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Machine learning prediction and tau-based
screening identifies potential Alzheimer’s disease
genes relevant to immunity
Jessica Binder 1, Oleg Ursu 1,7, Cristian Bologa 1, Shanya Jiang 2, Nicole Maphis 2, Somayeh Dadras2,

Devon Chisholm2, Jason Weick 3, Orrin Myers1, Praveen Kumar 1, Jeremy J. Yang 1,

Kiran Bhaskar 2,4✉ & Tudor I. Oprea 1,5,6,8✉

With increased research funding for Alzheimer’s disease (AD) and related disorders across

the globe, large amounts of data are being generated. Several studies employed machine

learning methods to understand the ever-growing omics data to enhance early diagnosis,

map complex disease networks, or uncover potential drug targets. We describe results based

on a Target Central Resource Database protein knowledge graph and evidence paths

transformed into vectors by metapath matching. We extracted features between specific

genes and diseases, then trained and optimized our model using XGBoost, termed

MPxgb(AD). To determine our MPxgb(AD) prediction performance, we examined the top

twenty predicted genes through an experimental screening pipeline. Our analysis identified

potential AD risk genes: FRRS1, CTRAM, SCGB3A1, FAM92B/CIBAR2, and TMEFF2. FRRS1 and

FAM92B are considered dark genes, while CTRAM, SCGB3A1, and TMEFF2 are connected to

TREM2-TYROBP, IL-1β-TNFα, and MTOR-APP AD-risk nodes, suggesting relevance to the

pathogenesis of AD.
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Except, potentially aducanumab1, most clinical trials against
Alzheimer’s disease (AD) focused on the amyloid hypoth-
esis have failed2–5. There is a dire need to understand AD’s

molecular signatures and identify novel therapeutic targets.
Genetic analysis of familial AD suggests that point mutations in
specific risk genes (e.g., APP, PSEN1, or PSEN2) are known to
cause early-onset AD6. In the case of more common sporadic AD
forms, specific polymorphisms in some genes (e.g., APOE-ɛ4 or
TREM2) are highly correlated to late-onset AD7–9. However,
changes in these genes do not account for a definitive cause of
AD/ADRD. For example, many APOE-ɛ4 carriers remain disease-
free, and some APOE-ɛ2 carriers develop late-onset AD10.
Genetic modifiers that override the effects of APOE alleles may
explain these paradoxical cases and suggest a need to look further
into the AD genetic network.

Moreover, most of the approved and indicated drugs for AD
are acetylcholine and glutamate receptor modulators. These
drugs, however, only offer symptomatic relief, e.g., temporary
improvement of cognitive function and memory loss, and are
not disease-modifying medicines11. Anti-amyloid antibodies such
as solanezumab12 failed to slow cognitive decline in patients
with inherited (autosomal dominant) AD13. The accelerated
FDA approval for Aducanumab (marketed as Aduhelm®) as AD-
modifying treatment in June 2021 remains controversial14,15, as
Biogen must demonstrate clinical benefit in a post-approval trial.
As of this writing, gantenerumab has received breakthrough
therapy designation by the US Food and Drug Administration,
something for which donanemab and solanezumab are also being
considered. However, no unequivocal preventatives or cures for
AD are currently available, despite the number of approved
drugs, ongoing drug applications, and clinical trials.

Many unknowns exist when studying a detrimental hetero-
geneous disease with multiple categories, even with large amounts
of data accumulated from preclinical and clinical studies. Using
computational power may be advantageous towards mapping
these entangled networks of molecular pathways/genes, finding
new targets for therapy, or predicting disease onset, diagnosis, or
prognosis at a much faster pace with logical accuracy16–20. There
are several AD-related machine learning (ML) models previously
reported21. Transcriptomics was combined with interactomics of
RNA-binding proteins to decipher neurodegenerative disorders22.
Another method trained a deep learning classifier model to
recognize and quantify tau burden in the neuropathological
assessment of neurofibrillary tangles (NFTs) in post-mortem
human brain tissue23. There are also a few ML methods that tried
to establish gene-disease associations24–28. Another study iden-
tified the whole-genome spectrum of AD by implementing a
Support Vector Machines29 (SVM) model, classifying collected
AD-associated genes in the context of brain-specific functional
networks using Genome-Scale Integrated Analysis of Networks in
Tissues (GIANT) interface30. The identification of differentially
expressed genes common in both blood and brain samples from
mild cognitive impairment (MCI) and AD patients compared
to healthy controls was classified using the LASSO31,32 (least
absolute shrinkage and selection operator) method. A novel AD
prediction model based on deep neural networks integrated two
heterogeneous datasets: gene expression and DNA methylation
profiles33. An interpretable ML model for AD diagnosis named
sparse high-order interaction model with rejection option
(SHIMR) used a weighted sum of short rules34. This model also
incorporated a rejection function so that physicians could seek
other diagnosis methods that are more accurate but may be
more costly or invasive when SHIMR is not confident enough to
make a diagnosis. While there has been increased interest in ML
utilization for AD research, either for novel biomarker/drug
target discovery or developing a robust and efficient diagnostic

pipeline, the field is still in its infancy and needs further iterations.
Furthermore, to our knowledge, there is no ML algorithm that
can mine vast datasets related to AD/ADRD in the public domain
and perform meta-analytical prediction of novel AD risk genes.

Here, we report the development of an AD-focused ML model
to identify potential AD-associated genes. Starting with data
aggregated in the Target Central Resource Database (TCRD)35,36,
we collated 13 distinct datasets, totaling over 261 million attri-
butes (covering several knowledge areas) shown in Supplemen-
tary Table 1. The resulting database was integrated into a protein
knowledge graph (PKG) using the metapath approach, containing
multiple types of entities (nodes) and relationships (edges)37.
We transform our PKG evidence paths into vectors by metapath
matching and convert these data into matrices via gene to
disease-association ML features. Metapath-based methods pre-
serve the network structure and gain flexibility in a diverse set
of descriptors. To conclude the MPxgb(AD) model, we incor-
porated the XGBoost38 algorithm, an optimized gradient boosting
tree method, to train and test the model, as well as generate AD-
associated gene predictions. Lastly, to determine our MPxgb(AD)
prediction performance, we used three different biological
screening models to examine the role of the top 20 MPxgb(AD)-
predicted genes and their potential correlation to AD-related
pathology. Our model identified several potential AD-risk genes:
FRRS1, CTRAM, SCGB3A1, FAM92B/CIBAR2, and TMEFF21.

Results
Developing the (ProteinGraphML) knowledge graph for
metapath-based ML. TCRD integrates heterogeneous datasets from
Illuminating the Druggable Genome (IDG)39 with an overarching
goal to illuminate understudied (dark) protein-coding genes as
potential drug targets. TCRD comprises diverse, heterogeneous
knowledge about genes, proteins, and small molecules, collated and
standardized from various distinct resources35. TCRD archives
information about protein/gene functions, including text-mined
associations from biomedical and patent literature, protein/gene
expression data, disease and phenotype associations, compound
bioactivity data, and drug-target interactions. A unique aim of
the IDG is to assist with the development/druggability of
drug targets, assessed via Target Development Level (TDLs)39.
TDLs are categorized into four development/druggability levels:
Tclin, Tchem, Tbio, and Tdark. Tclin proteins are associated with
the known mechanism of action of approved drugs. Tchem targets
have activities in ChEMBL40, Guide to Pharmacology41, or
DrugCentral42 that satisfy the activity thresholds, but no approved
drugs. Tbio targets have no known drug or small molecule activities
that meet the activity thresholds and satisfy one or more of the
following criteria: target is above the cutoff criteria for Tdark, the
target is annotated with a Gene Ontology Molecular Function or
Biological Process43 leaf term(s) with an Experimental Evidence
code. Tdark targets have limited information or knowledge about
them and include ∼30% of the human proteins manually curated at
the primary sequence level in UniProt that do not meet the Tclin,
Tchem, or Tbio criteria.

While homogeneous graph analytics (e.g., node2vec) yielded
advances, heterogeneous graph analytics using meta paths are
becoming a powerful approach for modeling complex biological
systems. Biological system networks are heterogeneous with
multiple nodes and edge types. Developments in heterogeneous44,45

and biological system networks37 relationship predictions intro-
duced and formalized a new framework that considers hetero-
geneity by defining type-specific node-edge paths or meta paths20.
Although TCRD is maintained primarily as a relational Structured
Query Language database, for our ML approach, a subset of TCRD
is transformed into a heterogeneous protein-coding gene knowledge
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graph (a.k.a. network). By systematically assembling these data, we
included data from major areas specific for human protein-coding
genes (Fig. 1a): phenotype and disease, pathways, and interactions.
Each area has appropriate levels of data, e.g., expression, association,
membership, treatments, localization, and gene signatures. A meta
path represents a type-specific path pattern between a source node
and a destination node. Each instance of a metapath represents a
specific chain of evidence of associations between a source and a
destination node20.

For example, Fig. 1a, the metapath {Target — (member of) →
PPI (PPI network) ← (member of) — Protein — (associated with)
→ Disease} summarizes multiple meta paths for PPI data. The PPI
data are aggregated from the STRING database (STRINGDb)46,
and the corresponding SQL is: SELECT protein1_id,
protein2_id, score AS combined_score FROM ppi
WHERE ppitype= ’STRINGDB’. Such an example would be
{IL1B — (member of) → KEGG Alzheimer’s Disease pathway←
(member of) — MAPT — (associated with) → MAPK signaling
pathway}. Type-specific metapath counts can be combined using
Degree Weighted Path Counts (DWPCs, Eq. 1)

DWPC ¼ ∑
path2 Paths

Y

d 2Dpath

d�W

0
@

1
A

to dampen the effect of highly connected nodes. The original
biological system network application used logistic regression and
ridge logistic regression. However, we adapted the metapath
framework to the extreme gradient boosting (XGBoost)38.
Contributions from each unique typed meta-path were summar-
ized using DWPCs from the input training set for ML. The
Methods section provides details regarding ProteinGraphML.

Focus on Alzheimer’s disease. Exclusively for AD, our Protein-
GraphML—termed MPxgb(AD), was trained with AD-focused
genes using a training set consisting of 53 AD-associated genes
(positives) from the Rat Genome Database and 3,952 genes not
associated with AD from OMIM (negatives). The Rat Genome
Database data, extracted in February 2018, are no longer avail-
able. New data, following a similar format, are now accessible47

from rgd.mcw.edu. The external test set contained 23 positively
associated AD genes text-mined from DISEASES48 and 200
random negative genes from DISEASES not associated with AD,
respectively. The 53 positive genes from the training set and the
20 positive genes from the test set are listed in Supplementary
Table 2. Thirteen distinct datasets totaling over 261 million
attributes (summarized in Supplementary Table 1) served as
input for the initial MPxgb(AD) model. Given the highly
imbalanced nature of the training set (more negatives than
positives), we addressed this issue in two ways: (1) assign higher
weights to the AD-associated (positive label) genes using the
“scale_pos_weight” parameter of XGBoost; or 2) generate a
balanced training set by sampling with replacement of positives to
match the number of negatives. In order to select the best per-
forming model, we used five-fold cross validation (CV) and test
set performance to evaluate the weighted method—AUC-ROC
(area under the curve/receiver operating characteristic)= 0.91/
0.93 (five-fold CV/test set); and the balanced method—AUC-
ROC= 0.98/0.62 (five-fold CV/test set). Given better model
performance, we selected the weighted approach instead of the
balanced method for the final ML model (Fig. 1c, d). We used
cutoffs derived from ROC curve analyses for both models to
determine the sensitivity for both weighted (0.87) and balanced
(0.7) models, and specificity for the weighted (0.8) and balanced
(0.53) models, respectively. See Supplementary Table 3 for con-
fusion matrices.

The MPxgb(AD) classifier model VIP (variable importance
plot) features are as follows: interactions with proteins mediating
inflammatory processes (JAK2, IL10, and IL2), response to
oxidative stress (GSTP1), nervous system development (BDNF),
and glycolysis (GAPDH). The drug-induced gene expression
perturbation signatures from LINCS49 were the largest category
of features for the weighted AD classifier model. Brain cortex
GTEx50 gene expression and one Reactome51 pathway (AU-rich
mRNA elements binding proteins) were also deemed significant.
The list of top 20 features is in Table 1. We then examined
contributions of the MPxgb(AD) model features to individual
genes within a similarity network. For example, the top predicted
AD-associated gene, AKNA (AT-hook-containing transcription
factor) displays most of the contributing features of the weighted
model, but in a slightly different order (Fig. 1e). Of the 22,549
input features, only 692 contributed to boosted tree building. Of
those 692, only 242 features had gain > 0.0001, and the remaining
features had gain < 9.99e−05.

Having not archived the seed number (a random starting point
for ML models that influences results) for the 2018 MPxgb(AD)
model, we can no longer reproduce this model. It is however
essential to re-assess versioning of datasets and databases with the
same input/training sets over time to determine reproducibility
and feature importance metrics between various models. Upon
running a 10-fold CV for XGBoost on the 2021 version of the
database (Supplementary Fig. 1a), AUC-ROC values ranged from
0.8120–0.9889 (mean: 0.8822). XGBoost used between 209 and
249 features out of 22,549 to learn the models. As model training
selected different sets of records to train the model in each fold of
the 10-fold CV, the list of important features differed between
models. The common features among ten models varied from 39
to 61. We used weighted models in the 10-fold CV, and the mean
AUC-ROC is comparable to what we reported for the 2018 five-
fold CV weighted models (Fig. 1c). Although there were 39–61
features common in 10 models, their rankings were not the same.
Depending on the data selected to train the models in 10-fold
CV, the contribution of features also varied. In comparison to
XGBoost models, LASSO models have a considerable AUC-ROC
variance (Supplementary Fig. 1a). Like XGBoost, LASSO regres-
sion automatically selects features to learn a model. It used 8–79
features out of 22,549 to learn the models in the 10-fold CV. The
common features among ten models varied from 6 to 34.

We then compared model performance by excluding LINCS
features from our learning set. After dropping LINCS, the
training and test datasets had 3,602 features. Without LINCS,
XGBoost models ranged from 0.6023–0.9994 (mean: 0.8701).
Comparing the performance of models with/without LINCS
(Supplementary Fig. 1a), the lower bound of the AUC dropped,
but the mean AUC and upper bound remained similar. XGBoost
used 181–206 features out of 3,602 to learn the models. The
common features among ten models varied from 56 to 82. After
dropping LINCS, XGBoost models had more features in
common. There was no significant change in the lower and
upper bound of AUC when dropping LINCS in LASSO models,
but the mean AUC increased, 0.6807–0.9977 (mean: 0.9085).
LASSO used 34–446 features out of 3,602 to learn the models.
The common features among ten models varied from 18 to 145.
After dropping LINCS, LASSO comparatively used more features
to learn models, and the models had more features in common.
Among the top 20 features of LASSO and XGBoost models
without LINCS, 2–4 features were the same. We did not observe
significant changes in the count of common features among
XGBoost and LASSO models after dropping LINCS. When
comparing 2018 prediction lists with 2021 results, there was a
decent overlap when examining the top 100 predicted genes
among various models (Supplementary Fig. 1b), thus providing
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Fig. 1 TCRD knowledge graphs concept and overview of the meta-path-XGBoost algorithm, MPxgb(AD), and workflow. Centered around the
knowledge tree, this concept was essential in selecting data types (Table 1) for the ML algorithms used to impute AD associations for potential proteins/genes.
a. Transformation of knowledge graph to ML-ready dataset and training of the model. An example metapath: {Target — (member of) → PPI (protein–protein
interaction network)← (member of)— Protein— (associated with)→ Disease} summarizes multiple metapaths for PPI data. b. Evidence weighting by degree-
weighted path count (DWPC). c, d. Five-fold cross validation and test set performance are used to evaluate a weighted method (left) AUC-ROC=0.91/0.93
(five-fold CV/test set) and balanced method (right) AUC-ROC=0.98/0.62 (five-fold CV/test set) to select the best performing model. e. Feature importance
prediction for the AKNA-AD association.
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significant reproducibility confidence. Furthermore, when includ-
ing LINCS, XGBoost performs slightly better, whereas LASSO
performs slightly better without LINCS. Based on this retro-
spective evaluation (2021 vs 2018 models), and for the sake of
interpretability, we focus on results from XGBoost as the
algorithm of choice for the ML model.

Albeit the 2018 MPxgb(AD) model provided probabilities of
AD-association for thousands of genes, we focused on the top 20
genes, listed in Table 2. While correctly predicting 20 out of 23
positive genes (true positives), the weighted model also predicted

41 true negatives as positive (i.e., false positives). Since only one
in three de novo predicted genes is likely to be a true positive, we
anticipated up to 7 of the top 20 genes would be experimentally
confirmed. To further test the validity of the ML model, we also
examined the bottom 10 MPxgb(AD) predicted genes.

Developing the biological screening system for AD-specific
predictions. To understand more about the top twenty
MPxgb(AD) predicted genes, we manually searched the literature
and clustered them into seven major functional categories:
inflammation, signal transduction, transcription regulation, vitamin
or cholesterol metabolism, cell cycle, ER stress, and other pathways
(Fig. 2). From previous indications of these MPxgb(AD) predicted
genes, we concluded using three logically defined AD model sys-
tems to screen potential implications in AD-related pathology
(Supplementary Fig. 2). Utilization of AD patient-derived indu-
ced pluripotent stem cells (iPSCs)52 has also shown to be useful
disease relevance models53. First, using a well-defined differentia-
tion protocol54, we assessed the mRNA levels of each top 20
MPxgb(AD) predicted gene in human iPSC derived neurons
(iPSNs) derived from sporadic AD (sAD2.1; 83 years old male) and
compared them with control iPSNs (AX0018—from Axol
Bioscience; #ax0018-kit; 74 years old male). Ideally, patient samples
are a precise resource for experimental phenotypic analysis.
Therefore the second screening model analyzes mRNA levels for
each top 20 MPxgb(AD) predicted gene isolated from clinically
diagnosed sporadic AD and healthy control post-mortem brain
samples (temporal cortices). Consecutively, from the same post-
mortem brain samples, protein levels are also analyzed between the
two groups.

An increasing number of studies suggest that tau pathology
correlates more with cognitive decline55–57 and brain atrophy58

than amyloid pathology. Microtubules are dynamic filamentous
structures that comprise a large portion of the cellular
cytoskeleton55. Microtubules’ primary functions are to determine
the cellular shape and transport molecular cargo inside cells.
Microtubule-associated protein tau (MAPT) is predominantly
found in neuronal cells and responsible for stabilizing micro-
tubule structure and facilitating axonal transport59. However, tau
also undergoes many post-translational modifications, with

Table 2 A list of the top 20 genes predicted from the AD-
specific MPXgb model.

UniProt ID HGCN symbol Predicted probability

Q7Z591 AKNA 0.95666
Q6ZNA5 FRRS1 0.65087
Q8WXH6 RAB40A 0.58811
Q14849 STARD3 0.53379
Q8WXW3 PIBF1 0.52237
O95881 TXNDC12 0.47394
Q96QR1 SCGB3A1 0.45196
Q9UN36 NDRG2 0.43148
Q8ND76 CCNY 0.42928
Q6ZTR7 FAM92B 0.42337
Q14957 GRIN2C 0.38404
Q8IVH2 FOXP4 0.34215
O43791 SPOP 0.34097
Q6ZVW7 IL17REL 0.32126
O95727 CRTAM 0.30046
Q9UIK5 TMEFF2 0.30017
Q9BYV7 BCO2 0.29885
P61968 LMO4 0.29783
Q8N6C8 LILRA3 0.28329
Q8IWA5 SLC44A2 0.276923

The Predicted probability column is the XGboost classifier probability that a particular gene
belongs to the “AD positive” class.

Fig. 2 Venn diagram of the top potential twenty genes predicted. Each
gene target was designated to each category after in-depth manual
literature review (see Supplementary Table 2). The majority of the
predicted MPxgb(AD) genes appear to correlate mostly with innate
immunity and signal transduction pathways. Transcription regulation,
vitamin or cholesterol metabolism, cell cycle, and ER stress are other
pathways the predicted MPxgb(AD) genes show functional associations.

Table 1 Top 20 features used in the boosted trees of the AD-
focused MPXgb model.

Feature Data source Gain

PPI:GAPDH STRING 0.27852
PPI:IL10 STRING 0.08283
PPI:GSTP1 STRING 0.03823
Darunavir:HELA signature LINCS 0.03732
Aminosalicylic acid:MCF7 signature LINCS 0.03413
Blonanserin:PC3 signature LINCS 0.03004
Amiloride:MC7 signature LINCS 0.02594
Trifluridine:PC3 signature LINCS 0.02048
Brain - Anterior cingulate cortex (BA24) GTEx 0.01866
Travoprost:HA1E signature LINCS 0.01848
Regulation of mRNA stability by proteins that
bind AU-rich elements

Reactome 0.01775

PPI:JAK2 STRING 0.01729
PPI:BDNF STRING 0.01684
PPI:IL2 STRING 0.01593
Levosulpiride:PC3 signature LINCS 0.01556
Azelaic acid:MC7 signature LINCS 0.01538
Saquinavir:A549 signature LINCS 0.01534
Cyproterone:MC7 signature LINCS 0.01411
Vorinostat:HT115 signature LINCS 0.01138
Trifluoperazine:WSUDLCL2 signature LINCS 0.01092

The Gain highlights the relative contribution of each feature to the model.
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phosphorylation being one of the well-studied modifications.
Excessive phosphorylation of tau reduces its binding to micro-
tubules, causing disassembly of microtubules60. The accumula-
tion of hyperphosphorylated tau as paired-helical filaments
(PHFs) or straight filaments (SFs), eventually leading to NFTs,
represents a prominent pathological hallmark of many tauopa-
thies, including AD55,60. The National Institute on Aging and
Alzheimer’s Association (NIA-AA) currently uses NFTs as a
diagnostic criterion61. Among different phosphorylation sites,
hyperphosphorylation at Ser199/Ser202/Thr205 site specifically
recognized62 by the antibody AT8 termed pS199/pS202/pT205;
and at Thr231 site, specifically recognized60 by the antibody
AT180 termed pT231, are known to be the earliest epitopes during
disease progression63. We previously reported that conditioned
media derived from activated microglia induces tau phosphoryla-
tion in neurons via activation of p38 Mitogen-Activated
Protein Kinase (p38 MAPK)64–66. Given that most of our top
20 MPxgb(AD)-predicted genes are involved in inflammation
(Table 2; Supplementary Note 1), it is logical to determine any
potential role in inflammation-induced tau pathology. Therefore,
the third screening model includes investigating inflammation-
induced tau phosphorylation following siRNA-mediated indivi-
dual knockdown of each of the top 20 MPxgb(AD) predicted
genes within SH-SY5Y human neuroblastoma cells. In this model,
first, each of the top 20 MPxgb(AD) predicted genes are knocked
down by siRNA, followed by treatment of conditioned media
(CM) derived from LPS (100 ng/ml)-primed microglia. We then
examined the levels of phospho(p)-Ser199/pSer202 (AT8 site) and
pThr231 (AT180 site) in undifferentiated SH-SY5Y cells.

mRNA levels for four of the top 20 MPxgb(AD) predicted
genes are altered in human sAD2.1 iPSNs compared to control
AX0018 iPSNs. We first quantified mRNA levels within AD-
specific neuronal cell types. As a first step in confirming the AD-
related tau phenotype and neuron differentiation of sAD2.1 iPSNs,
we performed double immunofluorescence analysis for AT8 or
AT180 tau and βIII-tubulin positive cells within sAD2.1 and
AX0018 iPSNs (Fig. 3a, b). As previously reported52, we validated
elevated levels of AT8 and AT180 by performing Western blot
analysis. We observed a significant increase in AT8/Beta-Actin and
AT180/Beta-Actin ratios in sAD2.1 iPSNs compared to control
AX0018 iPSNs (Fig. 3c, d). These results confirmed the purity of
sAD2.1, which showed expected levels of hyperphosphorylated tau.
Next, we performed qRT-PCR to determine the mRNA levels of all
twenty MPxgb(AD) predicted genes. Three of the twenty genes
(RAB40A, SCGB3A1, and TMEFF2) showed significant upregula-
tion of mRNA levels in sAD2.1 iPSNs compared to control AX0018
iPSNs (Fig. 3e). Only one gene, FRRS1, showed significantly
reduced mRNA levels (Fig. 3e). Together, these results provide
information on gene expression status within patient-derived neu-
rons and four genes that have not previously been known to be
involved in AD/ADRD pathogenesis.

In human post-mortem AD brains, five of the top 20
MPxgb(AD) predicted genes are altered at the mRNA levels, and
nine are at the protein level. To quantify the top 20 MPxgb(AD)
predicted genes levels on a broader scale, we examined whether or
not mRNA and proteins of these predicted genes are altered in the
human AD brain tissue (Supplementary Table 4). Post-mortem
cortical samples include other non-neuronal cells besides neurons.
Therefore, providing more insight towards MPxgb(AD) predicted
genes and potential relevance to AD pathogenesis at the organ level.
Here we show five (AKNA, FRRS1, NDRG2, FAM92B, and
SLC44A2) mRNA levels of the MPxgb(AD) predicted genes (except
for FRRS1) are significantly downregulated in human AD than

healthy controls. mRNA levels of the remaining fifteen genes were
unaltered (Supplementary Fig. 3). On the other hand, protein levels
for nine of the MPxgb(AD) predicted genes, FRRS1, STARD3,
PIBF1, TXNDC12, FAM92B, FOXP4, SPOP, CTRAM, and
LILRA3, were significantly higher in AD brains compared to con-
trols (Fig. 4). Two of them (SCGB3A1 and SLC44A2) were unde-
tectable in AD or control brain samples, possibly due to antibody
failure (Fig. 4). These results confirm the sAD2.1 iPSN data (Fig. 3)
and suggest that some of the ML-predicted genes regulated at the
translational level contribute to AD pathogenesis.

siRNA-mediated knockdown of CRTAM, FOXP4, GRIN2C,
LILRA3, PIBF1, SCGB3A1, and TXNDC12 reduce inflammation-
induced tau phosphorylation. Since most of the antibodies for
novel AD targets were relatively new, i.e., not sufficiently tested or
optimized, we first validated commercially available antibodies for
their target recognition via immunofluorescence and Western
blot analysis. We note that not all antibodies worked well for
validation via Western blots or immunofluorescence staining
(Supplementary Fig. 4). Yet, we observed 13 out of 20 targets
showing significant siRNA-mediated knockdown; 3 out of
20 showing moderate knockdown, and 4 out of 20 showed no
knockdown via Western blot analysis (Supplementary Fig. 4).
We could see a substantial reduction in target immunoreactivity
for those showing moderate to no knockdown via Western blot
(e.g., BCO2, FAM92B, RAB40A, and SCGB3A1, etc.), immuno-
fluorescence analysis (Supplementary Fig. 4). Overall, for most of
the target genes, siRNA-mediated knockdown shows a substantial
reduction in each target gene either via western-blot or immuno-
fluorescence analysis (Supplementary Fig. 4).

Next, we used an in vitro neuroinflammation AD model to
characterize potential pathological tau mechanistic associations for
the predicted genes. The model uses undifferentiated SH-SY5Y cells
and treatment of condition media (CM) derived from BV2 cells
(murine neonatal microglia that were raf/myc-immortalized)67.
This approach was similar to our previously published cell culture
model where we treated human tau expressing mouse neuroblas-
toma (N2a) cells with CM from LPS-primed RAW 264.1
macrophages68. When SH-SY5Y’s are treated with CM, this induces
tau phosphorylation at AT8 and/or AT180 sites64,65 (Fig. 5). Briefly,
on the same day, we knocked down each of the 20 genes,
individually with the respective siRNA targeting gene of interest
(GOI), and separately prime BV2 cells with lipopolysaccharide-S
(LPS, an endotoxin) for 24 h. The next day, we replaced 50% of
the SH-SY5Y cell culture media with the same volume of
BV2 microglial CM (see Supplementary Fig. 2). We then assessed
pS199/pS202 (AT8) and/or pT231 (AT180) tau levels (Fig. 5). When a
reduction in AT8+ and AT180+ is observed, this indicates that
the target gene contributes to AD-related tau pathology. On the
contrary, if AT8+ and AT180+ levels increase, this suggests that
target genes are protective against tau pathology. Strikingly, siRNA-
mediated knockdown of PIBF1, TXNDC12, SCGB3A1, NDRG2,
GRIN2C, FOXP4, CRTAM, LMO4, and LILRA3 significantly
reduced the levels of inflammation-induced AT8+ and AT80+

tau phosphorylation (Fig. 5). While 9 out of 20 knockdown target
genes significantly reduced phosphorylated tau, we note some
caveats within siRNA knockdown methods. Potential off-target hits,
relatively low target expression in proliferating SH-SY5Y cells/in
CNS, incomplete knockdown, or being a regulator of amyloid-β
rather than tau may explain why not all MPxgb(AD) predicted
genes showed an effect in reducing/increasing inflammation-
induced tau phosphorylation (e.g., BCO2, Supplementary Fig. 4).
Nonetheless, nine of the predicted genes did affect AT8/AT180
positive tau and are likely to be risk genes in inducing AD-related
hyperphosphorylation of tau.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03068-7

6 COMMUNICATIONS BIOLOGY |           (2022) 5:125 | https://doi.org/10.1038/s42003-022-03068-7 | www.nature.com/commsbio

www.nature.com/commsbio


Some of the bottom MPxgb(AD) predicted genes show AD
relevance but are not related to immunity/inflammation. Our
MPxgb(AD) model captures cross-modality features from het-
erogeneous datasets to model a complex system. The ML model
trained on both positive and noisy negative data because a true
negative set is unavailable. We consider the negative training set
“noisy” since it will likely include negative and positive examples.
We assume that AD-associated genes can train ML models even
with a noisy negative set. We anticipate that genes predicted to
have similar biological context from meta paths might also be
associated with AD. Therefore, we assigned higher weights to
positive examples to force learning from positives more than
negative ones. Among the top 20 VIP features selected by the
MPxgb(AD) classifier (Table 1), for example, there are
protein–protein interactions (PPIs) for inflammatory process
mediators that are in the positive training set (JAK2, IL10, and
IL2), as well as PPIs with the oxidative stress response protein
(GSTP1). These PPIs suggest infection, which is when oxidative
stress and inflammation co-occur (e.g., phagocytes producing
reactive oxygen species).

PPIs with a nervous system development gene (BDNF) may be
indicative of neurodegeneration. Multiple drug-induced gene
expression perturbations from the LINCS dataset were the largest
category of features selected by this model. Brain cortex
expression (cingulate cortex, area A24) via GTEx and one
Reactome pathway (AU-rich mRNA elements binding proteins)
were also among the prioritized features. Thus, the weight of
these features contributed heavily to similar networks within the
positive examples. Our MPxgb(AD) model does not distinguish
an AD-association gradient but predicts neurological inflamma-
tory associations instead. Thus, the bottom (lowest probability)
predicted genes don’t necessarily lack AD association. Instead, we

suspect that the bottom predicted AD-associated genes might
constitute a different cluster network within pathways, molecular
functions, and pathogenesis.

We then queried the top 20 predicted genes to see if they were
clustered into different biological processes compared to the
bottom 20 predicted genes by conducting a GO enrichment
analysis through two additional resources, PANTHER69 and
EnrichR70. Among the top 20 genes, only GRIN2C, known to play
a role in neurological pathways, was a PANTHER hit. In contrast,
the bottom genes were clustered into signaling pathways,
oxidative stress response, and DNA replication. (Supplementary
Fig. 5a, b). Human Wikipathways results from EnrichR show
similar trends in the top 20 genes, with four significantly enriched
terms: vitamin A and carotenoid metabolism; hedgehog signaling
pathway; NO/cGMP/PKG mediated neuroprotection; and synap-
tic signaling pathways associated with autism spectrum disorder.
The top trending pathways were in phosphodiesterases in
neuronal function, Alzheimer’s Disease, primary cilium develop-
ment, and mRNA processing.

On the contrary, the bottom genes had five significant enriched
terms; TGF-beta signaling pathway, homologous recombination,
globo sphingolipid metabolism, intraflagellar transport proteins
binding to dynein, and DNA replication. Overall, the top twenty
MPxgb(AD) seem relevant in neurological pathways71. In
contrast, the bottom twenty are relevant in metabolism and
DNA mechanisms; this does not omit neurological processes
(Supplementary Fig. 5c–f; see list of bottom ten genes predicted
from the MPxgb(AD) in Supplementary Table 5).

To further distinguish the notion of a non-gradient distribution
(AD-associated to nonAD-associated) in our AD-association
predictions, we ran the bottom ten MPxgb(AD) predicted genes
through the first two biological screening methods. First, we

Fig. 3 mRNA for four of predicted genes are altered in human sAD2.1 iPSNs compared to control AX0018 iPSNs. a, b. Quantitative immunocytochemistry
showing significant increase of pS199/pS202 (AT8) tau in βIII-tubulin (neuronal marker) positive sAD2.1 iPSNs compared to control AX0018 iPSNs. Scale bar:
20 μm. c, d. Western blot and quantification showing significantly increased levels of total, pS199/pS202 (AT8), and pT231 (AT180) positive tau levels in sAD2.1
iPSNs compared to control AX0018 iPSNs. (Raw blots are shown in Supplementary Fig. 9). e. Quantitative real-time PCR analysis showing two folds increase in
the mRNA levels of RAB40A p value=0.0232, SCGB3A1=0.0053, TMEFF2=0.0096, and a fold decrease in FRRS1=0.0431 in sAD2.1 iPSNs compared to
AX0018 control iPSNs. Data shown are mean ± s.e.m; Two-tailed t tests welch-corrected; *p < 0.05; **p < 0.01, ***p < 0.005, n= 3 biological replicates; n= 3
technical replicates.
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analyzed the mRNA levels in iPSNs, then measured the mRNA
and protein levels in human brain autopsy tissue of the ten least
probable AD-associated genes from our MPxgb(AD) model. We
determined no significant differences in mRNA levels when
comparing sAD2.1 iPSNs to control AX0018 iPSNs (Supplemen-
tary Fig. 6). However, ACSM5 mRNA levels were significantly
downregulated in human AD brain tissue versus healthy controls
(Supplementary Fig. 7). We also found two significant alterations
at the protein level, STK32B and PFKFB2, comparing human AD
brain tissue to healthy controls (Supplementary Fig. 8, raw blots
are shown in Supplementary Fig. 12). We further examined these
three gene hits by manually curating information derived from
Pharos36, which pulls data from over 60 resources. These three
genes, ACSM5, STK32B, and PFKFB2, are not associated with
inflammatory processes. Instead, they are involved in fatty acid
beta-oxidation, sweet taste signaling, and glycolysis regulation
(Supplementary Note 1). It is not clear whether these three genes
indirectly influence immune functions. Their changes in AD
iPSNs/autopsy samples require further investigation.

Our top predicted MPxgb(AD) genes do not represent absolute
AD-associated ranking, nor are the bottom genes least likely to be
AD-associated. The difference between top-predicted versus
bottom-predicted genes is in their similarity cluster network

(inflammatory vs. metabolic pathways) rather than a definitive
verdict regarding AD-association or lack thereof. For complex
diseases such as AD/ADRD, more optimization is necessary to
build accurate disease-associated gene classification models. Since
MPxgb(AD) training is based on similarity networks (meta
paths), this model does not produce a ranked list of AD-
associated genes. A “ground truth” (confirmed true positives and
true negatives) training set would be required to create a binary
model. To the best of our knowledge, such gene lists are not
available for AD.

Correlational analysis suggests that two (SCGB3A1 and
CRTAM) of the top 20 predicted MPxgb(AD) genes are rele-
vant to immunity. To finalize and logically correlate all three
biological screening models (human iPSNs, human post-mortem
samples, and inflammation-induced phosphorylated tau in SH-
SY5Y cells), we generated a ranking system to distinguish each
experiment’s outcome, and the strength of association of each of the
top 20 MPxgb(AD) predicted genes. The statistically significant
digits are assigned a level unit corresponding to the p values and
displayed as a heatmap (Fig. 6a). Note, this ranking system does not
distinguish between increased or decreased experimental levels.
For example, * (p value ≤ 0.05) represents one unit level or point;

Fig. 4 Nine proteins relevant to inflammation, transcription regulation, and metabolism are significantly increased in post-mortem autopsy brains
of human sporadic Alzheimer’s disease. a, b. Western blot and quantifications showing significantly elevated levels of predicted proteins relevant to
inflammatory pathways (PIBF1, CRTAM, FRRS1, and LILRA3), transcriptional regulation (FOXP4 and SPOP), metabolism (PIBF1 and STARD3), and others
(TXNDC12 and FAM92B) in post-mortem temporal cortical samples of sporadic AD compared to age-matched healthy controls (HC). Note that SCGB3A1
and SLC44A2 were not detectable. Individual gels are separated and aligned with their corresponding loading control (GAPDH). The middle gel was
stripped and reprobed accordingly. (Raw blots are shown in Supplementary Fig. 10). Data shown are mean ± s.e.m of ratio to consecutive loading control
GAPDH; significance was determined using two-tailed t tests Welch-corrected; *p < 0.05; **p < 0.01, (P values for FRRS1= 0.0340, STARD3= 0.0176,
PIBF1= 0.0363, TXNDC12= 0.0122, FAM92B= 0.0456, FOXP4= 0.0474, SPOP= 0.0183, CRTAM= < 0.0001, and LILRA3= 0.0392) n= 7 healthy
controls and n= 8 sporadic AD).
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Fig. 5 siRNA-mediated suppression of CRTAM, FOXP4, GRIN2C, LILRA3, PIBF1, SCGB3A1, and TXNDC12 in SH-SY5Y human neuroblastoma cells
reduces inflammation-induced pS199/pS202 (AT8) and/or pT231 (AT180) tau phosphorylation. SH-SY5Y cells were transiently transfected with either
targeted GOI or scrambled siRNAs. After 48 h, cells were treated with CM (at 50%) derived from BV2 microglial cells. After 24 h, the lysates from SH-
SY5Y cells were prepared and Western blot was performed for AT8 and AT180 antibodies and actin as loading control. Note that the levels of AT8 and/or
AT180 are significantly altered in SH-SY5Y cells upon knockdown of MPxgb(AD) predicted CRTAM, FOXP4, GRIN2C, LILRA3, PIBF1, SCGB3A1, and TXNDC12
genes. (Raw blots are shown in Supplementary Fig. 11). Data shown are mean ± s.e.m; unpaired t tests; *p < 0.05; **p < 0.01, ***p < 0.005, n= 3 biological
replicates and n= 3 technical replicates).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03068-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:125 | https://doi.org/10.1038/s42003-022-03068-7 | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


**(p value ≤ 0.005) denote two points (Fig. 6b). We recall that
siRNA can potentially have off-target events.72 Therefore, we
excluded the knockdown experiments from the total score.

We totaled the points from iPSNs and tissue analyses, ranking
the predicted genes from highest to lowest score (Fig. 6b).
Upon performing this correlational analysis, FRRS1, CRTAM,
SCGB3A1, FAM92B, and TMEFF2 showed the expected trend. The
bottom 10 of the MPxgb(AD) predicted genes had three 1-point
gene hits (ACSM5, STK32B, and PFKFB2), when comparing the
level of significance in the iPSNs and tissue analysis. However, we
did not consider ≤ 1 point to be significant enough to suggest AD-
relevance. Among the top five ranked genes, FRRS1 and CRTAM
show the highest level of AD-association. FRSS1, categorized as
Tdark in the IDG classification, is a Ferric-chelate reductase that
reduces Fe3+ to Fe2+ before transport from the endosome to the
cytoplasm72. Interestingly, age-related dysregulation of brain iron
homeostasis leads to abnormal iron accumulation73. Another study

suggests that under proinflammatory responses, greater uptake of
iron occurs in brain microglia74. Perhaps defective FRRS1 might
play a role in the bioaccumulation of iron deposits from the brain,
which has been suggested in AD etiology75.

FAM92B, recently renamed CIBAR2 (CBY1 Interacting BAR
Domain Containing 2), is also categorized as Tdark; it may
facilitate ciliogenesis via cell projection organization76. CRTAM,
Cytotoxic, and Regulatory T Cell Molecule encodes a type I
transmembrane protein with V and C1-like Ig domains77. The
CRTAM gene is upregulated in CD4+ and CD8+ T cells78.
CRTAM(−/−) mice exhibited reduced protective immunity
against viral infection and impaired autoimmune diabetes
induction in vivo79.

Analyzing the neighboring nodes and closely interacting proteins
of CRTAM and SCGB3A1 (both, Tbio) in the STRING80 database,
CRTAM and SCGB3A1 are directly/indirectly interacting with the
well-established immune axises IL-1β/TNF〈 and TREM2-TYROBP,

Fig. 6 Our analysis identified FRRS1, CTRAM, SCGB3A1, FAM92B/CIBAR2, and TMEFF2 as potential AD risk genes. Two (CRTAM and SCGB3A1) of the
validated genes are relevant to immune mechanisms involving TREM2-TYROBP and IL-1β/TNFα axis, respectively. Two (FRRS1 and FAM92B) are
considered dark genes. TMEFF2 is involved in MTOR-APP regulation. a. Heatmap showing the summary of the top genes vs bottom genes, via three
different validations done on all twenty MPxgb(AD) predicted genes, as well as bottom predicted genes. The heat map colors represent the p value
statistical significance. *= p value ≤ 0.05; **= p value ≤ 0.005; ***= p value ≤ 0.0005. (1) The first row shows the results from the iPSNs-based
validation where the mRNA levels of GOI are either increased (red), decreased (blue) or no change (white) in sAD2.1 iPSNs compared to control AX0018
iPSNs. (2) The second row is mRNA levels for the MPxgb(AD) predicted GOI are either increased (red), decreased (blue) or no change (white) in human
autopsy brains. The third row is the results from the human autopsy brains of sporadic AD vs age-matched healthy controls, where the MPxgb(AD)
predicted proteins of interest (POI) are either increased (red), decreased (blue), not detectable (gray with an x) or not significant (white). (3) The last two
rows show the results from SH-SY5Y siRNA knockdown experiments, where the knockdown of MPxgb(AD) predicted GOI significantly reduced AT8
(blue) and/or AT180 (blue) levels. b. * Corresponds with statistical significance levels in (a) and represents one unit level or point; ** denote two points,
and *** represents three points. Thus, the ranking system is determined by the p values and sets each GOI with a total score calculated from each
screening experiment. Note, the siRNA experiments were not included in the final rank score. Moreover, the final list is labeled as top ranked with 3pts total
score being the highest (also labeled with their original predicted rank number), FRRS1 and CTRAM are tied for our top significant AD-relevant genes. With
2pts total score, SCGB3A1, FAM92B/CIBAR2, and TMEFF2 are ranked second. c. STRING protein network connectivity analysis of the three (CRTAM,
SCGB3A1, and TMEFF2) of the top five validated genes show interactions with well-established TREM2-TYROBP, IL-1β/TNFα, (both immune axes) and
MTOR-APP relevant to AD, respectively.
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respectively, which are relevant to AD (Fig. 6c). Subsequently, we
also note that CRTAM has a third and fourth-degree relationship
to the other known AD-associated genes, ITPR1 and VPS35,
respectively. VPS3581 (VPS35 Retromer Complex Component) is
related to GPCR signaling and endocytosis pathways. Furthermore,
ITPR182, Inositol 1,4,5-Trisphosphate Receptor Type 1, is involved
in downstream B-Cell receptor signaling events, GPCR signaling,
as well as ion (e.g., calcium) channel activities. TMEFF2
(also categorized as Tbio) has been shown to be protective in AD
via binding of amyloid-β oligomers83. In addition, this study
suggests an endurance element for hippocampal and mesencephalic
neurons84. TMEFF2 is also connected to MAPKAP185, a subunit
of mTORC2 (Target of rapamycin complex 2) that regulates cell
growth and survival in response to hormonal signals85 indirectly
connected to APP (Fig. 6c). In summary, these results suggest
proteins relevant to inflammation/cytokine activity, innate immu-
nity, and amyloid-β processing axes are potential AD/ADRD
pathogenic pathways, which were identified and screened through
an AD-focused MPxgb model.

Discussion
By combining a large-scale dataset (the TCRD subset shown in
Supplementary Table 1) with the graph-based metapath formal-
ism and the ML XGBoost algorithm, MPxgb(AD), we generated
an AD-focused model built upon the Rat Genome Database-
based list of 53 positive AD-associated genes. In this study, we
reported an AD-focused ML model and screened 20 top and 10
bottom genes in a series of three independent biological AD
model systems. With ML guidance, we identified potential gene
targets previously not associated with AD relevant to immunity.
Our qRT-PCR analysis shows significantly altered mRNA levels
in the sporadic AD iPSNs in four of the top twenty predicted
genes. Five of the top 20 genes are significantly altered at the
mRNA level, and nine are upregulated at the protein level in
human autopsy AD brains. siRNA-mediated knockdown con-
firmed nine genes significantly reduced AD-relevant tau hyper-
phosphorylation on AT8 and AT180 sites.

Five (FRRS1, CTRAM, SCGB3A1, FAM92B/CIBAR2, and
TMEFF2) of the top 20 genes were ranked the most significant
distinctions between AD samples vs. control. All five top-selected
genes lack known associations with small molecules and drugs,
having been categorized as Tbio or Tdark (FRRS1 and FAM92B/
CIBAR2)86. Two genes (CTRAM and SCGB3A1) are associated
with known AD-risk pathways that are relevant to the innate
immune pathways, TREM2-TYROBP and IL-1β/TNFα, respec-
tively. One gene, TMEFF2, is connected to the MTOR-APP path-
way. From the top 20 VIP features (Table 1), several PPIs point to
inflammatory processes and oxidative stress. Although limited by
input data that do not include non-human (e.g., pathogen) infor-
mation, this specific MPxgb(AD) model suggests infection as a key
process in AD pathology87–91. Surprisingly, none of the LINCS/no-
LINCS models generated in 2021 (LASSO or XGBoost) as opposed
to the 2018 MPxgb(AD) model, ranked these five genes among the
top 100 by probability (Supplementary Fig. 1b). This does not
preclude the possibility that some of these top-ranked genes are
relevant in AD pathology, and additional studies are needed.

While our model top and bottom predicted genes were
experimentally screened, we note the approach has additional
limitations. When using 3,952 negative label genes from OMIM,
we assumed that association with other pathologies implies little
or no role in AD/ADRD; however, this does not imply true
negatives. Effective ML models require true negatives. In biology,
this is not always trivial. Some genes (not directly related to
immune mechanism) may indirectly influence immunity (e.g.,
pure metabolic genes may likely influence innate immune

function; likewise, genes in cell cycle regulation may affect
immune cell proliferation/trafficking). We also limited ourselves
with our positive labeled set, which had an immune network bias.
As more established AD-associated and nonAD-associated genes
become available, we anticipate improving the MPxgb(AD)
model. Additional improvements may require parallel rankings
derived from deploying different algorithms.

Two options might lead to improved prediction accuracy for
absolute AD-associated vs. non-AD-associated genes. First, using
positive-unlabeled learning to overcome the issue of noisy unlabeled
data as negative samples92,93, could lead towards a gradient dis-
tribution model. Indeed, unary/one-class classifiers trained on
positive samples only exist94. Second, the use of true positives and
true negatives and potentially more data types should be con-
sidered, e.g, from AD-specific databases with more multimodal
attributes (e.g., disease-disease associations, protein domain, and
sequence information). Based on the confusion matrix (Supple-
mentary Table 3), we expected one in three positively predicted
genes (up to 7 of the top 20) to be confirmed. We identified two
strongly AD-associated proteins, with another three showing
moderate association (Fig. 6b). Another limitation of this model is
that MPxgb(AD) probability rank does not relate to a gradient in
AD-relevance. Rather, the model was trained and weighted for
predictions of potential AD-gene associations relevant in inflam-
matory pathways.

We also note a few caveats within our biological screening
pipelines. While most of the genes were detectable in human iPSNs
and autopsy brain samples, some genes (SLC44A2 and SCGB3A1)
were undetectable in human brain samples via Western blot ana-
lysis. It is possible that the commercial antibodies utilized for these
gene targets may not be ideal for Western blot analysis. Especially
for the detection of SCGB3A1 in AD versus control samples, the use
of a well-validated and reliable antibody would prove an even
higher rank for potentiality for AD association. On the same note,
in human AD autopsy brain samples compared to controls, many
genes’ mRNA levels were not significantly altered, yet most of the
proteins were significantly altered in those same samples. These
results conceivably suggest that increase in protein, but not mRNA,
levels may occur post-transcriptionally during the progression of
the disease. Furthermore, we used siRNA knockdowns to assess
potential changes in an in vitro neuroinflammation mechanistic
model measuring the effects of specific phosphorylation sites of tau.
Most of the genes appear to play a significant role in the tau
pathology within AD. However, it is essential to note that more
extensive analyses need to be performed to detect off-target events.
We also acknowledge these screening models exclude amyloid-β
status, synaptic function, and other AD-relevant phenotypes.
Additionally, this study did not examine the status of possible
variants and their potential AD role within each target. Though
some genes are expressed in the CNS, i.e., NDRG2, GRINC2,
TMEFF2, LMO4, and SLC44A283,84,95–99, are top ranked genes
previously shown to have little to unknown expression in the
brain50. Moreover, some of our predicted AD-associated genes
appear to have known AD associations (NDRG2, TMEFF2,
GRINC2, and LMO4; see Supplementary Note 1). These studies,
however, were more suggestive than confirmatory.

Despite these discrepancies, results from this study contribute
to AD-associated gene knowledge by identifying potential AD-
risk candidate genes from the top 20 MPxgb(AD) prediction list.
These should be independently verified in future studies. Our
three-pronged experimental screening system further contributes
to the illumination of the complex AD network and the identi-
fication of potentially potential AD drug targets. We designed a
unique method to characterize the potential role these genes may
contribute to AD, more so, their role in tau pathology and with
relevance to inflammation. We have shown in several ways that
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FRRS1, CTRAM, SCGB3A1, FAM92B/CIBAR2, and TMEFF2 are
convincing candidates to further investigate as potential drug
targets for AD.

In conclusion, we developed a specific MPxgb(AD) model to
mine and predict AD-associated risk gene(s). Four of the twenty
predicted genes were altered considerably at the mRNA level in
sporadic AD iPSNs compared to control iPSNs. Nine of the
twenty predicted genes have higher protein expression in AD
brain tissue versus controls, and five have significantly upregu-
lated mRNA levels. Finally, siRNA-mediated knockdown assays
identified nine out of twenty genes that significantly reduce AD-
relevant tau hyperphosphorylation at the AT8 and AT180 sites.
Ranking the results based on the statistical significance of each
experimental model, we identified FRRS1 and CTRAM as having
the most AD relevance within our AD model screening pipeline.
Overall, these results provide a means to synthesize association
data across studies likely to contribute to AD pathology. More
testing and optimization in independent samples will warrant
application in both future clinical practice and clinical trials.

Methods
ProteinGraphML build. Briefly, when designing the MPxgb(AD), we first used the R
version of ProteinGraphML program to build the PKG. We note that the current
ProteinGraphML program is written in python. The ProteinGraphML software is
designed to predict disease-to-protein (protein-coding gene) associations, from a
biomedical knowledge graph via ML. This codebase abstracts the ML from the
domain knowledge and data sources, to allow reuse for other applications. The input
MySQL relational database is converted to a knowledge graph, then converted to
feature vectors by metapath matching, based on an input disease, defining a training
set of proteins. Then XGBoost38 is used to generate and optimize a predictive model.
We trained the model with an AD-focused gene set (Supplementary Table 2) and
produced an AD-associated prediction list (Table 2), MPxgb(AD).

For further detail, data collected and integration of over 13 biological datasets
across the major knowledge domains, including genomic, proteomic, functional,
phenotypic, and interactions (biochemical, protein–protein, TF-DNA, etc.) into a
PKG shown in Supplementary Table 1. Integration of multiple data types into the
PKG enables, via the metapath approach, the formalization of different network
paths connecting proteins to diseases (phenotypes). We implemented metapaths
via SQL queries that extract matching metapath entities from TCRD to build an in-
memory knowledge graph. Metapath examples are shown in summary form in
Fig. 1a and listed with the corresponding SQL in Supplementary Table 6. We
systematically transform the tabular result from each SQL into relationships
between nodes. In addition to the meta path-based features, a set of static features
is generated for sources invariant with disease query: GTEx50, LINCS49, CCLE100,
and HPA101. The SQL corresponding to these four feature sources is listed in
Supplementary Table 7. Note, static features are not dependent on training set
labels, only the database, so the same TSV files can be reused for all models, and
only needs to be re-run if the database changes.

Graph analytics facilitates the computation of topological features such as path
counts by enumerating all path instances matching a given metapath. Degree
weighted path counts (DWPCs—see Eq. 1)37 uses node-degree (number of edges) to
weight each path instance and down-weight paths through higher-degree nodes.
DWPCs quantify metapath prevalence using a dampening exponent (w, set to 0.4) to
down-weight paths through high-connectivity nodes when computing DWPCs Eq. 1.
The path-degree product ∏ (Fig. 1b) is calculated by: (1) extracting all edge-specific
degrees along the path Dpath, where each edge contributes two degrees; (2) raising
each degree d to the −w power, where w is the dampening exponent; (3) multiplying
all exponentiated degrees to yield ∏. DWPC is the sum of path degree products ∏
(adapted from ref. 37). The metapath approach enables the transformation of the
heterogeneous knowledge graph into an ML-ready input table, with one row per
protein and one column per feature vector; features can be categorical or continuous
variables. This transformation is a form of graph embedding, which refers to
embedding into the feature vector space. Moreover, the PKG is transformed by
matching the meta paths to the training set for a given input query and training set of
known disease-associated genes. The static features are non-DWPC and not KG-
based, and in this regard, we use a hybrid ML approach, whereas the approach by
Himmelstein et al37. include non-DWPC features that are KG and path count based.
Static features are not dependent on training set labels, only the database, so the same
TSV files can be reused for all models, and only need to be re-run if the database
changes. For machine learning, we selected XGBoost38, an ML algorithm more
rigorous than LightGBM102. XGBoost is known to be high performing, versatile, and
amenable to interpretability, particularly relative to artificial neural networks and deep
learning. XGBoost feature-importance scoring facilitates the ranking of meta paths for
prioritization of manual follow-up to elucidate mechanistic hypotheses. While
learning a classification model from the given data, the importance of features is
calculated by XGBoost using three different metrics: gain, cover, and weight/

frequency. Gain implies the magnitude of the contribution of a particular feature to
the model. The cover implies the average number of observations in which the feature
was used to split the data across all trees in the model. Weight/frequency indicates
how many times a feature was used to split the data across all trees in the model. Since
the gain values represent the contribution of features, we used them to rank features.
Gain values for features were calculated using the get_score() function of the XGBoost
package38. The combination of metapath/XGBoost (MPxgb) processes assertions/
evidence chains of heterogeneous biological data types and identifies similar
assertions. The overall MPxgb algorithm and workflow are depicted schematically in
Fig. 1a. For further description and tutorial description please visit https://github.com/
unmtransinfo/ProteinGraphML or http://proteingraph.ml/

Gene ontology enrichment analysis. We performed GO enrichment analysis to
examine whether predicted top genes were clustered into specific biological pro-
cesses versus the bottom or least predicted genes. We used the enrichment analysis
visualizer, https://appyters.maayanlab.cloud/#/Enrichment_Analysis_Visualizer
and here: https://github.com/MaayanLab/appyter-catalog/tree/master/appyters/
Enrichment_Analysis_Visualizer. This appyter uses four scores to report enrich-
ment results: p-value, q-value, rank (Z-score), and combined score. The p-value is
computed using Fisher’s exact test or the hypergeometric test. This is a binomial
proportion test that assumes a binomial distribution and independence for the
probability of any gene belonging to any set. The q-value is an adjusted p-value
using the Benjamini–Hochberg method for correction for multiple hypothesis
testing. The rank score or z-score is computed using a modification to Fisher’s
exact test in which we compute a z-score for deviation from an expected rank.

Human brain tissue samples. Clinically and neuropathologically diagnosed
human healthy control (HC) and Alzheimer’s disease (AD) brain tissue samples
were kindly provided by Northwestern Cognitive Neurology & Alzheimer’s Disease
Center (CNADC) Neuropathology Core. Details of the human samples used are
provided in Supplementary Table 4. The University of New Mexico Institutional
Review Board approved the use of all human autopsy specimens under exempt
status. Informed consent was also obtained by all human subjects used in this study
by the Northwestern University CNADC Neuropathology core, which provided the
postmortem brain tissues for the study.

Cell culture. Human Neuroblastoma (SH-SY5Y (ATCC® CRL-2266) cells were
maintained in Dulbecco’s Modified Eagle Medium (Thermo Fisher Scientific)
supplemented with 10% FBS (Thermo Fisher Scientific) and 100X Penicillin-
Streptomycin (Thermo Fisher Scientific) at 37 °C. For the conditioned media (CM)
experiment, LPS (1 μg/ml) was used to prime BV2 microglial cells. The BV2
microglial cells were a gift from Dr. Gary Landreth and were maintained in Dul-
becco’s Modified Eagle Medium (Thermo Fisher Scientific) supplemented with
10% FBS (Thermo Fisher Scientific) and 100X Penicillin-Streptomycin (Thermo
Fisher Scientific). All cell lines tested negative for mycoplasma contamination using
the Lonza MycoAlertTM Mycoplasma Detection Kit, Catalog #: LT07-118.

Knock-down of gene of interest with siRNAs. siRNAs used in both western
blotting (WB) or immunohistochemistry (IHC) are listed in Supplementary Table 8.
For the time-course kinetic experiment, the SH-SY5Y cells and BV2 cells were
maintained and set up as above in cell culture methods. siRNA-mediated knockdown
of target genes was performed using RNAiMax from Thermofisher manufacturer
protocol (Cat. # 13778075). Briefly, SH-SY5Y cells were seeded ~0.25−1 × 106 in a six-
well plate. 150 µL of Opti-MEM Medium is mixed with 9 µL of Lipofectamine
RNAiMAX reagent, then 150uL of Opti-MEM Medium is mixed with 30 pmol of
individual siRNA against the top 20 genes (in alphabetical order; AKNA, BC02,
CCNY, CRTAM, FAM92B, FOXP4, FRRS1, GRIN2C, 1L17REL, LILRA3, LM04,
NDRG2, PIBF1, RAB40A, SCGB3A1, SLC44A2, SPOP, STARD3, TMEFF2, and
TXNDC12). These two mixtures were then mixed 1:1 ratio together and incubated for
5 min at room temp. Then siRNA-lipid complex is added to cells (a single well).
Simultaneously, BV2 cells were separately stimulated with lipopolysaccharide (LPS,
100 ngml−1). After 24 h at 37 °C, 50% of the siRNA-transfected SH-SY5Y media was
replaced with LPS-stimulated BV2 conditioned media (CM). After another 24 h. at
37 °C, cells were lysed to detect phosphorylated tau and knockdown of GOIs. Con-
firmation was performed by SDS-PAGE and Western blot and by immunocy-
tochemistry with antibodies against all twenty target proteins, as described below.

Human-induced pluripotent stem cells. Following inducible pluripotent stem cell
lines (iPSC) were utilized: sAD2.1; Coriell # GM24666, (iPSCs derived from
sporadic Alzheimer’s disease patient; 83-year-old male), control line: Axol Bio #
AX0018 (iPSC-Derived Neural Stem Cells; 74-year-old male). Briefly, iPSCs were
maintained in mTESR plus supplement (STEMCELL Cat. No. 85850) at 37 °C.
Neuron differentiation was performed as per the StemCell’s neuronal differentia-
tion kit/protocol; (STEMCELL Cat. No. 05835, 05833, 08500, 08510). Later the
medium was changed to BrainPhys™ (STEMCELL Cat. No. 05791) for long-term
maturation at 37 °C. Neural progenitor cells seeded at 1.5 × 104 cells/cm2 for
maturation. Human cortical neurons supplements: 1 × N2-Supplement A
(STEMCELL Cat. No. 07152), 1× NeuroCult™ SM1 without vitamin A (STEMCELL
Cat. No. 05731), 200 nM ascorbic acid (Sigma Cat. No. A4403), 20 or 10 ng/ml
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BDNF (STEMCELL Cat. No. 78133.1), 20 or 10 ng/ml GDNF (STEMCELL Cat.
No. 78139.1), 1 µg/ml laminin (Thermo Fisher Scientific Cat. No. 23017015), and
0.5 or 0.25 mM dibutyryl cyclic-AMP (Sigma Cat. No. D0627).

Gene expression analysis. RNA from cells was extracted using the TriZOL
reagent as described by the manufacturer (Thermo Fisher Scientific). Total RNA
(20 ng/μL) was converted to cDNA using the High-Capacity cDNA Reverse
Transcription kit (Thermo Fisher Scientific) and amplified using specific TaqMan
assays (catalog # 4331182; Thermo Fisher Scientific). 18 s rRNA (catalog #
4319413E, Thermo Fisher Scientific) was used as a housekeeping gene for nor-
malization. The list of qRT-PCR assays are listed in Supplementary Table 9 and
were run on the StepOnePlus® Real-Time PCR System (Thermo Fisher Scientific)
and the statistical analyses were performed using Prism.

SDS-PAGE and western immunoblotting. Cells were lysed in 1x NuPAGE LDS
Sample Buffer (Thermo Fisher Scientific Cat. No. NP0007) and NuPage Sample
Reducing Agent (Thermo Fisher Scientific Cat. No. NP0009) and sonicated for
30 s, boiled at 95 °C for 15 min. Cell lysates were resolved via SDS-PAGE and
immunoblotted as previously described (5). The dilutions of primary antibodies
utilized are indicated in Supplementary Table 10. For the detection of phos-
phorylated tau, AT8 (Thermo Fisher Scientific Cat. No. MN1020AT8; for tau
phosphorylated at S199/S202) and AT180 (Thermo Fisher Scientific Cat. No.
MN1040; for tau phosphorylated at T231) monoclonal antibodies were utilized.
Anti-actin antibody was used as loading control. For the human autopsy brain
samples, temporal cortices were homogenized in 10% weight/volume Tissue
Protein Extraction Reagent (T-PER®, Thermo Fisher Scientific) with protease
(P8340 Sigma-Aldrich) and phosphatase (P5726; Sigma-Aldrich) inhibitor
cocktails. Protein (20 μg) was resolved in 4–12% Bis-Tris Novex NuPage gels
(Invitrogen) and transferred to PVDF membrane, blocked (in 5% milk), and
incubated overnight in primary antibodies (details on the dilutions are provided in
Supplementary Table 10 followed by incubations with respective secondary anti-
bodies. Membranes were developed using ECL reagent (NEL101001EA; Perkin
Elmer) and immunoreactive bands were quantified in AlphaEaseFC™ Software
(Alpha Innotech Corporation).

Immunocytochemistry and confocal microscopy. Cells were plated on cover-
slips coated with laminin, once cells were ready for fixation, they were fixed in
4% paraformaldehyde, blocked with 0.2% Triton and 10% donkey serum,
incubated in primary overnight in 4 °C (5% donkey serum). AT8, AT180 anti-
Tubulin β-3 (TUBB3 Antibody, BioLegend Cat. # 802001) at 1:250, were utilized
as primary antibodies (Supplementary Table 10). Goat anti-mouse Alexa Fluor
488 and Alexa Fluor 555 (1:500) secondary antibodies were used. DAPI was used
to stain the nucleus. Coverslips were mounted to slides using Fluoromount-G
(ThermoFisher, Cat# 00-4958-02). Immunofluorescence confocal microscopy
was carried out using Zeiss LSM 510 Meta microscope with ZEISS ZEN imaging
Software. To confirm the knockdown of target genes via immunocytochemistry,
four random fields per immunostained epifluorescence images were quantified
for the average immunoreactive area per field using Image J software. Three
technical replicates from three different biological replicates per condition were
imaged and quantified. Mean fluorescence intensity (MFI) across different
replicates per condition was compared and plotted. Any values that fell either
above or below mean + 2*SD were called out as outliers and excluded from the
analysis.

Antibodies. Antibodies used in western blotting (WB) or immunohistochemistry
(IHC) are listed in Supplementary Table 10.

Statistics and reproducibility. Unless otherwise indicated, comparisons between
two groups were done via unpaired two-tailed t-test with Welch’s correction;
comparisons between multiple treatment groups were done via one-way or two-
way analysis of variance (ANOVA) with indicated multiple comparisons post hoc
tests. Tukey’s method was used to find and remove outliers. All statistical analyses
were performed using GraphPad Prism® (Version 9.0). For iPSN and siRNA
experiments, n= 3 biological replicates; n= 3 technical replicates were used.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used for analysis in this study and raw images are available at https://figshare.com/
projects/Machine_learning_prediction_and_tau-based_screening_identifies_potential_
Alzheimer_s_disease_genes_relevant_to_immunity/127145. All other data are available
from the corresponding author upon reasonable request.

Code availability
We used version 6 of TCRD and can be downloaded at http://juniper.health.unm.edu/
tcrd/download/. We used the R version of ProteinGraphML program to build the PKG.

We note that the current ProteinGraphML program is written in python and is available
at https://github.com/unmtransinfo/ProteinGraphML. For full analysis are at https://
doi.org/10.5281/zenodo.5784581.
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