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Abstract: Iron (Fe) is the fourth most abundant element on earth and represents an essential nutrient
for life. As a fundamental mineral element for cell growth and development, iron is available for
uptake as ferric ions, which are usually oxidized into complex oxyhydroxide polymers, insoluble
under aerobic conditions. In these conditions, the bioavailability of iron is dramatically reduced. As
a result, microorganisms face problems of iron acquisition, especially under low concentrations of
this element. However, some microbes have evolved mechanisms for obtaining ferric irons from the
extracellular medium or environment by forming small molecules often regarded as siderophores.
Siderophores are high affinity iron-binding molecules produced by a repertoire of proteins found in
the cytoplasm of cyanobacteria, bacteria, fungi, and plants. Common groups of siderophores include
hydroxamates, catecholates, carboxylates, and hydroximates. The hydroxamate siderophores are
commonly synthesized by fungi. L-ornithine is a biosynthetic precursor of siderophores, which is
synthesized from multimodular large enzyme complexes through non-ribosomal peptide synthetases
(NRPSs), while siderophore-Fe chelators cell wall mannoproteins (FIT1, FIT2, and FIT3) help the
retention of siderophores. S. cerevisiae, for example, can express these proteins in two genetically
separate systems (reductive and nonreductive) in the plasma membrane. These proteins can convert
Fe (III) into Fe (II) by a ferrous-specific metalloreductase enzyme complex and flavin reductases (FREs).
However, regulation of the siderophore through Fur Box protein on the DNA promoter region and its
activation or repression depend primarily on the Fe availability in the external medium. Siderophores
are essential due to their wide range of applications in biotechnology, medicine, bioremediation of
heavy metal polluted environments, biocontrol of plant pathogens, and plant growth enhancement.

Keywords: fungal cytoplasm proteins; iron uptake; iron-binding molecules; siderophore biosynthe-
sis; hydroxamate; siderophore-Fe chelators mannoproteins; biotechnology; medicine; biocontrol;
bioremediation

1. Introduction

Iron plays a vital role in the growth and development of living organisms, and it is
one of the most abundant elements found on earth [1]. Mineral bioweathering is important
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in soil ecosystems because it increases the availability of iron for colonizing organisms,
which is limited in oxygenic environments [2,3]. Indeed, Fe is converted into insoluble
oxyhydroxide polymers under aerobic conditions at biological pH (oxidized form) [4].
Plants require (10−5–10−7 M) of Fe (II) for growth and development, whereas the solu-
bility of Fe (III) in nature is 10–17 M at pH 7 [5]. During the evolution of life on earth,
the majority of iron was in insoluble Fe (III) forms. Therefore, microorganisms including
fungi, bacteria, and cyanobacteria adapted to low iron availability levels and overcame
iron deficiency by synthesizing siderophores [6–8]. Siderophores are low molecular weight
compounds (200–2000 Da) produced by different microbes, which chelate the iron from
different habitats [9]. Scientific data have shown the ubiquitous presence of siderophores
in plants and microbes. A significant number, i.e., 500 fungal and bacterial siderophores,
are documented [10]. Furthermore, mammalian siderophores have also been reported [11].
Several laboratory methods, including spectrophotometric titration, electrophoretic mobil-
ity, mass spectrometry, acid hydrolysis, and biological activity tests are used to characterize
siderophores [12].

Fe plays an essential role in vital functions, including photosynthesis, respiration,
synthesis of DNA, RNA, proteins, and enzyme cofactors [13]. In human serum, transferrin
is an iron transport protein that maintains Fe (III) concentration (10–24 M) and blocks the
entry of pathogens [14]. Fungi and other microorganisms adopt various strategies for iron
acquisition from the extracellular environment by (i) use of metal ion transporters [15],
(ii) acquisition from heme and heme containing-proteins [16], (iii) acquisition from trans-
ferrin, lactoferrin, and ferritin [17,18], (iv) use of reductive systems of iron uptake, and
(v) siderophore-mediated iron transport [8]. Siderophore-mediated Fe-scavenging is an
essential process in soil ecosystems that improves the bioavailability of iron derived from
mineral dissolution via bioweathering. Siderophores primarily scavenge iron through
complex formation with other metals such as molybdenum and cobalt [19]. These com-
pounds promote plant growth and play an important role in pathogen biocontrol [20] and
bioremediation of metal-polluted environments [21].

Fungal siderophores are very diverse and show striking structures. Fungi usually pro-
duce hydroxamate and carboxylate siderophore types, which have been primarily studied
in Aspergillus species. For instance, A. fumigatus and A. nidulans synthesize about 55 types
of siderophores. Both species live as saprotrophs, contributing to maintaining carbon and
nitrogen cycles in the environment [8]. Many fungi can produce more than one siderophore
type, especially under low iron availability. Aspergillus fumigatus often produces a hydroxa-
mate siderophore and triacetyl fusarine C (TAFC) for tapping extracellular iron [22]. This
fungus can also secret a siderophore called ferricrocin for mobilization and distribution of
hyphal iron, and intracellular iron storage. Besides, A. fumigatus synthesizes the conidial
siderophore ‘hydroxyferricrocin’ for storing iron in its conidia to support the germination
process and reduce oxidative stress [23]. Aspergillus nidulans has been reported to produce
two main siderophores, ferricrocin (Frr) and ferrihordin. A twenty-four hour culture of
A. nidulans produced an unacetylated form of TAFC, which is known as fusigen. In contrast,
an older strain (48 h) yielded acetylated TAFC due to breakdown and uptake of fusigen [24].
Another fungus, Wolfiporia cocos, known as a brown-rot fungus, may produce different
types of catecholate siderophores [25]. According to Haselwandter et al. [26], the two
ubiquitous ectomycorrhizal basidiomycetes Laccaria laccata and L. bicolor can produce linear
ester-containing Fsg siderophores, i.e., CPG, Frr and TAFC, apart from the hydroxamates.

Many researchers are now interested in knowing how some fungal strains have
evolved to produce different types of siderophores, what are the suitable conditions for
the production of siderophores, how siderophores, in general, can contribute to fungal
survival, and what are the structural differences between fungal siderophores. Indeed,
many studies have used structural and stereochemical analyses to describe the properties
of fungal siderophores, while attempts have been made to understand the production,
recognition, and transportation mechanism of siderophores in different fungal species.
Some members of siderophore classes have been characterized by crystalline structures, the
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absolute metal center configuration, and conformation in solutions [8,27]. Understanding
of chemical and structural properties and transport mechanisms of fungal siderophores
has also inspired many researchers. Ferrichromes (FRC), for example, are the best studied
siderophores and are now regarded as biomolecules. However, there is still a dearth of
knowledge on how siderophores are designed for transport. Except in plants, nothing
is known about the possible membrane-located transport system for siderophores in the
fungal plasma membrane.

Further studies are still needed to describe in detail, or confirm, the protein nature
of many fungal siderophores. However, some studies have already clarified the energy
requirement for siderophore-mediated iron transport in fungi. There is evidence sug-
gesting that the transportation of siderophores can be mechanically transferred across
the cytoplasmic membrane. However, it is still not fully known yet to what extent this
is possible.

2. Overview of Fungal Siderophores

Fungi are heterotrophic eukaryotic organisms [28]. Among them, saprobic fungal
species are decomposers that break down and feed on decaying organic matter. Many fungi
show two major responses to iron concentration in the environment: siderophore synthesis
under iron stress, and a high-affinity ferric iron reductase [29]. On the basis of chemical
interaction sites, siderophores have been classified into two major groups, i.e., Enterobactin
and Hydroxamates. Enterobactin is regarded as a good iron chelator, which has the
ability to interact with iron and catecholate hydroxyl groups. Hydroxamates are unique,
due to the presence of N-hydroxylated amide bonds. The hydroxamate siderophores,
such as FRC, are commonly produced by fungi. Siderophores that are synthesized by
microbes and plants are classified based on coordinating groups and Fe binding system,
including (i) phenolates, (ii) hydroxamates, (iii) polycarboxylates (Table 1). Common
types of siderophores are hydroxamates, catecholates, and carboxylates [30]. Nitrogen,
oxygen, and sulfur atoms can take part in iron coordination in the carboxylate group of
siderophores [31,32]. Another group of siderophores is known as the mixed type. Mixed
type siderophores do not belong to hydroxamate and the aromatic hydroxyl category. These
hybrid types of siderophores are classified based on the position of the Fe (III) binding group.
Mixed-type siderophores can bind salicylic acid and nitrogen [4]. Common examples
of mixed type siderophores are (i) lysine derivatives, such as myobactin, (ii) ornithine
derivatives, including pyoverdine, and (iii) histamine derivatives, such as anguibactin.
Other examples are thiazoline, oxazoline, and pyoverdine. Pyoverdine, in particular, has
been reported as a signaling molecule in the bacterium Pseudomonas aeruginosa [33] and as
an inhibitor molecule against zinc-containing matrix metalloproteinases (MMPs), which
often degrade in extracellular matrixes [34]. The main groups of siderophores are itemized
in Figure 1. Many phytopathogenic fungi synthesize unique compounds to chelate iron,
but also produce phytotoxins. Fungi mainly synthesize hydroxamate-type siderophores
(derived from the nonproteinogenic ornithine amino acid) (Table 1).



J. Fungi 2022, 8, 21 4 of 28

Table 1. Types of siderophores and their characteristics.

Siderophores Types Characteristics References

Hydroxamates Rhodotorulic acid

The diketopiperazine ring of
N5-acetyl-N5-hydroxy-L-ornithine units linked
head-to-head. Produced mainly by basidiomycetous
yeasts such as Rhodotorula spp.

Haas [35]; Das et al. [36]

Coprogens

The diketopiperazine ring (dimerum acid) of
diketopiperazine ring (dimerum acid) units linked
head-to-head. Produced generally by a number of plant
pathogens, such as H. capsulatum, B. dermatitidis,
Fusarium dimerum and Curvularia lunata. These are di or
tri-hydroxamates derivatives of rhodotorulic acid with a
linear structure composed of trans-fusarinine units.

Haas [35]; Das et al. [36]

Ferrichromes

Cyclic hexapeptides consisting of tripeptide of
N-acyl-N-hydroxyornithine and three amino acids,
serine, glycine and alanine. Several different acyl groups
have been found in this family such as acetyl, malonyl,
transb-ethylglutaconyl, trans-anhydromevalonyl, and
cis-anhydromevalonyl. Ferrichromes are produced by
phytopathogenic fungi and by Microsporum sp.,
Trichophyton sp., and Aspergillus spp. Another function
of ferrichromes is the intracellular storage of iron.

Haas [35]; Das et al. [36]

Fusarinines

Linear or cyclic hydroxamates composed of
N-hydroxyornithine, which is N-acylated by
anhydromevalonic acid. Produced by Fusarium spp.,
Paecilomyces spp., and Aspergillus spp.

Das et al. [36]

Polycarboxylates Rhizoferrin

A citric acid-containing polycarboxylate called
rhizoferrin has been isolated from Rhizopus microsporus
var. rhizopodiformis. The molecule is composed of two
citric acid units linked to diaminobutane. Produced
mainly by Mucoromycota, Mucorales (Mucoraceae,
Thamnididiaceae, and Choanephoraceae) and
Mortierellales (Mortierellaceae), and
Entomophthoromycota, Entomophthorales.

Das et al. [35]
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Hydroxamates are further categorized into three groups: (i) fusarinines (FSR), (ii) co-
progens (CPG), (iii) FRC, with a few exceptions, such as the rhizoferrin (Figure 2). Rhizo-
ferrin is a carboxylate-type siderophore produced by certain zygomycetes. Siderophore
synthesis by fungi depends on the nutrient medium and culture conditions. Hydrophilic
siderophores are derived from the common structural unit Nδ-hydroxyornithine. In
fungi, they consist of hydroxylated and alkylated ornithine amino acid, while in bac-
teria, they are acylated and hydroxylated alkylamines [37], represented by N6-acyl-N6-
Hydroxylysine or N5-acyl-N5-Hydroxyornithine reported by Winkelmann [38]. All hydrox-
amate siderophores are characterized by peptide linkage [24], except fusarinine C (FsC),
synthesized by Aspergillus nidulans, which shows ester bonds. Two O2 molecules of these
groups bind with Fe, known as bi-dentate ligand. Hydroxamate siderophores are capable
of binding hexadentate octahedral complex with Fe (III) [39].

Fungi synthesize more than one type of siderophore belonging to a single structural
family or different structural families. For instance, Trichoderma pseudokoningii and T. longi-
brachiatum synthesize all three structural families of siderophores [40]. The FSR (fusarinine)
is a siderophore synthesized by young cultures of Fusarium roseum, whereas at the older
stage of culture, FSR is replaced by malonichrome. Siderophore identity is a valuable trait
in fungal taxonomy [41]. In fact, wide ranges of siderophores are found within a fungal
genus. Mor et al. [42] found that siderophore production in Trichophyton and Microsporum
species are similar. For instance, T. rubrum and T. mentagrophytes produced siderophores
that are also synthesized by Microsporum taxa. The same siderophores, ferrichrome C
and ferricrocin, are produced in Microsporum species, including M. canis and M. gypseum.
In contrast, T. mentagrophytes and T. Tonsurans produce only ferrichrome. Other fungal
siderophores are described in Table 2.
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Table 2. Some examples of fungal siderophores.

Fungal Source Siderophores References

Aspergillus sp., Penicillium oxalicum,
Aureobasidium pullulans, Phanerochaete

chrysosporium
Hydroxamates Ghosh et al. [22]

Alternaria longipes Trihydroxamate (Hydroxycoprogen I,
Hydroxyneocoprogen I) Jalal and Helm [43]

A. longipes
Trihydroxamate (Nb-dimethyl coprogen,

Nb-dimethyl neocoprogen I and
Nb-dimethyl isoneocoprogen

Jalal et al. [44]

Candida sp. Ferrichrome, hydroxamates Baakza et al. [37]

Curvularia lunata Trihydroxamate (Neocoprogen II) Hossain et al. [45]

Epicoccum purpurascens (Syn. E.
nigrum)

Trihydroxamate (Isoneocoprogen I or
Triornicin) Frederick et al. [46]

E. nigrum and C. lunata Trihydroxamate (Isotriornicin or
Neocoprogen I) Frederick et al. [46]; Chowdappa et al. [47]

Fusarium dimerum Dihydroxamate (Dimerum acid) Diekmann [48]

F. roseum Cis-fusarinine Emery [49]

dimerum Trans-Fusarinine Diekmann [48]
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Table 2. Cont.

Fungal Source Siderophores References

F. dimerum Trihydroxamate (Coprogen B) Diekmann [48]

Gliocladium virens Fusarinine A, Fusarinine B Jalal et al. [50]

Neurospora crassa Neurosporin Eng-Wilmot et al. [51]

Penicillium sp. Trihydroxamate (Coprogen) Pidacks et al. [52]

Penicillium sp. N, N’N’-triacetylfusarinine C Moore and Emery [53]

Paracoccidioides sp. Hydroxamates Lesuisse et al. [54]

Rhizopus microsporus Carboxylates (rhizoferrin) Drechsel et al. [31]

Rhodothamus chamaecistus Fusarinine C (FsC), Fusigen Haselwandter et al. [55]

Saccharomyces cerevisiae Catecholate, hydroxamate, ferrioxamine,
ferricrocin Senthilnithy [56]

Trichoderma sp. Trihydroxamate (Pamitoylcorprogen) Anke et al. [40]

Trichoderma sp. Hydroxamates, carboxylates Baila et al. [57]

Ustilago inflorescentiae Dihydroxamate (Rhodotorulic acid) Atkin and Neilands [58]; Muller et al. [59]

3. Biosynthesis of Siderophores and Regulation

Biosynthesis of siderophores is divided into two major pathways: nonribosomal
peptide synthetase (NRPS)-dependent, and NRPS-independent [60,61]. NRPSs are large
multimodular enzyme complexes. They consist of adenylation domain (A), thiolation
domain (T), condensation domain (C), and thioesterase domain (TE). Each module of the
NRPS enzymes is responsible for adding amino acids (AAs) and forming peptide bonds.
NRPS enzymes determine the sequence and number of AAs in the peptide chain [62].
NRPS recognizes and activates AAs by activating A-domain and acylating adenylate via
an ATP-dependent reaction. The next steps are thiolation of (T) domain, in which the
activated ester is covalently linked, followed by condensation of the (C) domain, and direct
transfer of another acyl amino acid to form a peptide bond [63]. The thioesterase domain
(TE) is present in the final unit. The last step consists of assembling or releasing chains
from the NRPS by hydrolysis or cyclization. Cleavage of the acyl thioester, which binds
to the T domain, is an NADH-dependent reaction [64]. Fungi commonly use four main
mechanisms for iron uptake across the cytoplasmic membrane as follows: (i) A shuttle
mechanism in which the siderophore bound iron can be taken into the cell and the iron is
released by a reductase or by direct ligand exchange in which the recipient siderophore
becomes the storage molecule. The gathering ligand is released to capture another iron
molecule. This type of transfer has been used by coprogen and ferrichrome families. (ii) A
direct transfer mechanism in which iron is taken up (iron is first reduced by the reductive
pathway before taken up) while the ligand remains outside the cell. The iron transfer is not
a membrane-reductive event but is a membrane-mediated exchange between the gathering
siderophore and an internal chelating agent. The transfer mechanism may be by ligand
exchange (nonenzymatic) to an internal pool of the chelating agent, which then serves as
the storage compound. This type of transfer has been used by rhodotorulic acid. (iii) An
esterase-reductase mechanism in which iron ligand is taken up and ester bonds of the iron
ligand are split to excrete fusarinine moieties, followed by reduction and storage of ferric
iron. This type of transfer has been used by ferric triacetylfusarinine C. (iv) A reductive
mechanism with the transport of some ferrichromes, which do not to enter cells but give
up ferric iron by reduction with transport of the ferrous iron [36].

Hydroxamate fungal siderophores have similar biosynthetic pathways in terms of
their basic unit, characterized by hydroxyornithine [65,66]. Figure 3 represents a general
schematic biosynthetic pathway [67]. The first step is the hydroxylation of L-ornithine. This
is a precursor of siderophores, which is converted into N-hydroxy-L-ornithine in a reaction
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catalyzed by the enzymes L-ornithine and L-ornithine N5-oxygenase [61,68]. The second
step is the acylation of N-hydroxy L-ornithine to form N-acyl-N-hydroxy-L-ornithine in
the presence of the enzyme transacetylase [67]. The acyl-CoA derivative is an acyl donor,
and the reaction is catalyzed by acyl-CoA: N-hydroxy-L-ornithine N-acyl transferase. This
step has been reported in Ustilago sphaerogena [69,70], while N-acetyltransferase activ-
ity in siderophore biosynthetic pathways has been reported in Rhodotorula pilimanae [71].
N-acetyltransferase has also been reported in other fungi such as Fusarium cubense [72],
Rhodotorula glutinis [73], and Aspergillus quadricinctus [67]. The following steps are the
condensation of several N-acyl-N-hydroxy-L-ornithines combined in two to three units
and the formation of dipeptides and triesters such as FsC, rhodotorulic acid, and co-
progen B [67]. Condensation of amino acid and formation of cyclic peptide FRC were
reported in Aspergillus quadricinctus [74]. Peptide biosynthesis in siderophore production
and respective genes (sid2) have been described in Ustilago maydis and Trichoderma virens
(Psy1) [75,76]. Disruption of these genes makes U. maydis and T. virens unable to synthesize
ferrichrome [76,77].
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Transport of iron via siderophores is an investment of biosynthetic energy. The function
of siderophores is mainly iron sequestration from an external medium. During excretion,
siderophores are released, and a few of them are loaded with iron molecules for supporting
the growth of the producing microorganism [78]. Therefore, the excretion of siderophores
responds to the availability of iron in the external medium [79]. Fur is a ferric uptake
regulatory protein produced in Gram-negative and positive bacteria [80]. A constitutive
siderophore mutant in Salmonella was observed by Ernst et al. [80], and cloned [81]. The
Fur+ gene is repressed along with a number of genes involved in iron uptake [82]. The
proposed repression model requires the Fur-protein’s internal binding of ferrous iron and
then binds to the Fur Box present on the target DNA. Inhibition of RNA polymerase is
responsible for the search of the promoter region of the iron-regulatory region. Under
limited iron conditions, transport systems and siderophore biosynthesis are activated,
and Fur protein is separated from the Fur box on the DNA [83]. In fungi, transcriptional
repressor (Fur) proteins are known as GATA factor proteins [84,85]. These proteins contain
GATA-type zinc fingers that bind to the siderophore biosynthesis genes [86,87] (Figure 4).
Table 3 represents negative fungal regulatory proteins in the biosynthesis and transport of
siderophores.
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of the DNA and RNA polymerases are unable to move forward due to the regression of the gene,
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of genes.

Table 3. Negative fungal regulatory proteins in the biosynthesis and transport of siderophores.

S.No Regulatory Protein Similar to GATA Factor Organisms References

1. URBS1 Ustilago maydis Voisard et al. [88]; An et al. [86]
2. SRE Neurospora crassa Zhou et al. [89]
3. SREP Penicillium chrysogenum Haas et al. [90]
4. SREA Aspergillus nidulans Haas et al. [91]; Oberegger et al. [24]
5. GAF2p Schizosaccharomyces pombe Hoe et al. [92]; Pelletier et al. [93]

In iron-deficient conditions, C. albicans and S. cerevisiae use the Aft1 transcription
factor to bind with the promoter region of siderophore biosynthetic genes and activate the
expression of genes [94,95]. Therefore, external ion concentration is the regulatory factor for
intracellular biosynthesis of siderophores and transport proteins in microorganisms. The
regulation of siderophore production and transporter proteins are the most important eco-
logical aspects of siderophores. Iron sensing is a crucial step for the survival of competing
microorganisms in natural environments. Iron sensing assists the microbes in adapting to
ever-changing iron metabolism in different habitats [96]. Therefore, those microorganisms
highly sensitive to iron regulation are more resistant to environmental changes. Previous
research has provided insight into the low concentrations of iron in environments. Usually,
iron-deficient environments are colonized by aerobic microorganism through up-regulation
of siderophore biosynthetic genes and transport proteins [97]. The important question here
is: where is the low iron content in natural habitats? The marine region, especially in the
open oceans, calcareous soils, and freshwater lakes contain iron concentration in surface
water in the nano-molar 0,2 to 1 nM range [98] and inhibits growth of plankton, bacteria,
and plants.

In the human body, free iron is absent, and if any iron is present, it is in protein-bound
forms such as transferrin or lactoferrin and ferritin [99]. Pathogens can multiply in low
iron environments by sequestering iron from host proteins using ferric-binding protein
and transferrin-binding protein, as found in Neisseria. These transport proteins move from
the periplasm to the cytosol [100]. Pseudomonas aeruginosa cell lysis and degradation of
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proteins by the proteases and subsequent iron scavenging by the excretion of siderophores
is another method of iron acquisition. There are different routes by which pathogens
can utilize iron from the host cells, but the most suitable system is siderophore mediated
transport [101]. Another essential aspect of siderophore ecology is the energy saving. The
siderophore biosynthesis requires energy, which is obtained from ATP and carbon sources.
Siderophore production starts after the germination of conidiospores in fungi [102]. The
conidiospores contain a certain amount of siderophores packed into the wall of the spore
and secreted at the time of germination [103]. Siderophore genes are responsible for the
sporulation in some fungal strains. Knock out of siderophore genes in fungi was shown
to inhibit the sporulation process [104]. A notable example is the Aspergillus fumigatus
conidial siderophore ‘hydroxyferricrocin’, which also aids in germination and oxidative
stress tolerance [23].

4. Siderophore Mediated Iron Transport in Fungi

The fungal cell wall is made up of glucans, chitin, chitosan and glycosylated proteins,
and shows a highly dynamic structure [105]. The outer layers of the fungal cell wall
are composed of mannoproteins [106]. Mannoproteins affect cell permeability and are
influenced by growth conditions. Indeed, mannoproteins allow the passage of nutrients
across the cell wall to the periplasmic space and plasma membrane [54]. Regulation and
uptake of iron molecules are essential in fungi for maintaining homeostatic processes. As a
result, fungi commonly use four main mechanisms for iron uptake, including ferric iron
(Fe3+) uptake through the production of siderophores, iron assimilation through a redox
reaction, heme uptake, and direct iron uptake [8,35]. Every fungal species exhibits an
extracellular iron-uptake mechanism known as siderophore-iron transporter (SIT). This SIT,
in principle, is constituted by a major protein family that facilitates iron uptake in fungi,
acting through the help of the plasma membrane, with high solubility and energy, as a
proton-coupled symporter, and releasing iron-chelated siderophore during cell growth.
The triacetyl fusarine C (TAFC) and fusarinine C (FsC) have been found to enhance the
iron release through partial hydrolysis by the esterase (Estb) enzyme [15].

The structural configuration and properties of siderophores have revealed their vast
affinity for iron. All siderophores differ from each other; nonetheless, they share a common
conserved structure with a similar functional unit and show an identical pattern of binding
to other molecules, i.e., transferrin and lactoferrin. Siderophores typically consist of a
peptide backbone that interacts with receptors present in the outer membrane of the
cell surface [107]. The hydroxamate siderophores are more structurally complex and
hydrophilic. However, denticity plays a more critical role in their affinity toward iron. Most
siderophores exhibit a hexadentate structure that allows six coordination sites for ferric
ions [10]. An example of hexadentate siderophore is dihydroxylbenzoylserine trimer. It is
commonly produced from enterobactin and exhibits preorganized metal-binding via macro
cyclization [108].

It has been revealed that the hexadentate siderophores usually have a higher affinity for
Fe (III) than tetradentate siderophores. Each of their molecules contains three bidentate lig-
ands fused to form a hexadentate complex. This characteristic also reduces entropic changes
during the chelation of a single ferric ion, as compared to the bidentate siderophores, which
have only two to three ligand molecules [8,10]. The denticity of siderophores also differs
depending on their architecture, and varies from linear dimer to trimer, or cyclic trimer.
The cyclization of siderophores, related to the TAFC and enterobactin groups, enhances
stability and helps them to resist enzyme degradation [38].

Siderophore structure also varies based on the presence of different functional groups.
According to Renshaw et al. [109], fungal siderophores are usually formed by the basic
unit Nδ-acyl-Nδ-hydroxyornithine, i.e., L-isomer of N5-hydroxy-N5-acetylornithine. These
siderophores are derivatives of L-ornithine, except for Neurospora crassa siderophore. Neu-
rospora crassa, obtains a siderophore from neurosporin [51]. All siderophores produced by
fungi belong to the hydroxamate group, except the polycarboxylate rhizoferrin. It was
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revealed by Huschka et al. [110] that the geometrical stability of any siderophore complex
depends mainly on the kind and number of its N-acyl residues surrounding the iron coor-
dination center. Well configured stable L-cis ferrichrome siderophores have been identified
in Aspergillus quandricinctus, Neurospora crassa, and Penicillium parvum.

The mechanism of siderophore transport is specific or well defined in fungi, which
may use multiple transport systems or produce more than one siderophore at a time
for efficient recruitment and transportation of metal ions. For example, Howard [15]
reported that Agaricus bisporus has various transport systems for FSR and FRC, while
N. crassa has different recognition sites for CPG and the ferrichrome-type siderophore
system. Saccharomyces cerevisiae retains significant amounts of Fe-chelating molecules,
termed as siderophores, in its cell wall and periplasmic space. Under Fe-deficient condition,
there is the expression of very high levels of three mannoproteins (FIT1p, FIT2p, and
FIT3p) commonly regarded as facilitators of Fe-transport [111]. Siderophore-Fe chelators
improve protein retention in the cell wall, whereas deletion of related genes controlling
the mannoproteins fit1, fit2, and fit3 reduces ferrichrome and ferrioxamine uptake by 50%.
Fe-transport of S. cerevisiae is expressed into two genetically separate systems known as
reductive and nonreductive systems [29]. The two-step reductive system operates at the
plasma membrane level, where the reduction of Fe III (oxidized) into Fe II (reduced) is
done by a ferrous-specific complex also known as the high-affinity transporter [112,113].

4.1. Ferric Reductase Enzymes (FRE)

The ferric reductase enzymes (FREs) are metalloreductases encoded by FRE1 and FRE2
genes expressed on the plasma membrane, reducing or oxidizing iron and copper [114,115].
These reductases are integral membrane proteins (multiple) and possess binding sites for
Fe, coenzymes (FAD, NADPH), and cytochrome (b-types) [116]. Saccharomyces cerevisiae
exhibited reductases in different forms such as FRE1, 2, 3, 4, 5, and 6 under iron-deficient
conditions, and expressed FRE1 and 7, under copper depleted conditions. Fre3p was
expressed on the plasma membrane and showed siderophore reductase activity, while
Fre6p was located on a vacuolar membrane and involved in reductive export of iron into
the cytosol. Initially, ferric citrate reductases (Fre1 and Fre2p) of yeast are characterized
by broad substrate specificity and Fe uptake from many ferric sources. Siderophores bind
ferric iron with high affinity and convert ferric ion into a ferrous ion, allowing transport by
a specific ferrous ion transporter (Figure 5).
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The plasma membrane of S. cerevisiae is bounded by a porous cell wall, providing the
shape of the cells, protecting them from osmotic lysis, and preventing the entry of too large
macromolecules. The siderophore-iron retention proteins (FIT mannoproteins) of the cell
wall facilitate iron retention with siderophores and do not require siderophore uptake. In a
few cases, siderophores cross the cell wall via nonspecific pores. FRE reductases (FRE1,2)
reduce Fe (III) into Fe (II) before uptake, and reduced iron is taken up through high-affinity
ferrous iron transporters (Fet3p and Ftr1p complex) or low-affinity iron transporters (Fet4
and Smf1). However, the Fet3p requires copper for optimum activity [29].

Fre1p and Fre2p catalyze the reduction of several iron-siderophore chelates, including
ferrichrome and ferrioxamine B [117]. Fre3p encodes a plasma membrane reductase that
catalyzes the reductive uptake of iron bound with hydroxamate siderophores, and Fre4p
specifically catalyzes the reductive uptake of di-hydroxamate rhodotorulic acid-iron [118].
The standard reduction potentials of physiological reductants such as NADPH are lower
than those of ferric siderophore complexes, which are kinetically unfavorable on the cell
surface. However, by coupling reduction of ferric-siderophore with competitive ligand
exchange with a ferrous iron-specific chelator at lower pH in hydrophobic environments,
the reduction potential can be changed into the level of physiologic reductants [10,119].
Therefore, in vivo ferric siderophores are reduced into ferrous ions at reduced pH in a lipid
rich environment. Similarly, transferrin, a high-affinity iron-binding glycoprotein, reduces
ferric ion into ferrous ion and removes the reduced form of iron.

4.2. Multicopper Permease

Multicopper permease (Ftr1p) is a high-affinity transport complex responsible for
transporting reduced forms of iron [120]. The apparent Km of the high affinity enzyme
complex is 0.2µM [121] and allows transport at low iron concentration. The ferrous iron is
oxidized by Fet3p and requires molecular oxygen [122,123]. The ferric iron is transported
into the cytosol via the Ftr1p permease. The oxidase reaction is copper-dependent, and
four copper ions are inserted into Fet3p during post-translation in the secretory pathway
on the post-Golgi compartment. The copper chaperone Atx1p is responsible for binding
and transporting copper to Ccc2p [124]. The copper transporter pumps copper into the
post-Golgi vesicle lumen [125]. Both proteins are necessary to maintain adequate cellular
copper levels and functioning secretory pathways [126]. These copper-binding proteins,
Atx1p and Ccc2p, are synthesized during iron deprivation and not copper deficiency,
indicating Fet3-dependent iron uptake. Assembled complexes (Fet3p and Ftr1p) of proteins
are retained by quality control systems in the endoplasmic reticulum, if expressed in the
absence of their protein partner [127]. The process of ubiquitin-mediated endocytosis
rapidly degrades the Fet3p/Ftr1p complex in the presence of high levels of iron [127].

4.3. Siderophore-Iron Transporters

Most fungi synthesize and secrete siderophores and small organic compounds that
specifically bind with iron molecules with high affinity [7]. Fungal siderophores bind iron
with dissociation constants (10−29 M), showing greater affinity than any iron-binding ligand
in the biological systems. Hsiang [128] reported that all fungi express a nonreductive uptake
system specific to siderophore iron chelates. Fungi express transporters with specificity for
siderophores secreted by other species of fungi. When the siderophore is abundant, the
reductive system of transport can catalyze the uptake of siderophore-bound iron. More
than 50% of genes are transcriptionally activated under iron-deprived conditions and are
involved in the uptake of iron chelators. The evolution of these uptake systems helps fungi
and other microorganisms to compete during the limited availability of iron.
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5. Biotechnological Applications of Siderophores
5.1. Treatment of Infectious Diseases and Anticancer Activity

Siderophores can be used for the treatment of thalassemia [129,130], a disease associ-
ated with inherent blood disorder due to abnormal hemoglobin formation. Many studies
have shown that compounds such as desferrioxamine B (DFO) are used to reduce this
disorder [131–134]. Rhodotorulic acid, a fungal siderophore, has been investigated as an
alternative to DFO for iron and aluminum overload [135]. The mechanism of rhodotorulic
acid is similar to the iron excretion of DFO, but increases zinc excretion, resulting in toxicity
at the administration site [136]. DFO and other hydroxamate siderophores have been used
to treat cancer, malaria actinide contamination, and other infectious diseases [137,138].
DFO was also reported for treatment of acute lymphoblastic leukemia by Estrov et al. [139].
Vergne et al. [140] reported that several other siderophores exhibit anticancerous and
antitumor activity. For example, triornicin fungal siderophore, produced by Epicoccum pur-
purascens has an inhibitory effect on tumors in mice [46]. For treating infections, siderophore
transport/uptake research can enhance movement of the drugs into the microbial cell con-
jugated with the siderophore-drug [140,141]. Actinides are radioactive elements known as
potent carcinogens. Siderophores and their analogs may enhance the excretion and removal
of actinides [142]. However, siderophore research in the medical field is still in progress.
Most studies have been concentrated on siderophores of bacterial origin, mainly DFO, and
on the siderophore analogs hydroxypyridinones.

5.2. Application of Siderophore as Drug Delivery Agents

Siderophore combined with antibiotic are used as a ‘Trojan horse’ for targeted drug
delivery (Figure 6). Using siderophore receptors, this method enables antibiotic transfer
across the membrane. Escherichia coli was treated with a solution of two arthrobactin-
carbacephem conjugates that were created [143]. A siderophore cephalosporin conjugate
was examined against several pathogenic bacteria such as Pseudomonas aeruginosa and E.
Coli [144]. In addition, simultaneous treatment with conjugates containing hydroxamic
and catechol resulted in bacterial growth inhibition. The sideromycins, which are con-
nected to lorabid or ciprofloxacin, are also of interest [145]. Sideromycins-lorabid conjugate
invades the periplasm, whereas sideromycins-ciprofloxacin attacks the cell wall. Staphy-
lococcus aureus growth was effectively inhibited by sideromycins. Pyochelin-norfloxacin
was another siderophore conjugate compound investigated [146]. Siderophore analogues
were developed and connected to an antibiotic-norfloxacin. Among four conjugates, two
were found effective against P. aeruginosa. A vanchrobactin-norfloxacin conjugate, which
demonstrated antibacterial properties against V. anguillarum and its variants, is another
example of siderophore analogs [147]. Some siderophore-antibiotic conjugates, however,
have been shown to promote bacterial growth. For example, Mycobacterium smegmatis was
not affected by spermexatol-carbacephalosporin conjugates [148].
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5.3. Application of Siderophores in Vaccine Development

A vibriobactin analogue either connected to bovine serum albumin (BSA) or ovalbumin
(OVA) was reported to stimulate the production of antibodies in a mouse model [150].
Based on a murine model of an uropathogenic E. coli (UPEC), conjugates of siderophores
and antigens were recently exploited for the development of vaccines against urinary
tract infections (UTIs) [151]. A decrease in bacterial concentration when mice were given
siderophore-cBSA (aerobactin-cationized bovine serum albumin) conjugates, indicated
protection via adaptive immunity [152]. Other studies have shown the importance of Fe
transport receptors in pathogenic bacteria as vaccine components [153]. An assessment
of E. coli (O157:H7) siderophore receptors, as well as porin proteins, was carried out on
cattle. Two vaccine doses were found to reduce the bacterial prevalence in cattle [154]. As a
potent component of vaccine, FhuD receptor of S. aureus was examined in another study.
Because of the absence of conformational alteration, FhuD-ferrichrome was exploited as
the model vaccine antigen [155].

5.4. Application of Siderophores in Diagnostics
5.4.1. Radiolabeled Siderophores for Imaging Fungal Infections

Present diagnostic methods such as computed tomography (CT) have severe lim-
itations regarding specificity and sensitivity. For instance, any radiological indication
can be associated with fungal infection in CT; thus, novel and better diagnostic methods
are required for invasive fungal infections [156]. Siderophore iron transporters (SITs) are
potential targets of molecular imaging methods due to their higher upregulation during
fungal infection, substrate specificity, and radiolabeled substrate accumulation in the target
cell after their energy-driven uptake (Figure 6). In addition, lower molecular mass and
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high hydrophilicity of siderophores lead to better circulation in infected tissues, speedy
clearance from nonspecific tissues and elimination through renal excretion. Another vital
characteristic of SITs is the possibility of substituting Fe in the siderophores with an Fe-
mimicking radionuclide. Gallium-68 is a diamagnetic isosteric substitution for Fe3+ that
has been used to describe siderophore complexes extensively [149].

Using only microgram of the siderophore, radiolabeling of a variety of desferri-
siderophores with gallium-68 can be achieved, as shown by proof-of-concept experi-
ments [157,158]. Aspergillus fumigatus absorption of the siderophore was elevated under
iron-deficient conditions and could be inhibited when there was an abundant siderophore
or sodium azide, showing that the uptake is selective and energy-dependent. Using PET
(Positron emission tomography)/CT technology, pulmonary infection caused by A. fumiga-
tus was imaged in a rat model, which revealed a significant buildup of [68Ga] Ga-triacetyl
fusarinine C (TAFC) in the fungal-infested areas. In sterile inflammations and tumour cells,
a considerable accumulation of [68Ga] Ga-TAFC was not observed [159]. It was also shown
that the use of siderophores is specific to species to a certain level.

Some in vitro research has shown significant uptake of [68Ga] Ga-TAFC by Fusarium
solani, Rhizopus oryzae, and A. fumigatus, but negligible uptake by A. flavus, Candida albicans,
A. terreus, or the bacteria Klebsiella pneumoniae, P. aeruginosa, and S. aureus. In contrast, A.
fumigatus showed the highest uptake of [68Ga] Ga-desferrioxamine-E (DFO-E), followed
by A. terreus, F. solani, R. oryzae, A. flavus, and the bacterial species S. aureus [159]. Alto-
gether, TAFC seems to be fungal-specific in comparison to DFO-E. Therefore, 68Ga-labeled
siderophores, particularly [68Ga] Ga-TAFC, have great potential for imaging invasive
A. fumigatus infections in patients [149].

Chemical modification of siderophores has been designed for new promising applica-
tions. For example, a hybrid imaging compound may be created by binding fluorescent
dyes, allowing PET/CT with gallium-68 and optical imaging [149]. To study TAFC identifi-
cation in A. fumigatus by the MirB transporter, initial efforts were undertaken to chemically
alter it with positive, negative or neutral charged functional groups [160]. Even without
inhibiting fungal uptake, chemical alterations were possible, with encouraging results
coming from the diacetylated version of fusarinine C (DAFC), in which functional groups
were used to change the free amine. In order to explore the hybrid imaging concept, fluores-
cent dyes were combined to DAFC based on these results [161]. Using the optical signals,
these fluorescent siderophores enable image-guided approaches, such as bronchoscopy or
surgical probing. Furthermore, such compounds can be applied for fluorescent microscopy.
Specifically, a FsC-Cy5.5 conjugate was used to image the skin infections resulting from
Trichophyton rubrum [162].

5.4.2. Diagnostics of Siderophore from Urine

The rapid clearance of [68Ga] Ga-TAFC through the renal system limits the use of
PET to detect infections in the kidney or bladder. These results, instead, sparked research
into the use of TAFC as a urine biomarker to diagnose invasive A. fumigatus infections.
Clinical trials [163] and clinical samples [164] both yielded promising findings. However,
additional research is required to validate this strategy prior to its application in the clinic.
Moreover, the mass spectrometry approach applied is not often practiced in diagnostic
labs. Nonetheless, the presence of TAFC in aspergillosis patients demonstrates that the
siderophore system is activated in human infections [149].

5.5. Bioremediation of Metal Polluted Environments

Metals have played a vital role in the development of human civilization. However,
manufacturing, sludge application, nuclear power plants and mining have caused a serious
increase of heavy metal pollution in the environment [165]. In particular, soil heavy metal
pollution has become one of the environmental problems of global concern. Siderophores
have a strong solubilizing effect on a variety of metals such as Cr, Cu, Ni, Pb, Zn and the
actinides Th4+, U4+ and Pu4+ [166]. For this reason, siderophores can contribute to the
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bioremediation of heavy metal contaminated soil. Although siderophores are mainly used
to chelate Fe3+, they can be used in the detoxification process of heavy metal pollutants
by combining a variety of toxic metals. The ability of siderophores to chelate heavy met-
als mainly depends on the stability constant of the siderophore and the metal to form a
complex [167]. The use of siderophores for remediation of heavy metal pollution has the
advantages of low cost, high efficiency, and no environmentally hazardous collateral. In
recent years, there has been an increasing interest in the application of siderophores in metal
bioremediation. Phytoremediation is an emerging and practical technology in the field of
bioremediation, but heavy metal stress can interfere with the absorption and utilization of
iron by plants, cause iron deficiency, affect chlorophyll synthesis, turn young leaves yellow,
and hinder plant growth. Siderophore-producing rhizosphere fungi are a group of plant
rhizosphere growth-promoting microorganisms whose siderophore products can react with
iron-containing minerals in the soil to generate soluble Fe3+-siderophore chelates, which
promote the dissolution of Fe3+ in the soil [168]. These rhizosphere fungi can provide nutri-
ents (especially iron) to plants under heavy metal stress, by inducing selective absorption by
plants of the different metals available in the environment. In fact, siderophores combined
with iron can effectively be absorbed by plant cells, whereas they cannot easily enter the
cells when combined with other heavy metals. Therefore, siderophores can significantly
alleviate the stress caused by metal toxicity and promote plant growth [169]. In addi-
tion, studies have shown that siderophore-producing rhizosphere fungi can maintain their
growth-promoting effects on plants in heavy metal polluted soil because siderophores can
alleviate the inhibitory effect of heavy metals on the synthesis of plant growth hormones,
such as indoleacetic acid, by fungi [170]. Siderophores produced by rhizosphere fungi can
chelate with Fe3+ to inhibit the absorption of iron by plant pathogens, thus reducing the
activity of pathogens, protecting plants from diseases and promoting plant growth [171].
In addition to their growth-promoting effect to improve the biomass of plants, fungal
siderophores can also improve the activity of heavy metals in the rhizosphere environment
and promote the absorption and accumulation of heavy metals in plants. The activity of
heavy metals in the plant rhizosphere is an important factor that determines whether large
amounts of heavy metals can be absorbed by plants [172]. The siderophores produced
by rhizosphere fungi can combine with heavy metal ions in the soil to form a soluble
heavy metal-siderophore chelate, thereby improving the activity of heavy metals in the
rhizosphere environment, increasing the absorption and accumulation of heavy metals by
plants, and improving the efficiency of phytoremediation [173]. Dahlheimer and colleagues
used siderophores to react with oxides containing the heavy metal ions Pt4+ and Pd2+ and
found that siderophores can form soluble chelates with Pt4+ and Pd2+, thus increasing the
solubility of Pt and Pd [174]. Hong et al. reported the in vitro dissolution of copper and
zinc via siderophores produced by the fungal species Fusarium solani [175]. Other studies
have also confirmed that siderophores can promote the dissolution of many common heavy
metals, and even metalloids, from their minerals. For instance, siderophores can promote
the dissolution of manganese-containing minerals such as Mn3O4 [176]. At the same time,
heavy metals can influence siderophore-producing microorganisms, and the total amount
of siderophores increased in copper-contaminated sites [177]. Siderophores and heavy met-
als can also be stored in fungi after chelation. For example, in soil contaminated by metals,
Hypocrea lixii can secrete siderophores to accumulate copper and zinc in the biomass [78].

The motor manufacturing industry, sewage sludge, vehicle emissions, and mining are
common contributing sources for metal pollution [178,179]. Neptunium and plutonium
are man-made actinides present in the environment as pollutants due to the testing of
nuclear power stations and weapons production, posing a significant environmental haz-
ard [180]. Siderophores are effective for the solubilization of actinides [181] and form stable
tetravalent actinides. They also play a significant role in the mobilization of other metals,
including zinc, copper, lead, and cadmium [182,183]. Siderophore-producing microorgan-
isms are abundant in soil [184] and affect the bioavailability of metals and radionuclides
present in the environment [183,185]. Siderophores could be used to develop metal recov-
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ery or remediation of waste sites, including radioactive waste, due to their complexing
ability [167].

5.6. Plant Growth Enhancement and Biocontrol of Plant Pathogens

Microbial siderophores provide Fe-nutrition when the bioavailability of iron is lim-
ited to enhance plant growth [186], although the mechanism of siderophore mediated
Fe-nutrition is still not fully known. However, two possible mechanisms by which plants
could obtain Fe from microbial siderophores have been suggested: (i) high redox poten-
tial of microbial siderophores can be reduced by the donation of ferrous in the transport
system, and (ii) microbial ferric ions are transported in plant root through the apoplast
where the reduction of siderophore takes place [187], with consequent ferrous accumu-
lation in the apoplast leading to a high concentration of Fe (II) in the root [188], and (iii)
siderophores of microbial origin can chelate Fe from soils and perform ligand exchange with
phytosiderophores [189]. These mechanisms depend on several parameters such as concen-
trations of phytosiderophores, microbial source, pH, and redox potential of root environ-
ment [186]. Schenk et al. [190] found that siderophores are a valid eco-friendly alternative
to hazardous pesticides. Mycorrhizal fungi are used as biofertilizers for the enhancement of
plant growth and development. Higher levels of Fe-sequestration occurred in plants associ-
ated with mycorrhizal fungi compared to nonmycorrhizal plants, suggesting that enhanced
plant nutrition by mycorrhizal fungi depends on fungal siderophores [191,192]. Plant
growth-promoting activities of fungi were previously investigated by Yadav et al. [193]
who found that fungal species such as Trichoderma harzianum, Penicillium citrinum, and
Aspergillus niger produced siderophores and increased root and shoot length of chickpeas.
Siderophores play a significant role in biological control as competitors for Fe to reduce
the Fe availability for the pathogens of plants [194]. Wilt diseases of potatoes caused
by Fusarium oxysporum can be controlled by Pyoverdine siderophores produced by Pseu-
domonas sp. [195]. Apart from fungi, bacterial strains, mainly belonging to the genus
Pseudomonas, have been extensively studied to improve plant growth by synthesizing
siderophores or protecting the plant host from pathogens [196].

5.7. Enzyme-Inhibiting Activity

Siderophores are iron chelators capable of inhibiting the iron-dependent activity of
enzymes by withdrawing iron. Several studies have shown that ribonucleotide reductase
activity is reduced by synthetic siderophores [197] as a result of inhibition of biosynthesis of
DNA. In proliferating neoplastic cells, iron delivering transferrin receptors were found to
frequently occur on the cell surface and enhance iron requirement by the cell. Inhibition of
iron supply by the siderophores reduced the growth of neoplastic cells [132,197]. Therefore,
siderophores can be used as inhibitors of cell proliferation and help to design drugs with
anticancer activity.

5.8. Computational Approaches for the Application of Siderophores

With the advancement in bioinformatics and computational approaches, it has become
easier to explore gene clusters for siderophore biosynthetic pathways and their interactions
with other proteins and peptides. Siderophores are complex structures of nonproteinogenic
amino acids with huge structural variations. These structural variations make siderophores
suitable for various applications. Computational and bioinformatics tools help to predict
the affinity and properties of siderophores. Norine is a bioinformatics platform that is an
easily available unique resource devoted to elucidating the structures of nonribosomal
peptides. This tool helps to identify newly discovered siderophores, whether new non-
ribosomal peptides or variants of an existing family. Similarly, AntiSMASH (antibiotics
& Secondary Metabolite Analysis Shell) is an internet-based bioinformatics tool which
finds the region in plants, fungi, and bacteria responsible for the biosynthesis of secondary
metabolites. AntiSMASH allocates a functional “siderophore” label for biological gene
clusters which contain the lucA/lucC gene family specific to the siderophores biosynthetic
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pathways, which further helps to predict the siderophores activity [198]. These tools help
to derive siderophore biosynthesis pathways and make them accessible for reference. The
prediction of biosynthetic pathways for the production of siderophores facilitated the dis-
covery of novel and exclusive siderophores such as thioquinolobactin [199]. Molecular
dockings and dynamic simulations are additional techniques for analyzing the interaction
of siderophores with other proteins. Samsonov et al. [200] successfully applied molecular
docking and molecular dynamic simulations to analyze the potential binding interaction
between nine bacterial siderophores and lipocaline, a member of human serum a1-acid
glycoprotein. A comparative study of computational and experimental results indicated
that serum a1-acid glycoprotein can effectively bind with the Fe-BisHaCam and petrobactin,
which shows that serum a1-acid glycoprotein can be putatively involved in the nullifi-
cation of bacterial infections by capturing iron-chelating compounds. Furthermore, Xie
et al. [201] explored bioinformatics approaches such as mutasynthesis, genome mining,
and activity screening to synthesize fluorinated amychelin fluoroamychelin I siderophores.
The resulting fluorinated fluoroamychelin I was able to rescue Caenorhabditis elegans from
Pseudomonas aeruginosa-mediated killing with greater efficiency than traditional antibiotics,
including meropenem and ceftazidime. The study showed a successful implementation
of bioinformatics approaches for the production of synthetic antibacterial compounds
by modifying siderophores. In addition to these, Flux balance analysis (FBA) is a com-
putational tool that is frequently used in metabolic engineering for the improvement of
production yield. Siderophores are small-sized metal chelators that are usually secreted
in very small quantities by their native microbial hosts. FBA can be applied to predict
media composition to enhance production yield that can be further verified experimentally.
Recently FBA has been applied to improve the heterologous expression of siderophores by
E. coli K-12 MG1655 [202]. In conclusion, computational and bioinformatics approaches
are helpful to identify novel siderophores, their biosynthetic pathways, and biological
activities. Furthermore, these techniques are applicable to modify siderophore structures in
order to improve their bioactivity and even their production yield.

6. Importance of Siderophores in Nature
6.1. Weathering of Soil Minerals

Soil microbes produce siderophores that can stimulate the dissolution of insoluble
phases minerals [203,204]. Several mechanisms for siderophore-stimulated Fe dissolution
have been proposed [205]. In general, the Fe (III) and siderophore complex forms on the
mineral surface and is subsequently transported into the adjacent soil solution, where it
is accessible for absorption by microbes and plants [203,206]. Because siderophores and
Fe form more permanent complexes, their influence on soil mineral weathering may be
greater than low molecular mass organic acids (LMMOAs). Siderophores and Fe (III) form
1:1 complexes with K constants ranging from of 1030 to 1052 [207], whereas, with Fe (III),
oxalic acids have constants of K = 108 and citric acids have constants of K = 1012 [208].
Nevertheless, when both siderophores and LMMOAs are present, the mineral dissolution
rate is increased more than when the solitary siderophore is present [209]. Many studies
have reported microbial siderophore involvement in dissolution of Fe minerals due to
their relevance in weathering and soil formation. In a study, researchers revealed the
effectiveness of hydroxamate siderophores formed by Suillus granulatus in dissolving
goethite. Due to the continual synthesis of siderophores by S. granulatus, significant
amounts of Fe (109 mol m2/h) were mobilized [210]. Additionally, Sokolova et al. [211]
found that fungal siderophores belonging to the family of ferrichrome, including ferricrocin
and ferrichrome, contributed to altering the surface structure of biotite and promoting its
dissolution in forest podzolic soil.

Compared to a synthetic siderophore, the presence of siderophore-producing acti-
nobacteria, such as Arthrobacter and Streptomyces, significantly enhanced the Fe dissolution
from hornblende [206]. Phytosiderophores have been shown to elevate Fe-containing min-
eral dissolution, thus contributing to weathering processes of minerals, for example goethite
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and ferrihydrate [212]. According to Reichard et al. [213], the highest goethite dissolution
rate of 1.7 nmol m2/h at pH 6 was obtained in the presence of 2′-deoxymugineic acid
(phytosiderophores). The transporter genes expression of Fe–phytosiderophore in barley
has recently been shown to improve its capacity to remove Fe from soil minerals [214].

6.2. Oceanic Biogeochemical Cycle of Fe

Trace metal biogeochemical cycling in the oceans has become a significant source of
concern. Fe has gained the most attention out of all the trace metals found in marine waters
since it is a critical micronutrient for marine life and affects phytoplankton production
and community structure [215]. Marine bacteria are responsible for most organic Fe chela-
tors found in seawater and hence play a central part in the Fe biogeochemical cycle in
the ocean [216]. These bacteria compete for Fe with phytoplankton by creating several
forms of siderophores, which significantly influence the abundance and solubility of Fe in
the ocean [217]. In marine siderophores, either citrate or b-hydroxyaspartate contributes
hydroxyl–carboxylate functional groups [198,218]. Siderophores contribute to the pho-
tochemical cycle of Fe in surface water by producing complexes of Fe (III)–siderophore
that improve the availability of Fe for the phytoplankton [219,220]. Ferrioxamine G was
discovered to be broadly dispersed in surface waters across the Atlantic Ocean, while fer-
rioxamine E was shown to have a more diverse distribution at different depths. These data
imply that marine siderophores play a significant part in the biogeochemical cycle of Fe by
elevating the abundance, as well as the availability, of Fe in the Atlantic Ocean [221,222].

7. Conclusions

Iron is an essential element for all living organisms. Fungi acquire iron from extracellu-
lar environments by secreting siderophores, which are low molecular weight, iron-binding
molecules. Siderophores play a significant role in the iron homeostasis of fungi, which
are similar to bacteria and plants for the mobilization of extracellular iron. Considerable
progress has been made on siderophore uptake research and understanding iron assimila-
tion mechanisms in S. cerevisiae. However, much more remains to be explored regarding
biosynthetic pathways, iron assimilation, and regulation. In this regard, further studies
based on genome sequence analysis of fungi and siderophore-mediated iron acquisition in
a wide range of fungal species are still needed. Apart from fungal siderophore-type descrip-
tions, several unexplored aspects need to be elucidated, including extracellular excretion
mechanisms, details of the siderophore biosynthetic pathways, intracellular iron release,
iron metabolism and storage of iron. Iron requirements of fungi open up new research
areas for the development of novel antifungal treatments such as iron chelation therapy.
Functional studies of siderophores may reveal novel non-ribosomal peptide synthetases
that can open the way for the development of new compounds with pharmaceutical value.
In fungal species, siderophore-mediated iron uptake is essential for survival as free-living
organisms and for establishment of commensal and pathogenic relationships.

Studies conducted on low Fe bioavailability and siderophore activity in different
environments may enhance our understanding of siderophore ecology and functions.
Metagenomic analyses provide an excellent platform to clarify the structural diversity of
siderophores among different fungal species. The knowledge of siderophore biosynthe-
sis and utilization mechanisms in each fungal species could be essential for eradicating
pathogenic fungi hiding and replicating in host macrophages.

With the advent of genome sequencing technologies and concurrent omics analysis,
there has been a vast increase in our knowledge of siderophore biosynthesis over the past
two decades. The first step was identifying gene clusters acting as sources of siderophores
via bioinformatics. Prediction of substrate specificity combined with algorithms parsing
metabolomic data to link the clusters to corresponding compounds may constitute the
following steps. For each step, multiple new techniques have been developed in the last
few years. In silico genome mining is an efficient high-throughput approach to uncover
potential nonribosomal peptide synthetases (NRPS) genes. Analytical pipelines linking
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genomics with other omics data have been developed and can reveal much information on
the synthesis of such natural products. Computational tools coupled with genome mining
provide efficient methods to identify and characterize biosynthetic gene clusters BGCs [223].
Natural product research and siderophore research have been concentrated on bacterial
species, and there is an obvious bias in data availability and algorithm development for
fungal research. Therefore, it is essential to consider the differences and test the relevance
of already developed tools on fungal data before blind usage. It would be ideal to generate,
collect, and analyze fungal NRPS data, and particularly reorganize siderophore-producing
data for fungal siderophore identification. The lack of such curated data is currently
a shortcoming in developing and training prediction/classification models for fungal
siderophores. Algorithms for the identification of siderophore-producing BGCs integrated
with high-throughput proteomic and metabolomic product detection techniques can lead
to the discovery and characterization of novel siderophores.

With the help of computational approaches, inhibitors can be designed against
siderophore biosynthetic pathway enzymes and siderophore transporter proteins by
applying the principles of structure-based drug design and/or fragment-based drug
design. Similarly, the structure-based pharmacophores for these catalytic enzymes can
be predicted and searched against the chemical databases for compounds suitable as
siderophore biosynthetic enzyme inhibitors. In contrast, biosynthetic pathway enzyme
competitive inhibitors can be identified using the shape and structural information of
enzyme substrates. Applying shape-based and fingerprint-based similarity searches
allows suitable competitive enzyme inhibitors to be predicted from chemical databases.
In addition, a drug repurposing approach can be applied to find existing drugs with
antifungal activity. This approach reduces drug discovery cost to a great extent, with a
higher success rate than other approaches.
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FRC ferrichromes
Fsg fusigen
NRPS nonribosomal peptide synthetases
SIT siderophore-iron transporter
Estb esterase
FIT facilitator of iron transport
FREs ferric reductase enzymes
Fet ferrous iron transporter
DFO desferrioxamine B



J. Fungi 2022, 8, 21 21 of 28

References
1. Winkelmann, G. Importance of siderophores in fungal growth, sporulation and spore germination. Front. Mycol. 1991, 1991,

49–65.
2. Ducklow, H.W.; Oliver, J.L.; Smith, W.O. The Role of Iron as a Limiting Nutrient for Marine Plankton Processes. 2018. Available

online: pal.lternet.edu/docs/bibliography/Public/259lterc.pdf (accessed on 21 April 2021).
3. Mustoe, G.E. Biogenic weathering: Solubilization of iron from minerals by epilithic freshwater algae and cyanobacteria. Microor-

ganism 2018, 6, 8. [CrossRef]
4. Paul, A.; Dubey, R. Characterization of protein involved in nitrogen fixation and estimation of Co-factor. Appl. J. Curr. Res. Biosci.

Plant Biol. 2015, 2, 89–97.
5. Martinez, J.L.; Delgado-Iribarren, A.; Baquero, F. Mechanisms of iron acquisition and bacterial virulence. FEMS Microb. Rev. 1990,

7, 45–56. [CrossRef]
6. Wang, X.; Pecoraro, L. Analysis of soil fungal and bacterial communities in Tianchi Volcano crater, northeast China. Life 2021,

11, 280. [CrossRef]
7. Neilands, J. Siderophores: Structure and function of microbial iron transport compounds. J. Biol. Chem. 1995, 270, 26723–26726.

[CrossRef]
8. Khan, A.; Singh, P.; Srivastava, A. Synthesis, nature and utility of universal iron chelator—Siderophore: A review. Microbiol. Res.

2018, 212–213, 103–111. [CrossRef]
9. Chincholkar, S.B.; Chaudhari, B.L.; Rane, M.R. Microbial Siderophore: A State of Art. In Microbial Siderophores; Soil Biology;

Varma, A., Chincholkar, S.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 12.
10. Boukhalfa, H.; Crumbliss, A. Chemical aspects of siderophore mediated iron transport. Biometals 2002, 15, 325–339. [CrossRef]

[PubMed]
11. Devireddy, L.; Hart, D.; Goetz, D.; Green, M. A mammalian siderophore synthesized by an enzyme with a bacterial homolog

involved in enterobactin production. Cell 2010, 141, 1006–1017. [CrossRef]
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