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Direct neuronal infection of SARS-CoV-2 reveals cellular and molecular
pathology of chemosensory impairment of COVID-19 patients
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ABSTRACT

Patients with recent pandemic coronavirus disease 19 (COVID-19) complain of neurological abnormalities in sensory
functions such as smell and taste in the early stages of infection. Determining the cellular and molecular mechanism
of sensory impairment is critical to understand the pathogenesis of clinical manifestations, as well as in setting
therapeutic targets for sequelae and recurrence. The absence of studies utilizing proper models of human peripheral
nerve hampers an understanding of COVID-19 pathogenesis. Here, we report that severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) directly infects human peripheral sensory neurons, leading to molecular pathogenesis for
chemosensory impairments. An in vitro system utilizing human embryonic stem cell (hESC)-derived peripheral
neurons was used to model the cellular and molecular pathologies responsible for symptoms that most COVID-19
patients experience early in infection or may develop as sequelae. Peripheral neurons differentiated from hESCs
expressed viral entry factor ACE2, and were directly infected with SARS-CoV-2 via ACE2. Human peripheral neurons
infected with SARS-CoV-2 exhibited impaired molecular features of chemosensory function associated with
abnormalities in sensory neurons of the olfactory or gustatory organs. Our results provide new insights into the
pathogenesis of chemosensory dysfunction in patients with COVID-19.
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Most patients infected with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) complain of
abnormalities in peripheral chemosensory function,
including smell and taste, as major neurological symp-
toms at the beginning of the infection [1]. Given the
nature of typical coronavirus infection, which primar-
ily causes a respiratory syndrome, it is unusual that
SARS-CoV-2 the causative agent of coronavirus dis-
ease 2019 (COVID-19) results in peripheral neurosen-
sory symptoms. To understand a patient’s symptoms
and possible sequelae, investigating the pathogenesis
of the infection is necessary. SARS-CoV-2 were
found to trigger the pathogenesis of abnormal olfac-
tory function in mice by infecting non-neuronal cells
such as the epithelial cells except neurons [2]. How-
ever, multiple studies including results from autopsy
data of COVID-19 deaths or transgenic mice reveal
the presence of virus-infected peripheral neurons in

human or mice olfactory systems [3]. Hence, studies
using humans are required to address the controversy
surrounding cellular pathogenesis of COVID-19.
ACE2 is an entry factor for SARS-CoV-2 [4]. Since
ACE2 is not expressed in human olfactory peripheral
sensory neurons [2], we reanalysed the single-cell
RNA sequencing results of human olfactory neurons.
We found that the expression of ACE2 in olfactory
neurons was not a complete zero, but relatively low
compared to that of other genes (Figure 1(a,b) and
Supplementary Table 1). As human embryonic stem
cell (hESC)-derived neurons are potential alternatives
to human primary neurons for modelling RNA virus
infection [5], we used hESC-derived peripheral neur-
ons to validate whether neuronal cells are involved
in the COVID-19 pathogenesis. During the differen-
tiation of peripheral neurons (Figure 1(c) and Sup-
plementary Figs la-b), neural crest stem cells were
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stimulated with fibroblast growth factor 8 (FGF8) and
retinoic acid (RA) to give frontonasal developmental
signals [6], and increased number of olfactory marker
protein (OMP)-expressing neurons were observed
with upregulated OMP and downregulated BRN3A
expression levels (Figure 1(d,e) and Supplementary
Fig 1c). Along with differentiation, neurons increased
ACE2 expression, while TMPRSS2 expression
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remained unchanged at the fully differentiated neur-
onal stage (Figure 1(f,g) and Supplementary Figs.
1d-f).

Next, we investigated whether ACE2-expressing
neurons are directly targeted by SARS-CoV-2. ACE2
expressing neurons were incubated for 72 h after a
one-hour-infection with SARS-CoV-2 (Figure 1(h)),
and the intracellular expression levels of the viral
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genes nspl4 (SARS-CoV-2 non-structural protein 14),
RARp (RNA-dependent RNA polymerase), S (spike
protein) and N (nucleocapsid phosphoprotein) were
substantially increased in the infected neurons (Sup-
plementary Fig. 2a). Remarkably, the viral genes
involved in virion replication, nsp14 and RdRp, were
continuously amplified within infected neurons over
time, suggesting that SARS-CoV-2 propagated in the
infected neurons (Figure 1(i)). In contrast to viral
gene enrichment in human neurons with a viral infec-
tion, the olfactory nerves of beagle dogs were found to
be protected from SARS-CoV-2 (Supplementary Fig.
2b), which is consistent with the results of a previous
study indicating that SARS-CoV-2 exhibits infection
specificity in humans [7]. To confirm whether SARS-
CoV-2 directly infects human neurons in an ACE2-
dependent manner, we generated a homozygous
ACE2 in del knockout hESC line using CRISPR/Cas9
gene-editing technology (Supplementary Figs. 3a-f).
ACE2-deficient hESCs maintained the ability to differ-
entiate into peripheral neurons through neural crest
stem cells (Supplementary Figs. 3g-i), and ACE2 not
expressed as non-sense-mediated decay of mRNA
occurred (Supplementary Figs. 3j-k). Subsequently,
we infected the wild-type and ACE2-knockout neur-
ons with SARS-CoV-2. The nucleoprotein of corona-
virus (N) was detected in wild-type neurons but not
in ACE2-knockout neurons (Figure 1(j,k) and Sup-
plementary Figs. 31-m), indicating that neuronal infec-
tion of SARS-CoV-2 is eliminated by blocking the
ACE2-dependent direct infection pathway. Viral
genes were enriched in wild-type neurons and did
not increase in knockout neurons 72 h post-infection
(Figure 1(1)), thus supporting the important role of

ACE2 in the direct infectivity of SARS-CoV-2 into
human peripheral sensory neurons.

To investigate the underlying molecular pathology
due to direct neuronal infection with SARS-CoV-2,
we analysed RNA sequencing results to identify
genes whose expression levels were changed after
SARS-CoV-2 infection in hESC-derived peripheral
neurons. We established a shared list of 1,185 upregu-
lated and 332 down-regulated genes in SARS-CoV-2-
infected neurons (Figure 1(m) and Supplementary
Tables 2-3) by comparing differentially expressed
genes from individual experimental batches (Sup-
plementary Fig. 4a). Interestingly, network analysis
using the STRING algorithm revealed that viral infec-
tion-related genes, expression of which was up-regu-
lated in SARS-CoV-2-infected human peripheral
neurons, were thoroughly covered by categories of
genes related to viral mRNA translation, herpes sim-
plex infection, and influenza infection (Figure 1(n)).
Additionally, enrichment of genes involved in the
response of cells to viral infections, such as virus-
induced DNA replication stress (HSPAIA, HSPAIB,
and JUN) [8] (Supplementary Fig. 4b), virion replica-
tion (HNRNPK and FKBPS8) [8] (Supplementary Fig.
4c¢), and mechanisms of inter-tissue infection spread
(SOCS3 and CXCR4) [9] (Supplementary Fig. 4d),
were confirmed using quantitative PCR. In particular,
the expression of the ribosomal subunit assembly-
encoding gene RPLP], rather than the rRNA subunits
such as RPL13 and RPSI5, was increased following
SARS-CoV-2 infection (Supplementary Fig. 4e),
suggesting that the virus replication mechanism
efficiently assembles the ribosome machinery during
the host ribosome hijacking. We further analysed the
list of shared genes using Kyoto encyclopedia of

P
N

Figure 1. SARS-CoV-2-infected human peripheral sensory neurons reveal the cellular and molecular pathology of the chemosen-
sory impairment. (a) Comparison of expression level of ACE2 to the expression level of all other genes in single cells. All single cells
were divided into 14-18 groups for each patient according to the gene expression pattern, and the median value of all cells
expressing ACE2 was indicated in red. (b) Comparison of expression level of ACE2 against the mean or median of each gene.
Mean values of ACE2 expression in all cells of the indicated patients are shown in red. (c) Representative morphology of differ-
entiated peripheral neurons. Scale bars correspond to 100 um. (d) Representative image for OMP expressing neurons. TUJ1 and
DAPI was counter stained. Scale bars correspond to 50 um. (e) Cell counting for OMP expressing neurons to DAPI stained nuclei in
the neuronal differentiation condition with or without FGF8 and RA. Unpaired t-test, ****p < 0.0001, (f) Transcription level of ACE2
and TMPRSS2 were confirmed by qRT-PCR at each day of differentiation from hESCs. n =9, biological repeat, values are mean and
SD, One-way ANOVA, *p <0.05, **p <0.005, ***p < 0.0005, ****p <0.0001, n.s.: non significance. (g) Validation of protein
expression of ACE2 at each day of differentiation from hESCs. GAPDH was used as an internal control. (h) Schematic of SARS-
CoV-2 infection strategy for hESC-derived peripheral neurons. (i) Tendency to increase the expression level of SARS-CoV-2
nsp14 and RdRp was validated by gqRT-PCR in SARS-CoV-2-infected hESC-derived peripheral neurons. Black line is measured
value and red line is trend. Nonlinear regression, S=slope, R?=fitness, Pearson 1, *p < 0.05. (j) Representative images of
SARS-CoV-2 infection. Nucleoprotein of coronavirus (N) (red) was immuno-stained in wild type (upper panel) or ACE2 KO
(lower panel) hESC-derived peripheral neurons. DAPI was stained as counter staining (blue). Scale bars correspond to 50 ym.
(k) Number of SARS-CoV-2-infected neuron was counted from wild type or ACE2 KO neuros post 72 h of SARS-CoV-2 infection.
n =4, biological repeat, values are mean and SD. Unpaired t-test, ****p < 0.0001. (I) Expression level of viral genes, nsp14, RdRp, S
and N were validated by qRT-PCR. n = 11, biological repeat, values are mean and SD. Paired t-test, ****p < 0.0001. (m) Venn dia-
gram of the up-regulated genes (upper) or down-regulated genes (lower) in SARS-CoV-2-infected peripheral neurons of each
group. Lists of 1,185 genes for up-regulated genes or 332 genes were shared in both experimental sets. (n) Network analysis
using the STRING algorithm by uploading selected genes associating viral infection. Colours, categories and false discovery
rate (FDR) are indicated. (0) Gene ontology results for biological process from up-regulated genes in SARS-CoV-2-infected neurons.
Ontology terms were selected by p-value (FDR < 0.05). Analysed using PANTHER algorithm.



genes and genomes (KEGG). The upregulated
expression of genes in SARS-CoV-2-infected neurons
indicated the activation of multiple signalling path-
ways associated with pathogenic infections, such as
viral carcinogenesis, legionellosis, herpes simplex
infection, pathogenic E. coli infection, and human
T-lymphotropic virus I (HTLV-I) infection (Sup-
plementary Fig. 4g). Moreover, WNT, Rho and
MAPK, which have been identified as cooperative sig-
nalling pathways for infection and replication pro-
cesses of various viruses [10], were validated to be
recruited into the life cycle of SARS-CoV-2 in
human peripheral neurons (Supplementary Fig. 4h).
Considering that human peripheral sensory neur-
ons express ACE2 [11] and are infected by other
RNA viruses, including coronavirus [12], it is necessary
to confirm whether peripheral sensory neurons
develop only chemosensory dysfunction-relevant mol-
ecular pathologies rather than somatosensory dysfunc-
tion, despite infection through the entire neuronal
population. To address the molecular pathology repre-
senting chemosensory abnormalities associated with
the anosmia, we analysed the gene ontology using
two different databases (DAVID and PANTHER).
The analysis results indicated that biological processes
associated with sensory impairment, such as sensory
perception of smell (GO0007608), detection of chemi-
cal stimuli involved in sensory perception of smell
(GO0050911), sensory perception of chemical stimuli
(GO0007606), detection of chemical stimuli involved
in sensory perception (GO0050907), detection of
stimuli involved in sensory perception (GO0050906),
detection of chemical stimuli (GO0009593), and sen-
sory perception (GO:0007600), were negatively
affected in peripheral neurons following SARS-CoV-2
infection (Figure 1(0)). Further analysis of molecular
functions confirmed that SARS-CoV-2 infection
attenuated the molecular mechanisms involved in peri-
pheral sensory perception, including olfactory receptor
activity  (GO0004984), passive transmembrane
transporter activity (GO0022803), channel activity
(GO0015267), ion channel activity (GO0005216),
G protein-coupled receptor activity (GO0004930),
and transmembrane signalling receptor activity
(GO0004888) (Supplementary Fig. 5a). To support
this result, we profiled the expression of genes associ-
ated with the indicated categories in an ontology analy-
sis. The olfactory neuronal marker genes fibronectin
leucin-rich transmembrane protein (FLRT3), Drebrin
1 (DBNI), Taste 2 receptor member 31 (TAS2R31)
(Supplementary Fig. 5b), chemosensory regulatory
factors Yin Yang 1 (YY1), Proviral integration site for
Moloney murine leukaemia virus-1 (PIM1I), cannabi-
noid receptor 1 (CNRI) (Supplementary Fig. 5¢), and
axon inducing factors Cadherin EGF LAG seven-pass
G-type receptor 2 (CELSR2), Cadherin EGF LAG
seven-pass G-type receptor 3 (CELSR3), Beta-secretase
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1 (BACEI) (Supplementary Fig. 5d) were significantly
decreased in SARS-CoV-2 infected neurons. Intrigu-
ingly, expression of the chemosensory modulators
BRD2 and EGRI, which have been proposed as targets
of feasible COVID-19 therapeutic agents, was also elev-
ated in human peripheral neurons following SARS-
CoV-2 infection (Supplementary Fig. 5e) [13,14].

Despite the undoubted value of research using
human tissues to understand the pathogenesis of the
disease, accessibility to patients has been extremely lim-
ited in situations such as the recent COVID-19 pan-
demic. To understand the pathogenesis of neurological
symptoms, recent studies have reported the cellular
mechanisms of nerve tissue damage upon the SARS-
CoV-2 infection using transgenic mice artificially over-
expressing human angiotensin-converting enzyme
receptor type-2 (hACE2) to overcome the difference
between species on viral infectivity [2,15]. Although
the previous research has suggested that SARS-CoV-2
is inaccessible to sensory neurons and that viral infec-
tion of non-neuronal cells, excluding neurons, triggers
the pathogenesis of abnormal olfactory function in
mice [2,16], autopsy data from COVID-19 deaths
revealed the presence of virus-infected peripheral neur-
ons in human olfactory bulbs [3]. There lacks a consen-
sus whether the functional abnormalities of the
peripheral sensory nerves are due to infection of neur-
onal cells or loss of epithelium and surrounding tissues.
Notably, the peripheral sensory impairment in chemo-
sensory organs often leaves long-term sequelae in
patients with COVID-19 [17], which supports the result
of neuronal infection leading to a neuronal degener-
ation. However, the cellular and molecular pathogenesis
of these clinical manifestations are still not understood.
Hence, human studies are required because knowledge
of inter-species differences in viral infectivity, trans-
mission, symptoms, and pathogenesis is still insufficient.
Peripheral neurons derived from human embryonic
stem cells (hESCs) can be used as an alternative for
research on viral infectious diseases that are constrained
by the limitation of using human neural tissues [5,18].
Therefore, we used hESC-derived neurons to identify
cell types that are directly involved in patient symptoms
and pathological mechanisms, along with validating
ACE2 expression in human olfactory neurons.

Based on the validation of the absolute expression
levels of mRNA (Figure 1(a,b)) and protein (Figure 1
(g) and Supplementary Fig. 4d-f), rather than relative
comparisons between cell populations, we propose
that peripheral neurons, including olfactory receptor
neurons, express ACE2. Although 7.8% of neurons
were infected with SARS-CoV-2 in the absence of
ACE2, suggesting the existence of an ACE2-indepen-
dent viral entry mechanism [19], most hESC-derived
olfactory neurons were directly infected with SARS-
CoV-2 via ACE2 (Figure 1(j,k)). These results were sup-
ported by the protrusion of molecular pathology related
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to olfactory dysfunction by SARS-CoV-2 infection even
in mixed culture conditions with somatosensory neur-
ons (Figure 1(o) and Supplementary Fig. 5a-e). SARS-
CoV-2-infected neurons revealed ontology results,
indicating a decrease in various chemosensory percep-
tion abilities. In addition, decreased transcription of
developmental and function-related marker genes of
olfactory nerves (Supplementary Fig. 5b), increased
functional transcription factors involved in the distor-
tion of signal perception in neurons (Supplementary
Fig. 5¢), and decreased neurogenesis genes required
to repair damaged olfactory nerves were further
confirmed (Supplementary Fig. 5d). Our results suggest
that the transcriptional regulation of various genes in
neurons following SARS-CoV-2 infection disrupts the
balance of nerve damage and regeneration processes
as well as chemosensory function, thereby disturbing
the homeostasis of olfactory function.

Given the characteristics of SARS-CoV-2 which is
transmitted through the respiratory tract and the local-
isation of the olfactory system, olfactory neurons are
most likely the cells that initially infect patient body.
Interestingly, we found that the culture of Vero E6
cells with the medium cultured with SARS-CoV-2-
infected neurons showed cytopathic effects due to re-
infection of Vero cells (TCID50=10""°, data not
shown). This means that applying a therapeutic agent
to the olfactory nerve cells at an early stage of infection
not only inhibits the progression of neurological symp-
toms, but also prevents the spread of further infections
through the respiratory tract. In our study, neurons
infected with SARS-CoV-2 showed increased
expression of BRD2 and EGRI, which are known che-
mosensory modulators. Interestingly, a recent study
reported that, in addition to increasing the transcrip-
tion of ACE2, BRD2 activates the transcription of
viral genes by binding to the transmembrane E protein
of the virus using the bromodomain. Furthermore, it
has been reported that EGR1 induces an immune
response and fibrosis by activating TGF beta signalling
in patients with coronavirus infection. More interest-
ingly, recent efforts to develop therapeutic agents for
COVID-19 patients have proposed targeting factors,
such as BRD2 and EGRI, which are increased upon
SARS-CoV-2 infection. Thus, the drug under develop-
ment should be applied to the olfactory system to inhi-
bit the progression of infection.

In this study, human olfactory neurons were ident-
ified as direct infection targets of SARS-CoV-2. The
use of well-manipulated human neurons is entirely
advantageous for elucidation of simple pathological
mechanisms. However, there is no doubt that
human pluripotent stem cell-derived neurons are
deficient in maturity and functionality compared
which primary neurons matured by interactions with
adjacent cells in animal tissues. Moreover, in vitro
model systems have important limitations in

measuring the functional activity of neurons owing
to the lack of innervation targets. Therefore, studies
using single populations should be further validated
in research models with complex interactions between
Schwann, epithelial, and immune cells present in the
human nasal cavity. In this regard, the molecular path-
ology proposed in this study should be further vali-

dated in human tissues or animal models to
elucidate its associations with functional
abnormalities.

In summary, we report that SARS-CoV-2 directly
infects human peripheral sensory neurons through the
entry factor ACE2. Infected SARS-CoV-2 recruits the
molecular mechanisms which are involved in the life
cycle of the general virus infection. Upon viral infection
of unbiased neuronal cell types, the expression of genes
associated with chemosensory functions, rather than
other neuronal functions, was significantly changed.
These results suggest that chemosensory impairment
in the olfactory or gustatory system could be induced
by neuronal damage in the peripheral sensory organs
of patients with COVID-19 and that loss of neuronal
function should be directly targeted for treatment.
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