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Abstract

Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We
examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario,
Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other
freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L' across the ponds
with an average value of 5.3 mg C L. Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis
(PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by
terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more
similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days
of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by
25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like
aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight
exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical
similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these
relatively novel aquatic ecosystems.
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Introduction

In the last few decades, urbanization has been associated
with widespread loss of natural (wetlands and forest) and
agricultural areas [1]. This landscape conversion has been
accompanied by greater imperviousness of watersheds to
infiltration by surface waters and altered hydrological cycles
(e.g., [2,3]). To mitigate flash flooding created by rapid
drainage from highly impervious surfaces, newer urban
landscapes often contain relatively shallow ponds (depth of ~2
m or less). While primarily built to retain and slow the
downstream movement of stormwater, these ecosystems also
potentially improve water quality through the retention of
suspended sediments and dissolved nutrients [4]. Urban ponds
are also thought to provide important ecological function by
increasing biodiversity, serving as wildlife habitat, and altering
biogeochemical cycles [5,6].

The biogeochemical role (especially for elements other than
phosphorus) that urban ponds play in the developed landscape
has not been well-studied, despite potential management
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implications. One study based on 26 urban stormwater ponds
reported high rates of microbial activity and biogeochemical
processes suggesting that, at current pond density, they could
play an important role in regional and global carbon (C) cycles
[7]. Other small, shallow freshwater systems are also typically
characterized by disproportionately high rates of nutrient
processing compared to larger bodies of water [8]. For
example, sedimentation rates and burial of organic C can be
higher in small freshwater bodies than in larger aquatic
ecosystems [9-11]. In addition, allochthonous derived DOM has
been shown to fuel surprising quantities of microbial production
in small aquatic ecosystems and to support freshwater food
webs beyond that provided by primary production alone (e.g.,
[12-15]).

While not particularly well-studied, urban land use has been
reported to increase the loading of dissolved organic matter
(DOM) above levels found in natural areas due to changes in
soil and drainage conditions [16]. In contrast, DOM
concentrations in streams have been observed to decrease
post-urbanisation due to the loss of hydrological flow paths
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through shallow soils [17,18]. Either way, DOM characteristics
from such areas may differ from that seen in waters emerging
from more natural (e.g., forested and wetland) or agricultural
areas [19,20]. For example, DOM derived from urban
wastewater can be distinguished from the DOM in receiving
river systems through point-source increases in protein-like
DOM resolved by fluorescence characterization [21]. DOM
arising within urban aquatic ecosystems may have different
transparency, humicity, molecular weight, and/or
photoreactivity arising from limited contact with organic soils
and vegetation in urban watersheds. If so, exported DOM from
these urban environments could be less colored, more
transparent, and/or have other, distinct fluorescent properties.

The source and chemical properties of urban pond DOM
could affect the rate of DOM microbial decomposition and
photodegradation. Autochthonous DOM tends to be more
aliphatic and less aromatic in character compared to terrestrial
derived DOM (e.g., [22]). These properties have been found to
limit DOM photoreactivity (e.g., [23-25]). Photodegradation can
result in more biologically available substrates (e.g., [26]) or
could increase DOM humicity, reducing its bioavailability (e.g.,
[24,27-30]). However, how DOM in these urban ponds changes
in response to exposure to solar radiation remains unknown.

In this study, we first examined the quantity and quality of
DOM in urban ponds as it compares to DOM sampled from
more natural aquatic ecosystems. We then examined the
photochemical reactivity of urban pond DOM. Finally, we
examined how the properties of DOM relate to indices of
internal production (e.g., seston chlorophyll). We expected that
urban pond DOM would have a distinct optical chemistry
compared to that derived from more natural areas, based on
either greater contributions of anthropogenic derived organic
matter or from high autochthonous production. We further
expected that these unique chemical properties would affect
rates of in-situ photochemical degradation. We thus provide a
thorough examination of DOM and its chemistry in stormwater
retention ponds.

Methods

Ethics Statement

All field sites were accessed by public right of way and did
not require explicit permission from the municipality to collect
water. Because we only collected water samples, none of our
field work involved threatened or endangered species.

Sample sites

We examined DOM properties in forty-five urban ponds in
four municipalities in southern Ontario, Canada (Ottawa,
Peterborough, Richmond Hill and Whitby). Selected ponds
were all in residential areas and have variable catchment and
drainage properties (Table 1). Additional information about
these ponds and their biogeochemistry is provided in [7,31].
We compared our DOM data on urban pond water with
previously published data that we compiled from studies of
non-urban, aquatic environments to determine whether their
DOM characteristics match that seen in natural ecosystems.
Comparison data were taken from studies of different types of
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and wetland-
eutrophic  to

aquatic environments including forested
dominated streams, saline lakes, and
hypereutrophic inland water bodies.

Ambient DOM characteristics

We sampled water in ponds twice (June and August) during
the summer of 2009. Whole water samples were collected at
the deepest part of each pond at the surface (0-10 cm) and at
the water-sediment interface (~0.5-2.7 m, Table 1) using a Van
Dorn sampler. These samples were placed into deionized
water (DI) rinsed, acid washed polypropylene bottles and held
on ice in the dark during transport back to the laboratory.
Within 24 hours, we filtered samples (Whatman Type
polycarbonate PCTE, 0.2 ym) and placed this water into acid
washed and pre-combusted glass amber bottles, which were
refrigerated at 4°C until further analysis. Concentrations of
DOC (mg C L") in each sample were determined using a TOC-
TN Analyser (Model 1030D Ol Analytical Aurora, Texas, USA)
after combustion (750°C) and acidification with 2 N
hydrochloric acid. UV-visible absorbance were measured on
each sample between 200 and 800 nm (Perkin EImer Lambda
25 Spectrophotometer) and the absorption coefficient (a,.,) was
determined by multiplying absorbance (A,,) by 2.303 and
dividing by the path length in meters following [32]. Molar
absorptivity at 280 and 350 nm (e,4, €350) Was calculated as
absorbance (A,,) at 280 and 350 nm divided by the DOC
concentration (umol C L'; [33]). Absorbance at 440 nm (A,)
was used as an additional indicator of DOC color [34].

DOM optical characteristics

To determine DOM fluorescence characteristics of urban
pond water, we selected a subset of ponds from August
sampling (n=25, Table 1) for excitation emission matrix (EEM)
measurements. EEM measurements on surface water samples
from these ponds were made using fluorescence spectroscopy
(Varian Eclipse Fluorometer, 5 nm bandwidth, integration time
0.25 s), over a range of emission (270-600 nm, 2 nm intervals)
and excitation (230-500 nm, 5 nm intervals) wavelengths. The
EEMs were corrected for inner filter effects [22,35], and for
second-order Raman and Rayleigh scatter effects and
instrument bias using manufacturer recommended instrument
settings. Milli-Q water blank EEM fluorescence was subtracted
from that of sample EEMs and EEMs were converted to
Raman Units (RU) using the area under the Milli-Q Raman
scatter peak at excitation 350 nm.

To investigate DOM fluorescence parameters, EEM data
were used to calculate the humification index (HIX),
fluorescence index (FI) and B:a ratio. The HIX was calculated
as the ratio of peak area under each curve at emission 434-480
nm and 300-346 nm after excitation at 255 nm [36]. The Fl was
calculated, using an excitation wavelength of 370 nm, as the
ratio of emission intensities at 470 and 520 nm after [22], and
B:a ratio was calculated, using an excitation wavelength of 310
nm, from emission intensity at 380 nm (B region), divided by
the emission intensity maximum observed between 420 and
435 nm (a region; [20,37]). A spectral slope ratio (Sr; [38]) was
determined as the ratio of the log-transformed slope between
275 to 295 and 350 to 400 nm,
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Table 1. Selected characteristics of urban ponds in this
study.

Pond Name Municipality Year built Land-use BSD (m) Ag (mz) % 1
Water St. Peterborough 1977 R 0.75 3374 44
Carnegie Peterborough 2005 R 1.5 5171 52
Chemong Peterborough 2000 R 1.6 1063 64
Glenforest Peterborough 1975 R 1.8 1657 61
Ravenwood  Peterborough 2000 R 1.5 64
Tobin Court Peterborough R 0.6

White Peterborough 2007 R 1.5 55
Loggerhead  Peterborough 2007 R 1.1 5164.6 42.6
Foxmeadow Peterborough 2003 R 0.5 46.8
7-3 Richmond Hill 2002 R 1.2 1027 45
7-4 Richmond Hill 1998 R 0.8 2030 44.9
8-3 Richmond Hill 1999 R 2.76 1698 44.9
2-3 Richmond Hill 2000 R 1.45 1688 35.1
9-9 Richmond Hill 2004 R 1.65 4314

16-8 Richmond Hill 1996 R 0.95 951 39.3
16-4 Richmond Hill R 1 4620

17-3 Richmond Hill 1987 R 0.75 7500 45
19-9 Richmond Hill 2001 R 1.5 2098 41
19-8 Richmond Hill 1997 R 1.5 1549 44.4
19-4 Richmond Hill 1997 R 2.1 3120

9-5 Richmond Hill 2000 R 1 1129 36
9-6 Richmond Hill 2000 R 1 1698 50
8-10 Richmond Hill 2004 R 1.1 50
57-01 Whitby R 1.8

65-01 Whitby 2001 R 2.0

68-02 Whitby 2000 R 2.6

33-01 Whitby 1996 R 0.9

34-02 Whitby 1995 R 0.7

03-02 Whitby 1999 R 0.7

SWF-1409 Ottawa 1999 R 1.15 21000 10.3
SWF-1410 Ottawa 1998 R 1.3 29000 13.16
SWF-1139 Ottawa 2004 M 1.45 1000 29.94
SWF-1206 Ottawa 1999 M 1.02 10000 19.82
SWF-1207 Ottawa 1995 R 1.65 11000 33.86
SWF-1211 Ottawa 1980 R 21 22000 42.25
SWF-1215 Ottawa 1980 R 1.51 4000 46.57
SWF-1227 Ottawa 2000 R 1.04 11000 12.35
SWF-1306 Ottawa 2000 R 1.8 5000 30.29
SWF-1309 Ottawa 2000 R 0.9 6000 16.39
SWF-1320 Ottawa 1990 R 1.15 1000 43.47
SWF-1610 Ottawa 1979 R 1.35 1000 39.55
SWF-1611 Ottawa 1980 M 1.13 3000
SWF-1628 Ottawa 2000 M 0.65 300 40.93
SWF-1902 Ottawa 1987 | 0.5 1000 17.5
SWF-1930 Ottawa 2000 R 1.84 33000 31.31

Ponds denoted by bolded italics were included in the photo-irradiation experiment
(n=25). Data provided courtesy of each municipality when they were available.
Landuse=R(residential), I(industrial), M(mixed), H(highway); BSS= Bottom
sampling depth; Ag=Pond surface area; %|=impervious surface.

doi: 10.1371/journal.pone.0080334.t001

A seven component PARAFAC (Parallel Factor Analysis)
model was used to examine factors of each EEM (Matlab
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2012b, Mathworks; Figure 1). EEMs collected during the photo-
irradiation experiment were fit to the PARAFAC model and
residuals were visually examined to verify model fit. The full
model validation and description is presented in detail in [7]. Of
the seven PARAFAC components, C1 resembles humic-like
material and occurs in most ecosystems [39,40]. C2 and C3
appear similar to humic-like DOM of terrestrial origin [41]. C4
resembles the fluorescence signatures of soil, fulvic acid-like
substances [42]. C5 and C6 are similar to microbial derived
humic-like substances [7,19,39]. C7 resembles protein-like
materials [21,42] as well as photodegradable plant tannin-
protein complexes [43]. The PARAFAC components are
expressed as relative abundance (% of F,).

DOM photo-irradiation

The same samples (n=25) collected from the pond surface
were included in photo-irradiation experiments. For these
experiments, aliquots (25 ml) of filtered pond water were
transferred into Dl-water rinsed, sterile UV-transparent
polyethylene bags and the samples were irradiated using a XE
Arc lamp (500 W m? for 12 hours; Suntest XLS+ Solar
Simulator, 2220W lamp, internal water bath temperature of
25°C, Atlas, Germany) approximating the solar spectral quality
at sea level. Control samples treated as irradiated samples
(membrane filtration and stored in polyethylene bags) were
wrapped in aluminium foil and exposed to the same
temperature as irradiated samples inside the solar simulator.
The radiation intensity of 500 W m2 is equivalent to a radiant
energy dosage of 21.6 MJ m?2, or to 1.7 days of natural solar
radiation in June at our study location, based on estimates of
the monthly averaged insolation on a horizontal surface (NASA
Surface Meteorology and Solar Energy data; http:/
eosweb.larc.nasa.gov). The transformation of cumulative
irradiation energy to the number of corresponding days of
natural irradiation was done by dividing the cumulative energy
by averaged insolation energy at the sampling location.
Changes in DOC concentrations during photo-irradiation are
expressed against cumulative irradiation energy, which is the
product of intensity of irradiation and time. The decrease in
DOC with cumulative irradiation energy followed exponential
decrease as observed in other studies (e.g. [44,45]). Thus the
pseudo first order kinetics rate constant was used as a
measure of DOC photodegradation in individual samples,
following:

DOC = (DOC, — DOCy) = exp(—kpocE) + DOCk (1)

Where DOC, is the initial DOC concentration, DOCy is the
concentration of DOC that remained after the experiment, kpoc
is the photochemical degradation rate constant (m? MJ-") and E
is the cumulative energy of irradiation (MJ m?; see 45).

Indices of production in urban ponds

We examined how urban pond DOM properties related to
indices of production: seston chlorophyll, dissolved oxygen
(DO) and total phosphorus (TP) concentrations. Seston
chlorophyll concentrations on filtered samples (Whatman Type
GF/F, 25 mm) were determined after ethanol cold extraction
(24 h) with fluorometry (440 nm excitation, 660 nm emission
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Figure 1. Countor plots of seven component PARAFAC model.
doi: 10.1371/journal.pone.0080334.g001
wavelengths). Profiles of water column DO were obtained from Results

the deepest part of each pond from the surface and every
10-20 cm depth to the water sediment interface (YSI Model 54
Oxygen Meter, Yellow Springs Instrument Co., Yellow Springs,
Ohio, USA). TP concentrations were determined on unfiltered
water samples stored at 4°C in acid washed polypropylene and
pre-combusted (500°C) amber glass bottles, using potassium
persulfate digestion (autoclave at 121°C) followed by ascorbic
acid-sodium molybdate blue  colorimetric  analyses
(Spectrophotometer, Biochrome Ultrospec Pro 500, 885 nm
wavelength).

Statistical analyses

Prior to statistical analysis, most data were transformed
(log(y) or square root (y)) to meet the assumptions of normality
and homoscedasticity. Pearson’s Correlation analyses were
used to determine significant relationships (a = 0.05) between
DOM UV absorbance and fluorescence indices. One-way
Analysis of Variance (ANOVA) or Student's t-test was used to
determine statistically significant differences between means,
followed by the Tukey-Kramer HSD post hoc test where
differences were found (a = 0.05). Permutational Multivariate
(M)ANOVA with post hoc comparison was used to determine
the overall impact of photo-irradiance on fluorescent DOM.
MANOVA results were visualized using Principle Component
Analysis. Statistical analyses were carried out using JMP v.9
(SAS Institute, 2009), PASW Statistics 18 (SPSS Inc., 2009),
and R with the VEGAN library.
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Ambient DOM characteristics

In the entire dataset for 45 urban ponds, including both
sampling dates and depths, DOC concentrations ranged
between 2.0 to 16.2 mg L' (mean £ SD; 5.3 £+ 1.9 mg L"). On
average, DOC concentrations were lower in June (p = 0.04, 4.9
mg C L) compared to August (5.7 mg C L). While molar
absorptivity (€,5,) was significantly higher in June (p < 0.001),
absorbance at 280 (a,g, Table 2) and 440 nm (a,y. Table 1)
were not different between sampling dates and showed a wide
range among sampled ponds.

From the subset of urban ponds selected for more detailed
optical characterization (n=25), DOC concentrations ranged
from 3.2 to 8.2 mg L' (mean £ SD; 5.03 + 1.04 mg L") and
fluorescence indices were found to vary considerably (Figure 2;
Table 2). DOC concentrations were positively correlated with FI
and UV-visible absorbance and were negatively correlated with
molar absorptivity (€,5,; Table 3). While PARAFAC component
C6 (anthropogenic/microbial humic-like) was generally the
most abundant (23 - 52%) and C4 (soil fulvic acid-like) was the
least abundant (2 - 5%), the relative abundance of the
individual components varied among ponds (Figure 3). These
components were also related to other optical properties of the
DOM. C6 correlated positively with B:a and negatively with €5,
(Table 3). C1 (terrestrial humic-like), C2 (terrestrial humic-like),
and C4 correlated positively with HIX and €,5, but negatively
with B:a (Table 3). C7 (protein-like) generally showed the
opposite relationships from the humic-like components. C4 was
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Table 2. Range in DOC concentrations, molar absorptivity at 280 nm (€,4,) and corresponding absorption coefficient (a,g,) for

45 urban ponds in June and August, 2009.

Site DOC (mg C L) azgp (m™) £28¢ (L mol C-1 cm1) aggg (m1) FI HIX B:ax Source
Stormwater Ponds

Urban ponds, southern OntarioJune 2.0-11.3 8.9-31.5  92-428 0.3-3.4 This study
Urban ponds, southern OntarioAY9 3.6-16.2 12.1-29.1 86-258 04-14 1.35-1.58 4.5-7.9 0.74-0.90 This study
Wetlands, Streams and Rivers

Agro-Urban Streams, Australia 2.0-140.0 1.20-1.44 0.40-0.70 [40]

43 mixed watershed streams, southern Ontario, Canada 4.1-26.4 5.5-725 133-369 1.19-1.47 8.7-32.2 0.48-0.70 [19]
Subtropical wetland 4.6-45.0 4.8-81.9 1.28-1.47 [50]
Okavango Delta wetland, Botswana 13.3-16.6 276-324 1.45-1.50 [58]

Harp Lake watershed, south-central Ontario 10.0-35.0 1.1-1.2 [59]

Lake Superior watershed streams 3.5-34.0 138-586 [60]

Deer Creek, CO, USA 1.3-4.1 1.40-1.48 [61]
Suwannee River, GA, USA 35 509 [62,63]
Lakes

27 Prairie lakes 13.4-328 1.4-6.4 [49]
Alpine Lake 0.5-1.7 1.33-1.71 [64]
Antarctic Lakes 2.5-22.6 1.71-2.71 [61]
Antarctic Lake (Pony) 1.5 20 [61]

30 temperate lakes 3.7-21.5 0.8-19.3 [65]
Antarctic Lake (Fryxell) 150 [62]

Absorbance at 440 nm is represented as as49. Data is presented in comparison to other published studies.

doi: 10.1371/journal.pone.0080334.t002

the only PARAFAC component that correlated with DOC,
indicating that urban pond fluorescence DOM quality varied
among ponds mostly independent of bulk DOC concentration.
Spectral slope (Sr) was significantly related (negatively) to one
component, C7 (r=-0.72; p<0.001), and was not related to any
other PARAFAC components (Table 3).

DOM photo-irradiation

In samples exposed to artificial light, pseudo-first order rate
constants ranged between 0.003 and 0.03 m? MJ' after a
cumulative irradiation energy exposure of 21.6 MJ m?2 and
were significantly higher than dark treatment rate constants (p
< 0.001; range 0.0003 to 0.02 m? MJ"). In 20% of samples,
photo-irradiation had no effect on DOC concentrations with net
irradiation rate constants ranging from 0 to 0.02 m? MJ".
Despite this, photo-irradiation decreased DOC concentrations,
on average, by 38%. We also observed decreases in
absorbance (A,,,) and fluorescence indices in samples exposed
to light relative to the dark controls (p < 0.05; Figure 2). While
average absorbance (A,,) was reduced by 25% in the UVA
and UVB regions, average molar absorptivity (€,4,) increased
by 30% in light exposed samples relative to the dark controls.

Photo-irradiation altered characteristics of DOM quality
indexed by PARAFAC, but these effects depended on the
component examined (Figure 3). Among all ponds, the intensity
C1 to C6 (F..c RU) decreased after light exposure. The
intensity of C7 (RU), however, responded non-uniformly to light
exposure among ponds. C7 (RU) increased, decreased, or was
similar to initial F.,, depending on the pond water examined.
The relative abundance (%) of C4 and C6 were not significantly
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different from initial levels after dark and light incubations (p =
0.753 and p = 0.095, respectively). C1 (%) and C2 (%) were
significantly lower after light exposure relative to the dark
incubation (p = 0.039 and p = 0.027, respectively). Photo-
irradiation also significantly decreased C5 (%; p < 0.001) and
increased C3 (%; p < 0.001) and C7 (%; p < 0.001) from dark
incubated and initial treatments. The relative abundance of C1
consistently correlated positively with HIX and negatively with
B:a across initial, light, and dark treatments (Figure 4).
Correlations between C7, HIX, and B:a, however, were
influenced by photo-irradiation (Figure 4). Light treated
samples had higher levels of C7 and lower levels of HIX than
initial and dark samples and had a similar correlation slope
overall. C7 positively related to B:a for initial samples, but this
relationship was not preserved after photo-irradiation. Overall,
photo-irradiation significantly impacted the fluorescent DOM
pool (MANOVA, p = 0.001), which appeared to be strongly
influenced by changes in C7 (Figure 5).

Index of urban pond production

We found that DOC concentrations (negatively) and ¢,
(positively) were correlated with chlorophyll whereas no other
optical property of the DOM was related to this index of
productivity (Figure 6). Sr (negatively), HIX (positively), and €,
(positively) significantly correlated with total phosphorus. Only
Sr and B:a related to dissolved oxygen concentrations in the
surface waters of urban ponds (Figure 6). Of the seven
PARAFAC components, we found that seston chlorophyll and
total phosphorus was positively correlated with C4 and C5 and
negatively correlated with C3 and C7 (Figure 6). C1, C2, and
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concentrations and measured fluorescence indices (d) Fl, (e) HIX and (f) B:a for 25 urban ponds in August, prior to photo-irradiation
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(p<0.05).
doi: 10.1371/journal.pone.0080334.g002

C6 were not related to any of our indices of water column
productivity.

Discussion

We examined the quantity and chemistry of DOM in ponds
embedded within highly urbanized environments and report the
change in its optical chemistry after irradiation. We expected
that DOM in urban ponds would have a distinct optical

PLOS ONE | www.plosone.org

chemistry compared to that derived from more natural areas.
This predicted difference was based on our expectations of
greater contributions of either anthropogenic-derived organic
matter (of a distinct composition) or from high internal
production of DOM. We found that urban pond DOM was
relatively transparent (low €,,) and uncolored (low a,,), had
lower HIX and higher B:a ratios compared to reported values
for numerous temperate lakes and streams, and some other
anthropogenic impacted waters. DOM characteristics from
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letters are significantly different (p<0.05).
doi: 10.1371/journal.pone.0080334.g003

Table 3. Pearson’s correlation coefficient (r) between DOC
concentrations and  UV-Visible absorbance and
fluorescence indices for 25 urban ponds in August, prior to
photo-irradiation (TO).

DOC Cc1 C2 C3 C4 C5 Cé c7
DOC 1 ns ns Ns -0.51 ns ns ns
Azgo 0.65 ns ns Ns ns ns ns ns
Azs0 0.48 ns 0.44 -0.45 ns -0.50 ns ns
€280 -0.42 ns ns Ns 0.62 ns ns -0.41
€350 ns 0.52 0.49 Ns 0.49 0.49 -0.41 ns
HIX ns 0.50 0.40 Ns 0.40 ns ns -0.85
Fl 0.53 ns 0.45 -0.82 -0.47 0.72 ns ns
B:a ns -0.62 -0.62 Ns -0.42 ns 0.60 0.45
Sr ns ns ns Ns ns ns ns -0.72

Significant correlations are indicated in bold (p<0.01).
doi: 10.1371/journal.pone.0080334.t003
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urban ponds were most similar to that found in mixotrophic to
eutrophic aquatic systems where autochthonous DOM has
been shown to dominate (Table 2).

DOM in urban ponds nonetheless contained a unique
mixture of microbial and terrestrial derived C, reflected in the
HIX index [36], FI and B:a ratio values [39,46] (Table 1). The
DOM pool was dominated by a likely algal-derived humic-like
component (C6) with relatively low percentages of terrestrial-
like components (Figure 3). C6 was much more abundant in
urban ponds than in natural freshwaters in the same
geographical region (e.g., southern Ontario [19];; C. Williams,
unpublished data). It could be argued that urban ponds should
not be dominated by autochthonous C, given their role in
overland flood control and engineered connectivity with the
watershed. The lack of terrestrial DOM influence on pond DOM
may simply reflect the reduced presence of natural
components (e.g. vegetation, soils, etc.) of the upstream
catchment. Urban streams, however, can contain high amounts
of terrestrial DOM [19,40] and we expected a stronger signal of
this DOM within urban ponds. These ecosystems could either
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Figure 4. Photo-induced changes in DOM chemistry. Correlations between the EEM-PARAFAC model C1 (a,b) and C7 (c,d),
and the humification index (HIX; a,c) and B:a ratio (b,d) for 25 urban ponds in August (open circles=initial (TO, prior to photo-
irradiation), closed circles=light treatment (T24L), triangles=dark treatment (T24D). Correlations are presented for the overall data

set (black lines) and TO (gray lines).
doi: 10.1371/journal.pone.0080334.9g004

receive very different runoff or they may quickly process in-
fluxing DOM. Future studies should focus on determining the
relative importance of terrestrial DOM sources and internal
processing rates on urban pond DOM chemistry, in part, by
examining the timing and importance of external water inputs.
The urban ponds in our study are downstream of stormwater
drainage systems designed to channel runoff very quickly,

PLOS ONE | www.plosone.org

which may further limit contact with soils and vegetation within
the upstream catchment. Our results contrast with other
freshwater ecosystems where allochthonous C is usually
assumed to be the major fraction of DOM (e.g., [47]) due to
high hydrologic connectivity between rivers and lakes and their
upstream undeveloped watersheds.
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doi: 10.1371/journal.pone.0080334.9g005

The distinct character of urban pond DOM from that found in
natural streams and lakes in the same region and other aquatic
ecosystems largely resulted from the greater prominence of
relatively transparent, internally-produced DOM. This has also
been reported in other anthropogenically impacted water
bodies that are relatively nutrient rich (e.g., [48] and references
therein) as well as in mixotrophic to eutrophic, saline lakes
(e.g., [49]). An algal-derived humic-like component (C6) was

PLOS ONE | www.plosone.org

the most abundant in urban ponds and represented about 52%
of the DOM fluorescence pools. C6 was higher in ponds with
lower HIX scores, indicating that DOM with this chemical
feature is produced internally and dilutes the allochthonous
DOM pools. This component type has been documented in
other human impacted areas and in highly productive
ecosystems (e.g., [50]), which is further indication that there is
significant internal production of DOC in urban ponds [7,41].
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Urban pond DOM thus appears to have a distinct chemical
signature that originates from primary production, which is
fueled by high nutrient loading in these heavily urbanized
catchments.

Due to its relative transparency and low aromaticity, the
major DOM fraction in urban ponds should be particularly
resistant to photochemical transformation. In fact, the main
component of the DOM pool (C6) was not impacted
significantly by light exposure. This result is similar to that
reported for pelagic algal-derived DOM and DOM in some
eutrophic ecosystems, which have relatively low rates of
photomineralization [26]. Similarly, we also found no DOC loss
with light exposure in about one fifth of our pond samples. This
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lack of significant total DOM photodegradation might simply
reflect the chemical properties of internally produced DOM in
these urban ponds. Especially transparent autochthonous
material should not be photo-oxidative [25]. On the other hand,
DOM in urban ponds may have already experienced prolonged
UVR exposure prior to sampling, especially if there had been
no recent hydrological inputs from the watershed. We would
expect that rates of photochemical degradation should be
higher in water samples obtained directly from in-flowing
stormwater. Future comparative studies of DOM properties and
photodegradation of fresh stormwater and in situ urban pond
water would be useful to differentiate between these controls.
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The less abundant terrestrial derived components of the
urban pond DOM pool were the most sensitive to
photochemical degradation. After photo-irradiation, DOM
fluorescence shifted from humic-like to protein-like, with
decreases in the most terrestrial humic-like components (C1,
C2, and C5) and significant increases a protein-like component
(C7; Figure 3). One terrestrial, humic-like component (C3)
increased after photo-irradiation, which suggests that this
component is photo-stable or photo-produced [41]. This
indicates that C3 might be a product of photodegradation of the
other terrestrial components. Given these changes in photo-
exposed DOM samples, natural measurements of these rates
of gain and losses in urban ponds over time would be a logical
next step to better understand the controls of the DOM pool in
these urban freshwater ecosystems. Nevertheless, DOM
chemistry in urban ponds appears to be controlled by a
combination of processes (i.e., DOM import, release from
primary producers, and photoirradiation), which would all act in
concert to shape the overall properties of this important energy
source to microbial communities.

We found DOC concentration decreased in many pond
samples under irradiation, but losses were also observed in
some samples held in the dark. This dark-sample decrease in
DOC concentration likely resulted from microbial activity [51].
While samples were filtered prior to the photo-exposure
experiment, remnant microbial communities could nonetheless
have consumed labile components of the DOM. The decrease
in DOC concentration in dark samples was not reflected by
corresponding changes in absorbance and is consistent with
losses of low molecular-weight labile substrates with low
absorbance. These same decreases in labile substrates with
low absorbance were observed in irradiated samples, which is
indicated by the increase in €, that would have been produced
by a smaller decrease in absorbance compared to DOC
concentration. A recent review by [52] showed variability in
bacterial responses during irradiation ranging from stimulation
to inhibition. However, irradiating with a full range of artificial
UVA and UVB inhibited microbial growth, perhaps due to
photoproduction of singlet oxygen and other reactive oxygen
species [53-55]. Singlet oxygen is the primary agent of photo-
oxidative stress in microorganisms [56] and high
concentrations may delay consumption of the readily
decomposable portions of the DOM until dark conditions
prevail. Thus the microbial degradation in irradiated samples
likely took place after irradiation rather than simultaneously with
irradiation. The dark-sample losses nonetheless suggest that
some changes observed in the photo-exposed samples
resulted from the experimental conditions (i.e., non-sterility of
bags) and not light per se. However, compared to the rates
observed in the light exposed samples, this effect was minimal
and does not significantly affect rate measurements or the
observed photo-induced changes in DOM chemistry.
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Chlorophyll concentrations are one surrogate index of algal
biomass and should be correlated with the internal production
of autochthonous DOC in freshwater ecosystems (e.g., [57]).
Consequently, we expected that algal biomass in the urban
ponds to be positively related to concentrations of the highly
transparent DOM. Our results are not entirely consistent with
this expectation as HIX and €,5, (both indicators of terrestrial
DOM) were positively correlated with TP and chlorophyll. This
result suggests that the connections between TP, productivity,
and DOM chemistry are likely more complex than the simple
scenario previously described. For example, greater primary
production coincides with higher TP concentration in urban
ponds but this may have contrasting effects on the DOM and
its chemistry. While internal productivity may contribute
transparent DOM and dilute terrestrial sources, it may also fuel
(along with the higher nutrient concentrations) greater microbial
activity that could reduce DOM concentrations. The negative
relationships between chlorophyll and TP with C7 are
consistent with these indirect connections. Future work should
thus better examine the how DOM chemistry relates to primary
producers and their external nutrient controls in urban
environments.

We found a prominent signature of internally derived DOM in
urban ponds of this study. This unique chemical signature likely
reflects a dominance of internally produced C, the lack of
external humic sources, and considerable microbial and photo-
processing. While this unique chemical signature differentiates
urban pond DOM from other aquatic ecosystems, how it affects
the pond physical (light penetration), chemical (metal binding),
or biological (microbial production) processes remains largely
to be seen. Given their growing abundance and important role
in urban water cycles, these ponds would appear to be
potential hotspots for C processing in the urban landscape and
warrant further examination of their carbon cycling.
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