groups. As
shown in Fig 12B, g. Clostridium, Betaproteobacteria, Sutterella, Clostridium perfrigens, Turici-
bacter, Allobaculum, rc4-4, B. acidifaciens, Prevotella, Parabacteroides distasonis, Ruminococcus,
Ruminococcus flavefaciens; unclassified members of f. Prevotellaceae, Erysipelotrichaceae, Clos-
tridiaceae; and o. Clostridiales were positively associated with the ATB-DSS group but negatively
associated with the Control-DSS group. Also, g. Enterococcus, Bacteroides, Odoribacter, Dorea,
Dehalobacterium, Desulfovibrio C21_c20; unclassified members of f. Bacteroidaceae,
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Fig 8. Rarefaction analysis on Chao 1, a measure of species richness based on operational taxonomic unit (OTU), following DSS treatment for the
Control-DSS and ATB-DSS mice colon mucosa-associated (A) and fecal microbiota (B) Control-DSS and ATB-DSS had similar richness in the
colon mucosa-associated microbiota; however, ATB-DSS had a lower fecal richness compared to the Control-DSS. 10 mice per group.

doi:10.1371/journal.pone.0142536.g008

Lactobacillaceae, Peptostreptococcaceae, F16; 0. Lactobacillales; and p. Bacteroidetes were found
to be positively correlated with the Control-DSS but negatively correlated with the ATB-DSS
group. S3 Table shows a summary of mean abundances of all the taxa.
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Fig 9. Principle coordinate analysis (PCoA) of (A) Unweighted (P = 0.0004) and (B) Weighted (P = 0.06) UniFrac distances in colon mucosa-
associated microbiota (MAM) after induction of colitis. Colonic samples clustered according to the treatment. The clustering was further influenced by the
mother (P < 0.001) especially in unweighted ATB-DSS (P = 0.009). The P values were determined using PERMANOVA. 10 mice per group. Control-DSS-M1
and Control-DSS-M2 shows mice in the control group but from two different mothers; ATB-DSS-M1 and ATB-DSS-M2 shows mice in the ATB (antibiotic)
group but from two different mothers.

doi:10.1371/journal.pone.0142536.9009
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two different mothers.

doi:10.1371/journal.pone.0142536.9010
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doi:10.1371/journal.pone.0142536.9012

Functional metagenome of colonic and fecal microbiome. As shown in Fig 13A and
13B, several metabolic pathways including: arachidonic acid metabolism, butanoate, ribosome
biogenesis metabolism, ribosome, peptidoglycan biosynthesis, carbohydrate digestion and
absorption, arginine and proline metabolism, glycine, serine and threonine metabolism, were
highly enriched in the mucosal microbiota of colon and in the feces in the ATB-DSS group.

Discussion

The use of antibiotics may disrupt neonatal gut microbiota and have profound consequences
for later health [20]. In this context, antibiotic-mediated disturbance of the intestinal micro-
biota in very early life has been shown to increase the risk of late-onset sepsis in a mouse model
[49]. In addition, various illnesses with onset in childhood such as asthma, allergies, type 1 dia-
betes, obesity and autism have been hypothesized to be associated with maternal exposure to
antibiotics resulting in perturbations of the indigenous microbiota [13, 18, 19]. Here, we
assessed the effects of antepartum antibiotic (cefazolin) exposure of the mother on the gut
microbiota composition of the offspring without or with exposure to experimental colitis later
in life. Cefazolin belongs to the beta-lactam class and have a greater activity on gram-positive
than gram-negative bacteria with a bactericidal effect inhibiting cell envelope synthesis [50,
51], and it was recently shown to be among the commonly administered intrapartum antibiot-
ics in retrospective and prospective cohort studies conducted in Canada [9, 52].

Despite the smaller sample size in our study, we have demonstrated that at seven weeks of
age, antepartum antibiotic treatment altered offspring fecal bacterial diversity, its composition
at the phylum and lower taxonomical levels, and its predicted functional genome content. In
addition, the characterization of the disease progress and severity demonstrated increased sus-
ceptibility to colitis in mice whose mothers were exposed to antepartum antibiotics compared
to the mice whose mothers did not receive antibiotics. Similarly, the pattern of fecal microbiota
was more profoundly altered following colitis induction in ATB-DSS mice compared to Con-
trol-DSS. It is important to note that all mice from the ATB and Control groups remained with
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Fig 13. Subsystems and pathways enriched or decreased within (A) Colon muscosa-associate microbiome, and (B) Fecal microbiome after
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doi:10.1371/journal.pone.0142536.9013

their mothers and were exclusively suckling until the time of weaning (d 22). In addition, the
mice from each mother were caged separately (i.e., mice from different mothers within the
same group were not mixed at any point). Exclusive suckling, interactions with the mother,
and the separate caging are all confounding factors, which have a direct influence on the nature
of microbial colonization and might therefore complicate the interpretation of the data. Never-
theless, this may explain our observation on beta-diversity of fecal microbiota where both the
antibiotic status and the mother seemed to influence sample clustering, suggesting that in addi-
tion to the effect of the antepartum antibiotics, mice from different mothers had distinct bacte-
rial composition. In support of this, intrapartum antibiotics have been associated with infant
gut microbiota dysbiosis, and breastfeeding was found to modify the effects [9]. With respect
to colon MAM, the effect of mother on bacterial composition was not as apparent in the Con-
trol-DSS mice compared to the ATB-DSS mice. Although the differences between colon MAM
and fecal microbiota composition are well established [53], the reasons why colon MAM in the
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Control-DSS was not influenced by the mother as opposed to that of fecal microbiota are not
clear and remain to be explained.

Mice whose mothers received antepartum antibiotics had an increased disease activity index
ond 2,4 and 5 of DSS treatment, as well as increased macroscopic score on d 5 and an
increased level of colonic IL-6 compared to the DSS mice with no antibiotics. The histological
score also revealed destruction of the colonic wall characterized by a loss of crypts. However,
IL-1 level was not modified whereas serum CRP, a marker of systemic inflammation decreased
in the antibiotic group. These results suggest an increased activity of DSS because of antepar-
tum antibiotic exposure, as assessed by disease severity and colonic damage, compared to the
control. This is in agreement with other studies where the use of broad-spectrum antibiotics in
the antepartum period was shown to alter expression of genes involved in gastrointestinal tract
development, particularly the architecture and functionality of the intestinal barrier [15]. It is
important to emphasize, however, that the course of systemic inflammation as measured by
CRP showed different response as the ATB-DSS group had lower level of CRP compared to
that of Control-DSS group, which is in contrast to histological and disease severity indices, sug-
gesting a different mode of action. Nevertheless, although this phenomenon is not clear to us,
intravenous administration of cefazolin was previously shown to lower CRP to normal levels in
a patient with elevated levels of CRP [54].

Our data showed that fecal bacterial species richness did not differ between the Control and
ATB mice before induction of colitis although microbiota composition was different; however,
after 5 days of DSS administration, ATB-DSS mice had a lower fecal bacterial richness, suggest-
ing that the antepartum antibiotic exposed mice were more susceptible to colitis compared to
the control mice that were equally treated with DSS. Also, both colon MAM and fecal micro-
biota differed in ATB-DSS mice compared to Control-DSS. Direct exposure to antibiotics is
known to affect intestinal colonization by suppressing commensal bacteria and causing the
emergence of pathogens such as Clostridium difficile [55]. Research shows that antibiotic use in
the immediate period after birth can severely alter gut microbiota in infants [21, 56], and evi-
dence from long-term studies suggests that these perturbations could last for months, if not
years [57, 58]. Indirect exposure is also relevant, because gut microbial diversity was reduced in
infants born to mothers who received antibiotics during pregnancy or while breastfeeding [59],
which is in agreement with our results. The finding that fecal bacterial species richness did not
differ before induction of colitis but the antibiotic group had a lower species richness following
administration of DSS, suggests a role of antepartum antibiotics in susceptibility to DSS-
induced microbial dysbiosis.

Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria are usually the most abundant
phyla in a healthy gut and in most cases Firmicutes and Bacteroidetes are depleted whereas
Actinobacteria and Proteobacteria substantially become more abundant in IBD patients com-
pared to healthy controls [60]. Although we did not observe differences between antibiotic and
non-antibiotic groups at the phylum level 5 days after induction of colitis, we found that spe-
cific taxa were associated with each group at lower taxonomical levels. However, data on the
indirect impact of antepartum antibiotic use on offspring gut microbiota colonization is not
consistent. In this regard, previous studies did not observe effect of maternal antibiotics during
pregnancy upon infant gut microbiota [21], whereas others reported an effect of maternal peri-
natal antibiotics use on fecal microbiota or first stool sample, such as reduced intestinal micro-
bial diversity and shifts in abundance of specific bacteria in both full-term and pre-term infants
[16, 59, 61]. In agreement with our observations, intrapartum antimicrobial prophylaxis was
also found to have an equal or even higher effect on intestinal microbiota in infants during the
first days of life compared to direct antibiotic administration, even when the mothers received
only a single dose of ampicillin [61].
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The analysis of microbiota profile in fecal samples before the induction of colitis provided
an opportunity to address a relevant question regarding antepartum antibiotics. In this context,
the results support the hypothesis that antepartum antibiotics indeed do perturb the initial
establishment of gut microbiota in offspring and therefore, provide an opportunity to further
establish whether these perturbations have any role to play in susceptibility to colitis. The fecal
bacterial community composition was altered as a result of antepartum antibiotics and these
alterations were even more pronounced after treatment with DSS. The observed microbial
changes because of the antepartum use of cefazolin could be driven by the presence/absence
and enrichment/depletion of specific taxa within certain phyla. In this regard, several genera
including Clostridium, Allobaculum, and rc4-4, and species, such as Bacteroides acidifaciens,
Parabacteroides distasonis, Clostridium perfrigens were positively associated with the antibiotic
group in both colon MAM and fecal microbiota. There were several other taxa that were posi-
tively associated with the antibiotic group either only in the colon (unclassified members of f.
S24-7), or in the feces (g. Ruminococcus flavefaciens, Betaproteobacteria, Sutterella, Prevotella,
Ruminococcus and Turicibacter; unclassified members of o. Clostridiales; f. Clostridiaceae, Ery-
sipelotrichaceae, and Prevotellaceae). Of particular interest, g. Bacteroides acidifaciens, Alloba-
culum, rc4-4, Prevotella, and Sutterella, and f. 5$24-7 were also enriched in the feces of the ATB
group before induction of colitis indicating their strong association with antepartum exposure
to cefazolin which persisted even after DSS treatment, and therefore, it is speculated that these
taxa may play significant roles in the susceptibility to colitis. For example, Sutterella is associ-
ated with low levels of IgA in the gut and just recently it was shown to have the capacity to
degrade secretory IgA[62] that protects the mucosa and regulates microbial attachment in the
mucosa. As such, degradation of secretory IgA by Sutterella which was more enriched both in
ATB and ATB-DSS mice compared to Control and Control-DSS mice, may imply a less pro-
tected mucosa in mice whose mothers were exposed to antepartum antibiotics, and thus, ren-
der the mucosa susceptible to colitis.

Persaud et al [63]. examined the effects of antibiotic exposure in the perinatal period on the
gut microbiota of 184 infants enrolled in the Canadian Healthy Infant Longitudinal Development
Study. The study showed that infants had an increased relative abundance of Clostridium [63],
emphasizing on the association of Clostridium with prenatal antibiotic use. Most members of
Clostridium, including Clostridium perfrigens and Clostridium difficile, are known to be patho-
genic and or opportunistic bacteria that are able to take advantage of gut microbiota dysbiosis fol-
lowing antibiotic exposure, facilitating their proliferation, and ability to occupy ecological niches
previously unavailable for them [64]. Also, perinatal antibiotics have been shown to increase the
abundance of Enterobacteriaceae family in infants [61]. In addition, antibiotic administration
during the first hours of life increased the levels of Enterobacteriaceae as analyzed during the first
2 months of life [56, 65]. Similarly, incomplete recovery of the gut microbiota after a 5 d antibi-
otic administration has been demonstrated in adults aged 22-43 years [57]. These results suggest
a lasting effect of antibiotic administration on gut microbiota composition that is likely to influ-
ence disease risk, which is in agreement with our observations. Based on our results, we can spec-
ulate that the taxa that were associated with the antibiotic group may have specific roles in the
susceptibility to colitis. However, it is important to note that different bacteria exhibit redun-
dancy in their functions and some may appear or disappear from the community depending on
the existing conditions. Also, different antibiotics may exhibit different effects depending on
which members of the commensal bacteria are targeted by the antibiotics.

Metagenome prediction revealed functional shifts in the murine intestinal microbiome,
with different metabolic pathways enriched in the colon mucosa-associated microbiome and
the fecal microbiome in the ATB group compared to the Control, although the range of func-
tions that were impacted were greater in fecal compared to the colon mucosa-associated
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microbiome. Microbial functions related to arachidonic acid metabolism may play important
roles in inflammatory responses through production of prostaglandins [66], while butanoate
metabolism could be associated with the integrity of the colonocytes. Other functional path-
ways including: ribosome biogenesis and metabolism, carbohydrate digestion and absorption,
arginine and proline metabolism, glycine, serine and threonine metabolism may be important
in nutrient availability and synthesis of proteins, which may directly or indirectly influence the
host. Apart from glycine, serine and threonine metabolism that was common in the antibiotic
group before and after DSS treatment, the fecal microbial functional and metabolic activities in
the ATB group were majorly different before and after induction of colitis suggesting that DSS
further modified the community functional potential although this may also be influenced by
interactions between indirect effects of cefazolin and DSS.

In this study, we used the antibiotic cefazolin as a tool to indirectly induce shifts in the intes-
tinal microbiota and model an altered colonization state later in life. We have demonstrated a
microbiota-driven, specific increase in susceptibility to experimental murine colitis and have
provided data that suggests these effects could be mediated by changes in microbial coloniza-
tion through antepartum antibiotic exposure. Although the mechanisms involved in cefazolin-
mediated susceptibility of murine colitis remain to be directly elucidated, the data presented
here provide new insights and offer avenues for future work. This new knowledge has extended
our understanding of impact of antepartum antibiotics with respect to microbial dysbiosis and
colitis and may form a basis for designing intervention strategies targeting the gut microbiota.
This data also suggests that perinatal antibiotics may predispose offspring to colitis and thus,
the potential deleterious effects upon gut microbiota composition may need to be considered
when deciding on maternal antibiotic use.
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