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A Glance into the Future of Rheumatology

Introduction
Osteoporosis is a chronic disease characterized by 
bone fragility and fractures. Osteoporosis repre-
sents a relevant global public health problem, 
which is projected to increase in magnitude in the 
next 10 years. Fortunately, substantial advances 
in the diagnosis and treatment of osteoporosis 
have emerged in the last decade and we have now 
the knowledge and instruments to tackle the 
ongoing osteoporosis crisis. In the present review, 
we will mainly focus on forecasts on the epidemi-
ology of and costs related to osteoporosis in the 
next decade and we will discuss on the future of 
osteoporosis diagnosis, fracture risk assessment, 
and treatment.

Epidemiology and costs of osteoporosis in 
10 years from now
Osteoporosis represents a major worldwide clinical, 
societal, and economical challenge. Osteoporosis 
prevalence and burden are projected to increase in 
the following years, mainly in relation to the aging 

of the population. Scorecard for Osteoporosis in 
Europe (SCOPE) is an international project aimed 
to determine the burden of osteoporosis across 
Europe.1 The SCOPE panel, which was first estab-
lished in 2010 and updated in 2021, evaluates the 
information regarding osteoporosis in 29 countries 
through structured questionnaires (27 European 
countries, the United Kingdom, and Switzerland).2 
The SCOPE data provides a comprehensive pic-
ture of what is happening nowadays in Europe in 
terms of osteoporosis burden and can help forecast 
what will happen in the next decade. The total 
direct costs related to osteoporosis care (fragility 
fracture treatment and pharmacological costs) 
amounted to an astonishing cost of €37.4 billion in 
2010, which increased to an even greater amount in 
2019 (€56.9 billion, +64%). This observed increase 
was consistent with 50% increase in costs by 2025 
proposed in 2007.3 In their study, Burge et al. used 
Markov decision models to estimate fracture costs 
over two decades (2005–2025). What is noteworthy 
and, at the same time, disheartening, is that despite 
the cost of osteoporosis care, the pharmacological 

Osteoporosis in 10 years time: a glimpse into 
the future of osteoporosis
Giovanni Adami , Angelo Fassio, Davide Gatti, Ombretta Viapiana, Camilla Benini,  
Maria I. Danila, Kenneth G. Saag  and Maurizio Rossini

Abstract: Patients living with osteoporosis are projected to increase dramatically in the next 
decade. Alongside the forecasted increased societal and economic burden, we will live a 
crisis of fractures. However, we will have novel pharmacological treatment to face this crisis 
and, more importantly, new optimized treatment strategies. Fracture liaison services will be 
probably implemented on a large scale worldwide, helping to prevent additional fractures in 
high-risk patients. In the next decade, novel advances in the diagnostic tools will be largely 
available. Moreover, new and more precise fracture risk assessment tools will change our 
ability to detect patients at high risk of fractures. Finally, big data and artificial intelligence will 
help us to move forward into the world of precision medicine. In the present review, we will 
discuss the future epidemiology and costs of osteoporosis, the advances in early and accurate 
diagnosis of osteoporosis, with a special focus on biomarkers and imaging tools. Then we will 
examine new and refined fracture risk assessment tools, the role of fracture liaison services, 
and a future perspective on osteoporosis treatment.

Keywords: bone mineral density, fractures, future perspective, osteoporosis

Received: 19 November 2021; revised manuscript accepted: 7 February 2022.

Correspondence to: 
Giovanni Adami 
Rheumatology Unit, 
University of Verona, Pz 
Scuro 10, 37134 Verona, 
Italy. 
adami.g@yahoo.com; 
giovanni.adami@univr.it

Angelo Fassio
Davide Gatti
Ombretta Viapiana
Camilla Benini
Maurizio Rossini 
Rheumatology Unit, 
University of Verona, 
Verona, Italy

Maria I. Danila
Kenneth G. Saag  
Division of Clinical 
Immunology and 
Rheumatology, The 
University of Alabama 
at Birmingham, 
Birmingham, AL, USA

1083541 TA
B0010.1177/1759720X221083541Therapeutic Advances in Musculoskeletal 
DiseaseG Adami, A Fassio
research-article20222022

Review

https://uk.sagepub.com/en-gb/journals-permissions
https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/tab
mailto:adami.g@yahoo.com
mailto:giovanni.adami@univr.it


Therapeutic Advances in Musculoskeletal Disease 14

2 journals.sagepub.com/home/tab

and assessment costs decreased from €2.1 billion in 
2010 to €1.6 billion in 2019. Moreover, the costs of 
Quality Adjusted Life Years (QALYs) lost were not 
included in the latter estimation of costs. Indeed, 
the overall costs were even higher when QALYs 
were included. QALYs lost costs amounted to an 
overwhelming total of €112.9 billion, resulting in a 
€169.8 billion of direct and indirect costs related to 
osteoporosis in 2019. The disparity between costs 
related to fragility fracture care and pharmacologi-
cal costs is startling and becomes even more evi-
dent when compared with other noncommunicable 
diseases. Indeed, the pharmacological treatment for 
cardiovascular diseases represented approximately 
one quarter of the total expenditures, a proportion 
that is considerably higher than that for osteoporo-
sis (2.8%).

Osteoporosis is estimated to affect more than 
30 million persons in Europe and a similar num-
ber of individuals in the United States.4,5 The 
vast majority of these are women. However, 
studies at population level could underestimate 
the true prevalence of a silent disease such as 
osteoporosis. Indeed, osteoporosis prevalence 
strictly depends on screening availability. 
Screening strategies with standard dual-energy 
X-ray absorptiometry (DXA) in women aged 
more than 50 years have been implemented in 
most western countries but remain underutilized 
in many other developing countries.6 Moreover, 
osteoporosis in men is still largely underdiag-
nosed, and the diagnosis is commonly made in 
the presence of a fragility fracture. Concerningly, 
the proportion of patient living with osteoporosis 
worldwide is increasing.

Fragility fractures are the consequence of osteo-
porosis and reducing their incidence represents 
the primary outcome for all interventions. More 
than 4 million fractures have been reported each 
year in Europe in the last 5 years. These numbers 
are projected to increase substantially in the next 
10 years. In fact, the SCOPE analysis has esti-
mated that the overall number of fractures will 
increase by 20% by 2035. In addition, simulation 
models have been used to predict the future  
burden of fragility fracture. A recent study by  
Cui et al. showed that, in China, the annual num-
ber of fragility fracture will increase by 135%  
by 2040, while the proportion of population 
>50 years will increase by approximately 100%. 
This increase is partially preventable by adoption 
of relatively simple and cost-effective strategies, 
such as increased awareness about the availability 

of pharmacological options and interventions 
aimed to improve treatment adherence.7–10

In summary, the burden of osteoporosis and fra-
gility fractures is projected to increase at a dra-
matic pace in the next decade taking in 
consideration the effect of the aging of the popula-
tion alone. Of concern, there are individual and 
environmental factors that can further augment 
this trend. As an example, obesity and diabetes, 
which have increased in prevalence worldwide, 
have been largely associated with higher risk of 
fracture independently from bone mineral density 
(BMD).11–13 Sedentary lifestyle in younger indi-
viduals has also been associated with increased 
risk of osteoporosis later in life.14 Moreover, envi-
ronmental air pollution, a well-known issue for 
present and future generations,15 has been linked 
with a substantial increase in the risk of osteoporo-
sis and fractures.16,17 However, effective interven-
tions exist to help mitigate the challenges posed by 
increased osteoporosis prevalence. Lifestyle modi-
fications for healthy bones should be advised for 
all populations, screening strategies should be 
implemented and harmonized across countries, 
treatment accessibility should be improved, and 
treatment adherence should be encouraged.

Advances in early and accurate diagnosis of 
osteoporosis

Advances in imaging techniques of osteoporosis
For epidemiological purposes, osteoporosis was 
defined by World Health Organization (WHO) as 
‘BMD lower than -2.5 SD below the peak bone 
mass of young healthy adults’.18 While the WHO 
definition is widely utilized in daily clinical prac-
tice to make a diagnosis of osteoporosis, it should 
be recognized that it is plagued by several disad-
vantages. The most important shortcoming of 
defining osteoporosis merely on BMD levels is 
that we may miss this diagnosis in all those 
patients who fracture at T-scores above −2.5. 
Indeed, approximately half of all fragility frac-
tures occurs in patients with osteopenic or even 
normal T-scores.5 To overcome this fallacy, we 
commonly incorporate clinical characteristics to 
BMD for estimating the risk of fracture of an 
individual. Several clinical risk factors are 
included in widely available algorithm, such as 
the Fracture Risk Assessment Tool (FRAX),19,20 
which provides an estimation of the absolute risk 
over the time of the patient but do not, however, 
capture all the determinants of fractures. As an 
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example, the FRAX and other similar algorithms 
do not account for bone strength or bone micro-
architecture. The NIH, in 2001, has further 
expanded the definition of osteoporosis by adding 
the ‘bone strength’ concept, which is largely, but 
not entirely, dependent on BMD.21 This is of par-
ticular importance in diseases that deteriorate 
bone quality without affecting bone quantity. As 
an example, in glucocorticoid-induced osteopo-
rosis (GIOP), the fracture threshold is lower than 
in postmenopausal osteoporosis, which means 
that patients fracture at osteopenic or even nor-
mal T-scores.22 Diabetes alters the bone micro-
architecture and, therefore, is characterized by an 
increased risk of fracture independently of BMD 
levels.11 However, while there are approaches to 
assess bone microarchitecture or bone flexibility 
and elasticity,23–26 measurements of bone strength 
are not widely available in clinical practice for 
diagnosing bone fragility long before the BMD 
criteria of osteoporosis are met.

One of the most promising tools for estimating 
bone strength is the trabecular bone score (TBS). 
The TBS is calculated using an analytical tool 
that processes the gray-level texture of normal 
DXA scans to estimate trabecular microarchitec-
ture.26 TBS can be easily implemented in most of 
the DXA instruments. The Manitoba bone den-
sity program was one of the groups that pioneered 
the role of TBS in fracture prediction.27 Leslie 
and colleagues demonstrated that TBS provided 
an incremental improvement in fracture risk esti-
mate; the authors analyzed data on more than 
30,000 women and showed that the TBS was 
inversely correlated with fracture risk, indepen-
dently from clinical risk factors and femoral neck 
BMD. In a meta-analysis of X cohort studies on 
TBS in 2015, TBS was found to be significant 
predictor of fracture independently from FRAX.28 
Importantly, this finding was consistent across 
independent and international cohorts that 
included racial and ethnic diverse populations. 
An adjusted version of the FRAX that accounts 
for TBS is now available for clinical purposes.29 
However, the TBS is proprietary software which 
is not systematically applied to DXA scans, prin-
cipally for its costs.

Hip-axis length (HAL), hip-strength analysis 
(HSA), and finite element analysis (FEA) are 
other methodologies that, similarly to TBS, can 
be obtained from DXA analysis. The HAL, which 
is defined as the length from the great trochanter 
and the pelvic brim, has been positively correlated 

with the risk of hip fracture.30 The longer the 
HAL the higher the risk of fracture is, indepen-
dently from other clinical and densitometric risk 
factors. The mechanism underpinning this 
increased risk is most likely related to the greater 
protrusion of the trochanter, which can result in a 
higher susceptibility of impact in sideways falls. 
The HSA is an imaging post-processing software 
that was first developed in 1990 by Beck et al.31 
The HSA derives from the analysis of the femo-
ral neck cross-sectional area (CSA) and cross- 
sectional moments of inertia (CSMI). The HSA 
estimates the cortical stability in buckling and 
represents an index of structural rigidity. The 
ability of HSA in estimating fracture risk has been 
assessed in few small clinical studies. Addition of 
HSA to standard BMD measurements can 
improve the prediction of hip fracture.32,33 Of 
note, HSA parameters are not influenced sub-
stantially by antiosteoporotic treatments and 
should be considered a nonmodifiable risk factor 
for fractures.32 FEA is another computerized 
method that estimates the microarchitectural 
geometry of the hip. In particular, FEA can be 
used to study the behavior of bone in relation to 
mechanical loading. FEA has been largely applied 
in computer tomography but is now available in 
DXA too, making this technique more accessible. 
However, despite the enthusiasm around these 
techniques, the International Society for Clinical 
Densitometry (ISCD) did not endorse their use 
in routine clinical practice as recent as 201534 
based on the scarce data about measurement 
reproducibility available at that time. In the last 
years, new imaging processing software have been 
released and the predictive power of FEA simula-
tions models are getting better; however, large, 
confirmatory, clinical studies are still lacking.35

Radiofrequency echographic multi spectrometry 
(REMS) is an innovative approach that uses ultra-
sound to analyze BMD.36 Raw and unfiltered 
ultrasound images of lumbar spine and femoral 
neck are analyzed by a software to provide a DXA-
equivalent BMD value. The REMS effectiveness 
in identifying subjects at risk of fracture has been 
studied in a recently published longitudinal 
study.37 More than 1500 patients underwent a 
DXA and REMS investigation and were followed 
up to 5 years. DXA and REMS T-score values 
were highly correlated, and the fracture prediction 
ability was similar for both vertebral, hip and non-
vertebral, non-hip fractures. Moreover, REMS 
can provide an estimation of bone strength (fragil-
ity index) which is independent from BMD and 
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has been shown to effectively predict the fracture 
risk.38 REMS has recently received the endorse-
ment for clinical use of the European Society  
for Clinical and Economic Aspects of Osteoporo-
sis, Osteoarthritis and Musculoskeletal Diseases 
(ESCEO).39

High-resolution peripheral quantitative computed 
tomography (HRpQCT) is an alternative imaging 
technique that can provide both quantitative and 
qualitative information regarding the skeleton. 
HRpQCT parameters, such as cortical thickness 
or FEA, showed to effectively predict the fracture 
risk independently from FRAX score and areal 
BMD measured by DXA alone.25 Moreover, new 
advances in the CT technology have reduced the 
amount of ionizing radiation making this tech-
nique attractive for routinely assessing bone qual-
ity and bone quantity in patients with osteoporosis. 
However, HRpQCT is an expensive technology 
and as such its use might be limited in clinical 
practice. Table 1 shows the imaging techniques 
for bone density and structure evaluation.

Advances in biomarkers of osteoporosis
Micro RNA (miRNA) and long-non-coding RNA 
(lncRNA) are novel markers and targets of great 
interest in the field of osteoporosis.40 miRNA and 
lncRNA can control gene expression and are 
widely recognized as crucial regulators of cell 
development and differentiation. miRNA and 
lncRNA are involved in a variety of cellular path-
ways.41 These small RNA molecules are responsi-
ble for the differentiation of bone cells by regulating 
gene expression. miRNA-103a can directly inhibit 
gene expression that is correlated with osteoblasts 
differentiation. Interestingly, mechanical unload-
ing is associated with the overexpression of 
miRNA-103a, which, in turn, results in a strong 
inhibition of bone formation. Consequently, tar-
geting miRNA-103a with antagomir-103a can 
rescue the osteoporosis caused by immobilization 
and mechanical unloading.42 miRNA and lncRNA 
are versatile markers of disease and, more interest-
ingly, they represent a novel therapeutic target. 
However, targeting miRNA and lncRNA is still a 
futuristic prospect, nowadays only limited to in 
vitro and animal studies. Nonetheless, this field 
has expanded considerably in the last decade and 
the promise of having novel agents that target 
miRNA in the next 10 years is now realistic.

In summary, in the next decade, we may have 
routine access to novel markers of bone fragility, 

such as TBS, FEA, and HR-pQCT, which will 
help the early diagnosis of osteoporosis. Early 
diagnosis is crucial to target the right intervention 
in the right patient population. Indeed, highly 
sensitive and specific diagnostic tools are key for 
‘precision medicine’ that can enable implement-
ing highly efficacious interventions in those 
patients who are likely to experience fractures. 
Novel analytical tools will help refine fracture risk 
assessment, especially in those patients border 
line for pharmacological interventions.

Advances in noninvasive diagnosis of 
osteoporosis
As mentioned before, the densitometric definition 
of osteoporosis has several pitfalls, mainly due to 
uncaptured fragility. Indeed, mechanical testing 
of bone properties in human might represent a 
novel approach for osteoporosis definition.43 As 
an example, external mechanical loading has been 
widely used in animal studies but some applica-
tions, such as dynamic hydraulic stimulation, 
might be envisioned for human applications too.44 
In addition, magnetic resonance imaging (MRI) 
might be considered in the future as it has been 
shown to effectively differentiate primary miner-
alization defects (e.g. osteomalacia) from struc-
ture defects (e.g. osteoporosis), possibly allowing 
new, cutting-edge, virtual biopsies.45

Novel fracture risk assessment tools
As noted above, algorithms for fracture risk 
assessment are currently widely used in clinical 
practice to estimate fracture risk.19,20,46 Such 
algorithms are based on fixed multipliers of risk 
derived from cohort studies. This approach might 
be limited to the relatively small number of risk 
factors considered by these algorithms. A novel 
and promising method might, however, overcome 
this limitation. Machine learning and deep learn-
ing approaches are rapidly revolutionizing and 
improving our ability to predict health out-
comes.47 Machine learning is a computer-based 
approach used to generate a predictive algorithm 
based on training datasets; this approach at first 
sight might appear similar to what has been done 
by standard predictive tools since today. However, 
machine learning approach uses complex datasets 
derived from electronic medical records that ena-
ble consideration of a significant number of risk 
factors simultaneously. By doing so, machine 
learning algorithms not only consider more risk 
factors in the estimation of risk than standard 
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algorithms but also factors that are usually not 
thought traditionally to be associated with the 
outcome. Furthermore, machine learning algo-
rithms continuously learn from data and become 
more refined with each iteration. This latter aspect 
represents a major advantage since fracture risk 
assessment can be tailored to a specific subpopu-
lation and can be informed by treatment modali-
ties. Machine learning approaches have been 
shown to effectively predict fracture risk and to 
predict BMD response following antiosteoporotic 
treatment.48–51 The major advantages of the 
machine learning approaches over standard risk 
algorithms are hundreds of clinical variables are 
considered, prediction of risk is automatized 
based on available data and, more importantly, 
this approach can be easily applied and automa-
tized to hospital that use electronic medical 
records, reducing the burden on clinicians. 
Tanphiriyakun et al.,48 for example, developed a 
computational model from 8981 clinical variables 
that effectively predicted BMD changes after 
treatment with antiosteoporotic medications. In 
other words, this approach can estimate patients’ 
response to treatment based on their characteris-
tics better than physicians. Indeed, it has been 
estimated that guiding the pharmacological treat-
ment with this model can improve the average 
treatment response by 9.54%. This and other 
novel computer-based approaches can guide the 
therapy choice in osteoporosis and will help per-
sonalize the treatment.

Fracture liaison services
Having had a prior fragility fracture is the main risk 
factor for new fractures and secondary prevention 
is crucial for fracture incidence reduction at a pop-
ulation level. The risk is exceptionally high in the 
2 years following the index fracture; nonetheless, 
fewer than 20% of patients with a fragility fracture 
are assessed and treated appropriately for osteopo-
rosis.52 This treatment gap has been the focus of 
discussions among bone specialists for the past 
decade. Identifying, assessing, and treating patients 
with an acute fragility fracture has therefore 
become the crucial link in the chain of osteoporosis 
care. To address this care gap, health centers 
around the world have developed integrated osteo-
porosis management teams aimed to recognize 
and promptly treat osteoporotic fractures. These 
services, also known as fracture liaison services 
(FLS), are rapidly proliferating in Europe, but to a 
lesser degree in the United States given the com-
plex multi-payer healthcare environment.53 It is 

now clear that high-intensity FLS (which comprise 
identification, investigation, and initiation of  
therapy) have been successful in reducing the 
incidence of new fractures.54 Moreover, cost- 
effectiveness analyses of FLS showed gains in qual-
ity-adjusted life years (QALY) for expenses below 
the willingness to pay thresholds.55 A recently pub-
lished meta-analysis showed that the implementa-
tion of FLS is associated with lower probability of 
subsequent fractures with a trend toward mortality 
reduction.54 Evidence mostly came from indirect 
comparisons between hospitals with and without 
FLS and from the comparison between pre-FLS 
versus post-FLS periods in the same hospital. 
Majumdar et al.56 in 2018 conducted a pragmatic 
randomized controlled trial comparing two differ-
ent FLS strategies. In this trial, 361 patients suf-
fering from an upper extremity fracture were 
randomized to either a low-intensity FLS (phone 
call encouraging referral to family physician) or a 
high-intensity FLS (phone call arranging a visit, 
laboratory, and BMD tests). The primary outcome 
of the study was the proportion of patients initiat-
ing bisphosphonates within 6 months from the 
fracture. At 6 months approximately 50% of 
patients in the high-intensity FLS arm started on 
bisphosphonates compared with slightly less than 
30% in the low-intensity arm. The International 
Osteoporosis Foundation (IOF) and the American 
Society for Bone and Mineral Research (ASBMR) 
strongly encourage the promotion of FLS in hospi-
tal facilities; moreover, IOF have initiated the ‘cap-
ture the fracture’ program in 2013, which have 
provided support and recognition to more than 
600 FLS across 49 countries worldwide. The IOF 
‘capture the fracture’ initiative is now available for 
free peer-review assessment of FLS.

In the future, FLS will be likely to be harmonized 
across hospitals and will likely leverage automated 
identification of persons who fracture and their 
referral to bone specialists for care. Natural lan-
guage processing algorithm could help recognize 
fragility fractures from clinical and imaging notes 
in electronic medical records and clinical decision 
support algorithms will help define the appropri-
ate investigations for each patient. Moreover, har-
monized outcomes reporting across FLS will help 
define the standard of care for FLS and will help 
refine and improve this health system interven-
tion. Nevertheless, in many countries worldwide, 
there is still a lack of awareness for osteoporosis 
and still FLS are not implemented in the routine 
clinical practice yet. We should, therefore, acknowl-
edge that it is a long way to the top.
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Future perspective on osteoporosis 
therapies
Pharmacological treatment for osteoporosis began 
more than 70 years ago with estrogens in postmen-
opausal osteoporosis; later, in the early 1970s, bis-
phosphonates were first prescribed for the 
treatment and prevention of osteoporosis. During 
the ensuing 40 years, many novel pharmacological 
agents have been tested and several of these have 
been approved for the treatment and prevention 
of osteoporosis to reduce the risk of fracture. 
Bisphosphonates still represent the most com-
monly used therapy for osteoporosis worldwide, 
but therapeutic armamentarium includes another 
potent antiresorptive drug (denosumab), two 
bone anabolics (teriparatide and abaloparatide), 
and a novel agent with a dual anabolic/antiresorp-
tive mechanism of action (romosozumab). 
However, since the use of bone anabolics and 
romosozumab are restricted in duration of therapy 
and since a pharmacologic treatment is likely to be 
necessary lifelong, a sequential approach is crucial 
and should be planned in advance. Indeed, it is 
likely that, in the future, discussions among bone 
experts will focus more on the sequential approach 
to treatment, as more scientific knowledge is accu-
mulating rapidly on this topic.

Anabolic agents can build up new bone and pos-
sibly reverse the osteoporotic state, but their use is 
limited to 24 months during lifetime currently 
and a potent antiresorptive agent is recommended 
at discontinuation. The PaTH (Parathyroid 
Hormone and Alendronate) study first investi-
gated the opportunity of bisphosphonate treat-
ment after 1 year of recombinant parathyroid 
hormone 1–84.57 Considering only subjects who 
took parathyroid hormone 1–84 followed by alen-
dronate or placebo, those that received alendro-
nate maintained or increased the BMD at lumbar 
spine and femur, while women that received pla-
cebo lost most of the beneficial effect attained dur-
ing the first 12 months of treatment. Again, in the 
ACTIVExtend trial, subjects received 2 years of 
abaloparatide followed by alendronate,58 and 
BMD levels achieved during the anabolic phase of 
the study were further improved during the alen-
dronate phase. The denosumab and teriparatide 
transition in postmenopausal osteoporosis 
(DATA-SWITCH) study explored the effects of 
sequential and combination therapy with deno-
sumab and teriparatide. In this trial, the combina-
tion arm reached the peak in BMD faster than 
sequential treatment (teriparatide to denosumab) 
and achieved greater BMD values at cortical 

skeletal sites. In summary, anabolic agents are 
associated with a significant reduction of fracture 
risk, but their use is restricted to 2 years and their 
discontinuation is associated with a decrease in 
BMD levels. Therefore, a prompt treatment with 
antiresorptive after bone anabolic agents is 
encouraged.

There is increasing evidence that anabolic treat-
ment should be positioned in first line in patients 
at imminent risk of fracture and in patients at 
very-high risk of fracture.59 In such patients, inde-
pendently from BMD, anabolic treatment is cost-
effective in certain regions and should be 
encouraged.60 The approach of anabolic treat-
ment positioned as first line in patients at high 
risk of fracture has been implemented in Italy 
since 2015 and other countries are now applying 
similar treatment reimbursement criteria.61 It is 
reasonable to think that, in the next decade, ana-
bolic treatment will represent the first line of 
treatment in all patients with high or very high 
risk (i.e. fracture probability that lies above the 
upper assessment threshold after a FRAX assess-
ment)59 of fracture in most western countries.

Sequential treatment with antiresorptive agents 
might be required in selected patients. For exam-
ple, patients, who after a long-term denosumab 
treatment achieve osteopenic BMD levels, might 
need a safe exit strategy to avoid the possible 
rebound effect (i.e. rapid decrease of BMD gain 
attained during denosumab treatment). Indeed, 
denosumab discontinuation has been associated 
with a rapid increase in bone turnover markers 
and, in some cases, with multiple vertebral frac-
tures.62–64 Therefore, an exit strategy after deno-
sumab treatment is highly recommended.65 The 
rebound effect was shown to be attenuated in 
patients who were previously treated with bispho-
sphonates.66,67 Accordingly, younger patients with 
high bone turnover seems to be at greater risk of 
rebound after discontinuation.68 Nevertheless, 
case reports and retrospective studies have shown 
that denosumab discontinuation was associated 
with multiple vertebral fractures even in patients 
previously exposed to bisphosphonates.69,70 In 
addition, a recent analysis on women that discon-
tinued long-term denosumab therapy showed that 
the increase in bone turnover markers and 
Receptor activator of nuclear factor kappa-B 
ligand (RANKL) serum levels were directly 
related to the BMD gain during the treatment.71 
This evidence supports the hypothesis of a pool of 
dormant osteoclast that are reactivated at the time 
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of denosumab discontinuation, and a potent bis-
phosphonate seems to be necessary to halt, or at 
least reduce, the rebound in bone turnover. 
Moreover, there may be clinically relevant differ-
ences in the timing of antiresorptive treatment 
after denosumab discontinuation. Reid and col-
leagues demonstrated that the bone loss after dis-
continuation is only partially prevented at 
18 months by zoledronic acid administered 
6 months after the last injection of denosumab. 
The same group of researchers tested the efficacy 
of a different timing of administration of zole-
dronic acid in preventing the bone loss following 
discontinuation. They found that a delayed 
administration of zoledronic acid was associated 
with preservation of BMD levels; in contrast, an 
‘early’ administration of zoledronic acid after den-
osumab discontinuation was associated with 
BMD loss.72 Nevertheless, the study was largely 
underpowered to address the efficacy of different 
treatment strategies; moreover, the women under 
study were relatively young (63 ± 6 years), and 
most of them were treated with romosozumab 
prior to denosumab and all subjects in study 
received only 2 years of denosumab treatment. 
More recently, Anastasilakis et al.73 reported the 
results of a randomized controlled trial of zole-
dronic acid for the prevention of the rebound 
effect after denosumab treatment cessation. In 
contrast with the results of the study by Reid et al., 
Anastasilakis et al. reported a beneficial effect on 
BMD of a single infusion of zoledronic acid after 
denosumab discontinuation. Moreover, albeit not 
significant, an increase in BMD levels was seen in 
the zoledronic acid group at 12 months after rand-
omization, a result that is controversial and 
diverges from other previously published experi-
ences. In conclusion, to date, there are uncertain-
ties regarding the most appropriate exit strategy 
following denosumab suspension. Large rand-
omized and active-controlled clinical trials are 
warranted to further explore the topic.

Anabolic agent after an antiresorptive is perhaps 
the most common situation that clinicians face in 
their routine practice, especially when patients 
fracture during an antiresorptive treatment. To 
date, several studies reported data on the effects 
of anabolic treatment followed by an antiresorp-
tive drug (bisphosphonate or denosumab).74–81

In a recent observational study on long-term bis-
phosphonate users who switched to either teri-
paratide or denosumab,81 annualized BMD 
increase after switching to teriparatide was 1.3% 

higher at the lumbar spine, and lower by 2.2% at 
the total hip and 1.1% at the femoral neck, com-
pared with denosumab. However, pretreatment 
with different antiresorptive drugs might yield 
different results. In the study from Ettinger 
et al.,74 in which patients received treatment with 
teriparatide after 18–36 months of either alendro-
nate or raloxifene, prior treatment with alendro-
nate was associated with a more than halved 
BMD gains at lumbar spine than raloxifene at 
18 months (4.1% and 10.2%, respectively), while 
no benefit at all was seen in the alendronate pre-
treated group at the total hip site. Nevertheless, 
teriparatide treatment can effectively prevent 
clinical and radiographic fragility fractures even 
in patients previously treated with bisphospho-
nates.82 The VERtebral Fracture Treatment 
Comparisons in Osteoporotic Women (VERO) 
trial demonstrated that pretreatment with rise-
dronate did not affect the efficacy of teriparatide 
in terms of fracture prevention. Interestingly, the 
crude incidence rate was the lowest in the risedro-
nate to teriparatide group. Current evidence, 
mainly from the DATA-SWITCH study, does 
not support the use of anabolic agents after deno-
sumab. In contrast, teriparatide and abalopara-
tide use after bisphosphonates seems to be safe 
and effective in reducing fracture’s risk. 
Nevertheless, combined treatment with bone 
forming and antiresorptive agents seems to be the 
best strategy in patients at high risk of fracture.

Wnt pathway has emerged as the central regulator 
of bone metabolism and its major inhibitors scle-
rostin and Dickkopf (DKK)-1 have become target 
of great interest for the treatment of osteoporosis. 
Wnt is a natural stimulator osteoblasts function, 
and the inhibition of the inhibitors lead to stimula-
tion of bone formation. Sclerostin inhibitors are 
now available for the treatment of osteoporosis 
and other metabolic bone diseases. Romosozumab, 
a sclerostin inhibitor, represents a new therapeutic 
option in the armamentarium of the bone special-
ists. Romosozumab has been shown to increase 
BMD rapidly and to reduce the risk of fracture  
to a greater extent than bisphosphonates.83 
Romosozumab use is restricted to a 12-month 
course and, upon its interruption, the effects on 
BMD are rapidly lost. Hence, an antiresorptive 
therapy is recommended after romosozumab dis-
continuation. It is interesting to note that romo-
sozumab effect is not hampered by prior treatment 
with bisphosphonates or bone anabolics and 
seems to effectively reduce the rebound effect 
upon denosumab discontinuation.
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Table 1. Novel imaging techniques for osteoporosis diagnosis and fracture risk34,39.

Technique Data acquisition Advantages Disadvantages Radiation 
exposure (μSv)

DXA Dual energy X-rays Reference Only BMD assessment 1–15

TBS Post-processing 
DXA images

Strength analysis, 
estimate fracture risk 
independently from BMD

Availability, cost of 
software

1–15

FEA DXA Post-processing 
DXA images

Strength analysis Availability 1–15

HAL Post-processing 
DXA images

Easily obtainable from 
DXA images

Not modifiable by 
therapy, not endorsed 
by international society 
for fracture risk 
assessment

1–15

HSA Post-processing 
DXA images

Easily obtainable from 
DXA images

Not modifiable by 
therapy, not endorsed 
by international society 
for fracture risk 
assessment

1–15

REMS Ultrasound No radiation exposure, 
similar sensitivity and 
specificity to DXA, 
transportable instrument

Operator dependent None

HRpQCT CT scan Qualitative and 
quantitative assessment, 
strength estimation, 
estimate fracture risk 
independently from BMD

Costs, availability, 
radiation exposure

50–100

BMD, bone mineral density; DXA, dual-energy X-ray absorptiometry; FEA, finite element analysis; HAL, hip-axis 
length; HSA, hip-strength analysis; HRpQCT, high-resolution peripheral quantitative computed tomography; REMS, 
radiofrequency echographic multi spectrometry; TBS, trabecular bone score.

Other sclerostin inhibitors are now on the pipe-
line and will likely be available within the next 
decade. Blosozumab is among the new sclerostin 
inhibitor in development, which phase III study 
results are expected within the next few years.84 
DKK-1 inhibitors are in development as well.85 
Although the initial enthusiasm around DKK-1 
inhibitors, there has been raising safety potential 
concern due to the ubiquitous presence of DKK-1 
in nonskeletal tissues. An animal study published 
in 2016 demonstrated that targeting both DKK-1 
and sclerostin at the same time resulted in a syn-
ergistic effect on bone formation.86 However, 
studies on humans are still missing. Nevertheless, 
the potentiality of dual inhibition (DKK-1  
and sclerostin) is staggering. Dual inhibition  
was shown to enhance cortical bridging improv-
ing fracture repair to an extent that was not 

considered possible before. Indeed, DKK-1 
serum levels are increased in response to scle-
rostin inhibition, possibly explaining the closure 
of the anabolic window after 12 months of romo-
sozumab. A similar feedback response has been 
demonstrated with teriparatide, in which the 
increase of DKK-1 can explain the waning of teri-
paratide effect on bone formation after 18–
24 months.87 As mentioned earlier, new molecules 
targeting miRNA are in study with promising  
preclinical results but no data on human beings 
are available to date. As an example, Wang et al. 
demonstrated that miR-214 can directly decrease 
bone formation and mineralization in animal mod-
els. In addition, the authors restored osteoblast 
activity in miR-214 transgenic, ovariectomized, 
and hindlimb-unloaded mice with antago-
mir-214.88 Remarkably, this anabolic approach 
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appeared to be not influenced by the coupling 
effect between osteoblasts and osteoclasts.

Pharmacological treatments are the mainstream 
of fracture prevention. Notwithstanding that, ant-
iosteoporotic medications can only reduce the 
risk of fracture with abolishing it; in addition, 
compliance to therapies is scarce. Therefore, 
complementary approaches are needed. Local 
osteo-enhancement procedure (LOEP) is an 
emerging surgical procedure that has been shown 
to effectively reduce the risk of re-fracture.89 In 
synthesis, LOEP involves the implantation of an 
osteoconductive, calcium-based, material in the 
skeleton. The implant is rapidly incorporated and 
gives biomechanical benefit.90 To date, LOEPs 
have been performed at femurs and vertebrae but, 
virtually, such procedures can be performed at 
any site.89,91 In 2020, a long-term prospective 
cohort study on LOEP was published.92 The 
authors treated 12 postmenopausal osteoporotic 
women with femoral LOEP and found that 
treated femoral neck BMD rapidly increased  
by 68% as soon as 3 months of follow-up. 
Interestingly, the FEA-estimated femoral strength 
increased by 41% in less than 6 months. The 
implant resorption and replacement with bone 
was nearly complete by 24 weeks. In January 
2022, the completion of enrollment of the 
CONFIRM Europe Safety Study (CONFIRM) 
study has been announced. The study enrolled 60 
subjects treated with LOEP and will provide 
additional evidence on the efficacy and safety of 
such procedure.

Conclusion
In summary, while osteoporosis is projected to 
cause millions of deaths worldwide in the upcom-
ing future, we can face this anticipated crisis  
with novel diagnostic, prognostic, and therapeu-
tic strategies. In the next decade, we will have 
broader access to novel and more precise meth-
ods of fracture risk prediction. Patients at high 
risk of fracture will be more commonly referred to 
the bone specialist for treatment thanks to the dif-
fusion of FLS. Osteoporosis treatment will evolve, 
we will have more confidence with combined and 
sequential strategies, and we will have access to 
novel and innovative pharmacological therapies.
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