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Reactivation of associative structure specific
outcome responses during prospective evaluation
in reward-based choices
Maya Zhe Wang1 & Benjamin Y. Hayden1

Before making a reward-based choice, we must evaluate each option. Some theories propose

that prospective evaluation involves a reactivation of the neural response to the outcome.

Others propose that it calls upon a response pattern that is specific to each underlying

associative structure. We hypothesize that these views are reconcilable: during prospective

evaluation, offers reactivate neural responses to outcomes that are unique to each associative

structure; when the outcome occurs, this pattern is activated, simultaneously, with a general

response to the reward. We recorded single-units from macaque orbitofrontal cortex

(Area 13) in a riskless choice task with interleaved described and experienced offer trials.

Here we report that neural activations to offers and their outcomes overlap, as do neural

activations to the outcomes on the two trial types. Neural activations to experienced and

described offers are unrelated even though they predict the same outcomes. Our reactivation

theory parsimoniously explains these results.
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R
eward-based choices pervade our lives and range from
whether to get a cup of tea instead of coffee to whether to
become an organ donor. To choose effectively, we must

evaluate the potential consequences of our choices in light of the
presented options1,2. Sometimes these prospective evaluations are
based on descriptions, such as when choosing a cupcake based on
the menu at a newly opened bakery. Other times, these
prospective evaluations are based directly on experience, such
as when deciding to have a second cupcake based on how the first
one tasted. In both cases, choosing requires generating a
prediction about the value of each option, which in turn
requires us to mentally link these external options with
representations of their outcomes.

Building the mental link between options and outcomes relies
on successful encoding of associative structures. That is, it
requires us to represent the simple stimulus-outcome/action-
outcome associations and/or the more complex associative event
sequences that comprise a world model3. A good deal of work
indicates that the orbitofrontal cortex (OFC) is a key site for
representation of associative structures2,4,5. Indeed, a recent
integrative theory of OFC function suggests that its central role is
to instantiate a cognitive map of task space, meaning that it
represents the associative structures that are relevant to solving
the current task6,7. This idea is supported by recent results from
lesion studies3,8,9. However, the dearth of physiological evidence
supporting these ideas limits our understanding of how the
encoding of associative structures in OFC contributes to
economic choices.

Here we consider two broad possibilities. One possibility would
be that reward-predicting offers activate OFC neurons in the
same way that the reward itself does. The brain would thus
presumably be directly simulating the experience of receiving the
reward by replaying the neural response pattern associated with
its receipt. In this case, neural response to rewards and to any
cues that predict the same reward would be identical. Another
possibility would be for the brain to have a distinct pattern of
neural response for each unique underlying associative structure.
In this case, neural responses to two associative event sequences
predicting the same reward would not necessarily overlap.

There is good neural evidence in support of both possibilities.
During prospective evaluation, hemodynamic responses in OFC
show reactivation of outcome related multi-voxel patterns during
the presentation of reward predictive cues10–12. OFC neurons also
show similar responses to different cues predicting subjectively
equally preferred outcomes13. Furthermore, OFC shows
reactivation of the same set of neurons encoding the outcome
when the corresponding offer occurs14,15. Other evidence
suggests that OFC recruits responses that are unique to each
offer-outcome associative event sequence when offers are
presented. In one task, each unique associative event sequence
(a visual stimulus, an action, and an outcome cue) led to a high or
low reward state. After seeing the visual stimulus, participants
freely chose and performed one of two actions to complete
the sequence that led to the desired reward. The reward states
predicted by each sequence were decodable during stimulus
presentation and action execution in human central OFC,
suggesting that the reward information was represented based
on the unique underlying associative structure16. Farovik and
colleagues17 demonstrated that OFC ensembles in rats adopted
uncorrelated coding schemes when different object-context pairs
led to the same reward. Likewise, Tsujimoto and colleagues
showed that distinct subsets of macaque OFC neurons encoded
the water reward of equal size when it was presented via
two routes, as an instruction for choice strategy (stay/switch)
versus as a feedback for correct execution of a choice strategy
(presumably reflecting distinct associative structures)18.

Although the two sets of studies may seem to be contradictory,
we believe that they can be reconciled. Specifically, we
hypothesize that OFC encodes the associative structure specific,
and simultaneously, a generic reward signal. During prospective
evaluation, only the associative structure specific neural response
is present; during retrospective evaluation (that is, immediately
after the reward), the associative structure specific neural
response is co-activated along with the general reward repre-
sentation. On the basis of this hypothesis, we predict that when
offers are made, neural responses to outcome receipt will be
partially reactivated due to the overlapped representation of
associative structures. However, offers presented with distinct
associative event sequences (here, described and experienced
offers) will elicit non-overlapping neural responses, even though
they predict the same rewards. Finally, when the choice is made
and reward is given, the associative structure specific and the
reward general responses will be activated simultaneously.
Therefore, we predict that responses to the two outcomes will
show partial overlap (Fig. 1c). Here we record single-unit
activities from macaque OFC (Area 13) in a riskless reward-
based choice task. We report that neural activations to offers and
their outcomes overlap, as do neural activations to the outcomes
on the two trial types. Neural activations to experienced and
described offers are unrelated even though they predict the same
outcomes. These results indicate that OFC (Area 13) recruits
associative structure specific neural activations to outcomes
during prospective evaluation.

Results
Behaviour. On each trial of the choice task, subjects (two male
Macaca mulatta) chose between two riskless options, offer 1 and
2, presented on the left and the right side of the screen (Fig. 1a).
First, offer 1 cue was presented as a rectangle. On described trials,
offer 1 size was revealed by paring the offer 1 cue with one of five
coloured rectangles that each was stably associated with a specific
reward size. On experienced trials, offer 1 size was revealed by
directly paring the offer 1 cue with a water aliquot of one of the
same five reward sizes. On both trials types, the size of offer 2 was
indicated by one of three other photographic images, each
associated with a specific reward size. Trial types, offer positions,
and offer sizes were all randomized independently for each trial.

Subjects understood the task well. They chose the option with
greater or equal water amount 85.02% of the time (subject
H: 88.37%; subject B: 82.45%). This performance was significantly
higher than chance level (that is, 56.67%—see Methods;
w2¼ 6,166.80; Po0.001; n¼ 31,699; effect size¼ 4.34; chi-square
test; see Methods). Subjects chose the larger option more often in
experienced trials (88.29%) than in described trials (81.72%;
w2¼ 268.1; Po0.001; nexperienced¼ 15,914; ndescribed¼ 15,785; effect
size¼ 1.69; chi-square test; Fig. 2). Subjects chose offer 1 more
often than expected by optimal strategy: they chose it 44.31% of the
time (even though its value was matched to or better than offer 2
only 40% of the time; w2¼ 120.77; Po0.001; n¼ 31,699; effect
size¼ 1.19; chi-square test). This preference for offer 1 was
observed in both described and experienced trials, but was slightly
stronger for described than for experienced offers (Fig. 2).

Neural encoding of offer 1 and outcome amount. We collected
data from 125 neurons in Area 13 of OFC (n¼ 65 in subject
H and n¼ 60 in subject B; Fig. 1b, Supplementary Fig. 1, and
Methods). Responses of two illustrative neurons are shown in
Fig. 3a,b (also see Supplementary Fig. 2a,b). The firing rate of cell
#69 during the offer epoch was higher in response to smaller
offers than to larger ones in the described trial (B¼ � 0.003;
P¼ 0.006; n¼ 231; R2¼ 0.03; linear regression, see Methods).
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During the same epoch, the firing rate of cell #123 was higher in
response to larger offers than to smaller ones in experienced trial
(B¼ 0.004; P¼ 0.003; n¼ 212; R2¼ 0.04; linear regression).

During the offer 1 epoch, the size of the described offer affected
firing rate in 12% of neurons (n¼ 15/125; linear regression;
Fig. 3c). This proportion is greater than what would be expected
by chance (P¼ 0.002; n¼ 125; effect size¼ 2.4; binomial test).
Among these neurons, 53.3% (n¼ 8/15) encoded described offer
with positive sign (this proportion is not biased; w2o0.0001;
P¼ 0.5; n¼ 15; effect size¼ 1.31; chi-square test). The size of the
experienced offer affected firing rate in the offer 1 epoch in 16.8%
of neurons (n¼ 21/125; Fig. 3c). This proportion is greater than
what would be expected by chance (Po0.001; n¼ 125; effect
size¼ 3.36; binomial test). Among experienced offer size-sensitive
neurons, 66.7% (n¼ 14/21) encoded experienced offer with
positive sign (this proportion is positively biased; w2¼ 3.43;
P¼ 0.032; n¼ 21; effect size¼ 4.00; chi-square test).

The size of the outcome affected firing rate during the outcome
epoch in 9.6% of neurons (n¼ 12/125; linear regression; see
Methods) in described trials. This proportion is greater than
chance (P¼ 0.036; n¼ 125; effect size¼ 1.92; binomial test).
Among these neurons, 75.00% (n¼ 9/12) encoded outcomes with
negative sign (this proportion is negatively biased; w2¼ 4.17;
P¼ 0.021; n¼ 12; effect size¼ 9.00; chi-square test). The size of
the outcome affected firing rate during the outcome epoch in
12.8% of neurons (n¼ 16/125) in experienced trials. This
proportion is greater than chance (Po0.001; n¼ 125; effect
size¼ 2.56; binomial test). Among these neurons, 62.50%
(n¼ 10/16) encoded outcomes with negative sign (this propor-
tion is not biased; w2¼ 1.13; P¼ 0.144; n¼ 16; effect size¼ 2.78;
chi-square test).

We saw no evidence that offer 1 encoding was stronger in
experienced than described trials (though we might have expected
such a pattern due to the higher reward expectations on
experienced trials). First, the effect size, as measured by squared
coefficients of a linear regression on normalized firing rates
against offer 1 size, was not statistically different between
described and experienced trials (t¼ � 0.162; P¼ 0.87; n¼ 125;
effect size¼ � 0.02; t-test). Second, the proportions of neurons
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Figure 2 | Behavior. Probability of choosing offer 1 as a function of value

difference between offer 1 and 2. Preference curves were roughly sigmoidal.

Subjects generally chose the higher value offer. Performance was slightly

but significantly more optimal (that is, reward-maximizing) for experienced

than for described offers.

The riskless choice task

Recording site.

Experienced
trial

Described
trial

Fixation
200 ms

Offer 1:cue
500 ms

Offer 1:value
750 ms

Offer 2
500 ms

Fixation
200 ms

Choice
variable time

Outcome
750 ms

Described

Experienced

Cue for 
described offer 1

Cue for 
experienced offer 1

Offer 1: 75 µl

Offer 1: 100 µl

Offer 1: 150 µl

Offer 1: 200 µl

Offer 1: 250 µl

Offer 2: 150 µl

Offer 2: 175 µl

Offer 2: 200 µl

ITI
1,000 ms

Area 13

Schematic illustration

Outcome

Experienced

Described

Offer Reward representation 
unique to described 
associative structure

Reward representation
generic to all
associative structures

Reward representation 
unique to experienced
associative structure

a

b

c

Figure 1 | Summary of methods and hypothesis. (a) The riskless choice task. Following fixation, the offer 1 cue indicated a described or experienced offer 1.

The size of the offer was indicated by coloured rectangle (described trials) or a water aliquot (experienced trials). Presentation of offer 2 followed, and, after

a fixation, subject chose by shifting gaze to one of the offer positions. (b) Recording site (subject H shown). Area 13 of OFC is highlighted in orange.

(c) Schematic illustration of our hypothesis. Outcome responses specific to different associative structures were reactivated during prospective evaluation

but general reward response insensitive to preceding associative structures was only present during reward delivery after the choice.
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tuned for described and experienced offer 1 s were not
significantly different (w2¼ 0.81; P¼ 0.36; n¼ 125; effect
size¼ 0.68; chi-square test).

Similarly, we observed no difference in neural responses to
experienced offers and outcomes on experienced trials. First, the
effect sizes of the offer 1 and outcome responses in experienced
trials were not statistically different (t¼ 0.98; P¼ 0.33; n¼ 125;
effect size¼ 0.09; t-test). Second, the proportion of neurons tuned
for offer 1 and outcome in experienced trials were not
significantly different (w2¼ 0.51; P¼ 0.48; n¼ 125; effect
size¼ 1.38; chi-square test). Third, the effect sizes of the outcome
responses in described and experienced trials were not statistically
different across trial types (t¼ � 0.66; P¼ 0.51; n¼ 125; effect
size¼ � 0.08; t-test). Thus we observed no neural evidence of
diminished marginal utility19 of outcome (that is, difference in
neural response to offer 1 and its corresponding outcome) in
experienced trials, which could have occurred due to the fact
that the same rewards were delivered twice on these trials during
offer 1 and outcome epochs.

Overlapping responses to offers and their predicted outcomes.
If OFC indeed reactivates outcome responses to encode offers
during prospective evaluation10,14, then we should expect
overlapped neural response patterns to offers and outcomes. To
compare response patterns, we examined the relationship
between two sets of regression coefficients: one for offer-period
firing rate against the size of offer 1 and the other for outcome-
period firing rate against outcome size. We observed a positive
correlation between these two sets of coefficients in both
described (r¼ 0.27; P¼ 0.003; n¼ 125; Spearman’s correlation;
Fig. 4a,b) and experienced trials (r¼ 0.36; Po0.001; n¼ 125;
Spearman’s correlation; Fig. 4c,d). We chose Spearman’s
correlation (instead of Pearson) to minimize the influence of
the regression coefficients’ unknown distribution and potential
outliers. We also confirmed that none of the data points qualify as
outlier with a Cook’s D test (Supplementary Fig. 3). We
confirmed the observation of a positive overlap in regression
coefficients by implementing a permutation test (Fig. 4b,d,
and Methods), and by using a multiple regression model that
included the additional factor of choice for outcome epoch, which
was also confirmed with permutation tests (Supplementary
Fig. 4). Importantly, the strengths of reactivation responses, as
measured by the Spearman’s correlation coefficients, were not
statistically different between described and experienced trials
(z-value¼ � 1.10; P¼ 0.269; n¼ 2; Fisher’s Transformation
Test). This result argues against the possibility that the
described offer (a secondary reward, that is, coloured rectangle)
elicits a weaker neural response than the experienced offer
(a primary reward, that is, water aliquot). This result also argues
against the possibility that the overlapped response between offer
and outcome were due to the potentially common but weaker
mouth movement during described offer epoch.

We then tested whether there is an overlap in the set of
neurons involved in encoding offer 1 and in encoding outcome.
To do so, we used a technique we devised and used for this
purpose in earlier studies20,21. Specifically, we took the absolute
value of the two sets of linear regression coefficients (mentioned
above) as an index of task participation (that is, a measure of
unsigned coding strength). If the same—or at least a positively
overlapping—group of neurons participates in representing the
values of offer and outcome, then the absolute value of the
regression coefficients for offer and outcome will be positively
correlated. Conversely, if there are distinct populations, we will
observe a significant negative correlation between these variables.
The reason lies in the fact that if there are separable populations,
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Figure 4 | Reactivation Responses. Scatter plots illustrate the correlation analyses used to assess reactivation of outcome neural response pattern

during offer 1 encoding. (a,c,e,g) Each dot represents a neuron. Orange: the neuron is significantly tuned in the regression described on the x-axis.

Yellow: the neuron is significantly tuned in the regression described on the y-axis. Red: the neuron is significantly tuned in the regressions described on both

the x-axis and the y-axis. Grey: the neuron is not significantly tuned in either the regression described on the x-axis or the y-axis. (b,d,f,h) Permutation test

of significance for the correlation coefficient between two sets of regression coefficients. (a,b) Reactivation for described offers: correlation between

regression coefficients for offer size in offer 1 epoch (x-axis) and outcome size in outcome epoch (y-axis). Positive correlation indicates overlapped neural

response pattern. (c,d) Reactivation for experienced offers: correlation between regression coefficients for offer size in offer 1 epoch (x-axis) and outcome

size in outcome epoch (y-axis). Positive correlation indicates matching neural response pattern. (e,f) Unrelated coding for described and experienced

offers: correlation between regression coefficients for described offer in offer 1 epoch (x-axis) and experienced offer in offer 1 epoch (y-axis). This lack of

correlation is consistent with no overlap in coding scheme for described and experienced offers. (g,h) Similar coding for outcomes across described and

experienced trials: correlation between regression coefficients for described-trial outcome in outcome epoch (x-axis) and experienced-trial outcome in

outcome epoch (y-axis). This significant correlation indicates a positive overlap in coding scheme for described and experienced outcomes.
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then stronger selectivity for one option implies weaker selectivity
for the other one, and will therefore produce a negative
correlation. Finally, if there is no special relationship between
the populations, and parameter sensitivity is distributed
randomly across the population, we will see no correlation
between these variables. This analysis revealed a positive
correlation between the unsigned regression coefficients for
described (r¼ 0.33; Po0.001; n¼ 125; Spearman’s correlation)
and experienced (r¼ 0.19; P¼ 0.037; n¼ 125; Spearman’s
correlation) trials. These results argue against the hypothesis
that offers and outcomes are encoded by specialized sets of
neurons; rather they suggest that a single set of neurons encodes
both values at different times in the trial.

We next used a non-linear neural network decoding approach
to confirm these findings. First, we defined a 125-dimensional
neuronal space, with each neuron taking up one dimension.
Second, we separated trials into 10 groups each corresponding
to one of the five offer 1/outcome sizes in each trial type
(described and experienced). Third, we computed the activation
states for offer 1 and outcome epochs separately by randomly
sampling one trial per neuron from each group and averaging
the firing rates across time bins in each epoch. Finally, we trained
the decoders on activation states associated with offer 1 and
outcome epochs separately (see Methods).

For described trials, we found that a decoder trained on
outcome responses could decode activation states of offer 1 at
levels greater than chance (performance: 24.52%; w2¼ 3.43;
P¼ 0.03; n¼ 625; effect size¼ 1.30; one-sided chi-square test;
chance level: 20%, Fig. 5a). Equivalently, a decoder trained on
population activity states for offer 1 could decode population
activation states during outcome delivery (26.20%; w2¼ 6.42;
P¼ 0.006; n¼ 625; effect size¼ 1.42; one-sided chi-square test;
Fig. 5a). Similarly, for experienced trails, a decoder trained on
population activation states during outcome epoch could decode
activity patterns of experienced offer 1 (27.32%; w2¼ 8.87;
P¼ 0.001; n¼ 625; effect size¼ 1.51; one-sided chi-square test;
Fig. 5a). Equivalently, decoder trained on population activation
states for offer 1 could decode neural activity patterns during
outcome delivery (39.60%; w2¼ 56.45; Po0.001; n¼ 625; effect
size¼ 2.63; one-sided chi-square test, Fig. 5a). We showed
in Supplementary Fig. 5a,b that the relatively low decoding
accuracy was primarily caused by responses to smaller-sized
offers, because subjects seldom chose and received those offers.
We also tested these decoders with a sliding window of neural
activation patterns from offer 1 epoch, demonstrating the
temporal dynamics of the reactivation response (Supplementary
Fig. 5c,d). Reactivation response occurred slightly later in
described than in experienced trials.

To exclude the possibility that our results could be due to the
particular decoding technique we chose, we also confirmed these
results with a Support Vector Machine (SVM) decoder
(see Methods). The SVM decoder was trained to distinguish,
within each trial type, between the population activation state
associated with each size of the outcome against those associated
with the rest of other sizes of outcome, and then, tested on neural
response patterns of offer 1, and vice versa, (Fig. 5d). After
correcting for error rate, we found that a decoder trained on
neural activation to outcomes in described trials could decode
neural response for described offers (24.00%; w2¼ 2.69; P¼ 0.05;
n¼ 625; effect size¼ 1.26; one-sided chi-square test); the
same was observed in experienced trials (28.52%; w2¼ 11.89;
Po0.001; n¼ 625; effect size¼ 1.95; one-sided chi-square test).
Similarly, a SVM decoder trained on neural response for
described offer 1 could decode that for outcome delivery in
described trials (28.44%; w2¼ 11.67; Po0.001; n¼ 625; effect
size¼ 1.95; one-sided chi-square test); the same was observed in

experienced trials (43.84%; w2¼ 80.64; Po0.001; n¼ 625; effect
size¼ 3.12 one-sided chi-square test).

Overlapping response to outcomes across trial types. We next
examined how neural responses to outcomes on the two trial
types related to each other. We predicted that neural activations
to outcomes multiplex the associative structure specific and the
reward general response patterns. Therefore we predict some
overlap in the neural activations to outcomes, even though they
come from distinct offer types. Supporting the idea of an overlap,
we observed positively correlated tuning patterns for outcomes on
described and experienced trials (r¼ 0.22; P¼ 0.012; n¼ 125;
Spearman’s correlation; Fig. 4g,h). We also found an overlapping
subset of OFC neurons encoding the outcomes on the two trial
types, indicating a lack of neuronal specialization for the two
groups of outcome (r¼ 0.21, P¼ 0.020; n¼ 125; Spearman’s
correlation). Supporting the reactivation hypothesis, we found
that a decoder trained on neural activation to outcomes in
described trials could decode neural responses to outcome in
experienced trials better than chance (31.96%; w2¼ 22.63;
Po0.001; n¼ 625; effect size¼ 1.88; chi-square test; Fig. 5c;
chance level: 20%). A decoder trained on neural activation
states for outcome in experienced trials, however, could not
significantly decode activation states for outcome in described
trials (22.04%; w2¼ 0.67; P¼ 0.21; n¼ 625; effect size¼ 1.13;
chi-square test; Fig. 5c). We suspect that high noise in training
data contributed to this asymmetry in decoding (Supplementary
Note 1). Thus, together, these results indicate some overlap
in coding schemes for outcomes in described and experienced
trials types.

Non-overlapping responses to offers across trial types. We have
shown above that OFC reactivates neural response to outcomes
during prospective evaluation. However, whether the reactivated
neural response was reward general or unique to each specific
associative structure remained unaddressed. We hypothesized
that during prospective evaluation, only the associative structure
specific response is represented. Since the size of described
and experienced offer 1 s was revealed through different
offer-outcome associative event sequences, we would expect no
correlation between the neural responses they elicit, even if they
predicted the same reward.

As above, to compare tuning patterns, we computed the
regression coefficients for normalized firing rate against the size
of offers separately in the described and experienced conditions.
We observed no correlation between the two sets of regression
coefficients (r¼ 0.02; P¼ 0.828; n¼ 125; Spearman’s correlation;
Fig. 4e,f). Moreover, in comparison, correlation coefficient
between regression coefficients for described offers and experi-
enced offers is significantly smaller than that between described
and experienced outcomes (z-value¼ 2.25; P¼ 0.012; n¼ 2;
Fisher’s Transformation Test). The similar effect was observed
in comparison to correlation coefficient between regression
coefficients for described offers and outcomes (z-value¼ 2.84;
P¼ 0.002; n¼ 2; Fisher’s Transformation Test) and that between
experienced offers and outcomes (z-value¼ 3.94; Po0.001; n¼ 2;
Fisher’s Transformation Test). Thus, OFC recruited unrelated
encoding patterns for offers that were presented with different
associative event sequences, even if they predicted the same
reward. This lack of correlation was not due to lack of power or
spurious distribution of the coefficients. We performed a power
analysis and a permutation test (Fig. 4f; see Methods for details)
and both analyses suggested that given our sample size, if
a significant correlation truly existed, we would have observed a
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correlation coefficient (effect size) between � 1 to � 0.19 and
0.19 to 1, instead of 0.02.

We also observed no correlation between the unsigned
regression coefficients (r¼ 0.002; P¼ 0.98; n¼ 125; Spearman’s
correlation). Therefore, selectivity for described and experienced
offers recruited neurons randomly distributed across the popula-
tion instead of a single subset.

The decoding approach showed similar results. Specifically, we
found that a decoder trained on population activation states for
described offer 1 could not decode population activation states
for experienced offer 1 (21.56%; w2¼ 0.37; P¼ 0.27; n¼ 625;

effect size¼ 1.10; chi-square test; Fig. 5c). Similarly, a decoder
trained on population activation patterns for experienced offer 1
could not decode population activation patterns for described
offer 1 (17.36%; w2¼ 1.27; P¼ 0.87; n¼ 625; effect size¼ 0.85;
chi-square test; Fig. 5c).

Furthermore, although we observed that outcome and offers
within the same trial type showed significantly overlapping
population activation states, we did not observe this overlap
across trial types. Specifically, a decoder trained on responses to
outcomes in described trials could not decode neural activations to
experienced offers (20.60%; w2¼ 0.04; P¼ 0.42; n¼ 625; effect
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size¼ 1.04; one-sided chi-square test; chance level: 20%; Fig. 5b).
Likewise, a decoder trained on neural activations to outcomes in
experienced trials could not decode neural activations to described
offers (18.40%; w2¼ 0.42; P¼ 0.74; n¼ 625; effect size¼ 0.90;
one-sided chi-square test; Fig. 5b). Similarly, a decoder trained on
neural activations to described offers could not decode neural
activations to outcomes on experienced trials (23.24%; w2¼ 1.75;
P¼ 0.09; n¼ 625; effect size¼ 1.21; one-sided chi-square test;
Fig. 5b). And a decoder trained on neural activations to
experienced offers could not decode neural activations to outcomes
in described trials (17.12%; w2¼ 1.53; P¼ 0.89; n¼ 625;
effect size¼ 0.83; one-sided chi-square test; Fig. 5b).

Principal component trajectories of two trial types. Our central
hypothesis predicts that the OFC population neural responses
should reflect different associative structures in described
versus experienced trials during prospective evaluation, and this
difference should reduce as trial proceeded to outcome delivery.

To test this prediction, we used a dimensionality reduction
approach. We first defined a 125-dimensional neuronal space,
with each neuron taking up one dimension. Then we computed
the activation state for each of five 300 ms epochs (offer 1 cue,
offer 1 value, offer 2, choice and outcome) in each trial type,
by averaging firing rates for each neuron across all trials and
across time bins in each epoch. We subsequently conducted
a principal component analysis on the 125-dimensional, 5-epoch,
2-trial-type, population responses.

We found that the top three principal components could
together account for 71.68% of the variance in the data (Fig. 6a).
Next we plotted the trajectories of the population activation states
as trial proceeded for described and experienced trials separately
in the top-three-PC space. We also plotted the averaged
trajectories from neural activation states with 1,000 iterations of
permutated described versus experienced trial types. As shown in
Fig. 6b, actual data showed mirrored but distinct activation
state trajectories in described and experienced trials, with the
distance between states being most prominent during prospective
evaluation epochs, gradually reducing thereafter, and becoming
most diminished after choice execution in outcome epoch. In
contrast, the permutated described and experienced trajectories
perfectly overlapped with each other. This result is in line with
our prediction that the variances in population neural activities
would reflect the distinct associative structures during prospective
evaluation, potentially for guiding choice behaviour, and the
differences gradually diminished as choice was carried out and
the reward outcome delivered.

To formally test the change in distance between population
activation states in described versus experienced trials as a function
of trial progress, we re-defined population activation states for each
trial type based on a sliding 300-ms bin from offer cue onset to the
end of outcome delivery. Next we calculated and plotted the
Euclidean distance between activation states from the two trial
types (Fig. 6c). We then calculated the Euclidean distance from
1,000 sets of permutated data and plotted the mean and both the
top and the bottom 2.5% significance cutoffs (Fig. 6c). We
confirmed that the distance between activation states from two trial
types were significantly larger than expected by chance during
prospective evaluation epochs (for example, as in Fig. 6c, offer 1 cue
epoch at 0.7 s: Euclidean Distance¼ 4.98, Po0.001; offer 1 value
epoch at 1.2 s: Euclidean Distance¼ 3.92, Po0.001; offer 2 epoch
at 2 s: Euclidean Distance¼ 3.05, Po0.001) and then the distance
reduced to below significance after choice and during outcome
delivery (for example, as in Fig. 6c, choice epoch at 3 s: Euclidean
Distance¼ 2.73, P¼ 0.082; outcome epoch at 4 s: Euclidean
Distance¼ 1.80, P¼ 0.679).

Discussion
We examined the relationship between ensemble neural
responses to offers and outcomes in Area 13 of OFC in macaques,
while they completed a riskless choice task. Our task used
two trial types: described offer and experienced offer trials.
Within each trial type, we found an overlap in coding scheme
(meaning similar tuning strength and direction), for each offer
and its corresponding outcome. We also found an overlap
between the two outcome responses across trial types, indicating
that OFC carries a general reward signal. However, we observed
unrelated coding schemes for the responses to the two types of
offers. These three patterns are consistent with our hypothesis
that OFC reactivates neural responses to outcomes that are
specific to associative structures during prospective evaluation,
but it encodes the delivered reward outcome after a choice with
both an associative structure-specific and a reward-general signal
that is conserved across outcomes with distinct preceding
associative event sequences.

Our theory offers a potential reconciliation for two different
and seemingly inconsistent sets of results. On one hand, it
appears that representation of reward-predicting stimuli reacti-
vates similar neural response pattern as the primary reward
does10,11,14,15,22,23. On the other hand, it appears that OFC calls
upon associative structure specific neural responses during
prospective evaluation to direct behaviour16–18. Our findings
suggest that responses to offers involve a partial reactivation of
the responses to outcomes; the reactivated part is specific to the
offer-outcome associative event sequence. Responses to outcomes
multiplex the associative structure-specific signal with a more
general reward coding that is the same regardless of the
associative structure that predicted it.

Thus, when different associative structures are used to present
offers that predict the same reward, OFC recruits unrelated
coding schemes for each during offer presentation17. However,
when different visual stimuli but the same associative event
sequence is used to predict the same reward, the associative
structure specific value encoding during stimuli presentation
should resemble a reactivation10,22. Relatedly, outcome specific
and outcome general reward representation are double
dissociable, both behaviourally and neurally24,25. For example,
OFC lesions specifically impair outcome specific reward value
representation and abolish its effect on later blocking and
devaluation tests8. Although our task could not directly test this
aspect, a generalization from our results suggests that outcome-
specific reward representation would be represented as part of the
associative structure specific representation during both offer and
reward outcome epochs. (For more discussion on these subjects,
see8,12,26,27.)

Our results are consistent with the cognitive map theory of
OFC functions, which states that OFC instantiates a cognitive
map of the task space, meaning that it represents, on the fly, the
associative structures that are relevant to solving the current
task5–7. Lesion studies show that OFC is necessary for using
knowledge about the associative structure to guide goal-directed
behaviour in both decision-making and learning3,5–7,9. However,
less is known about how OFC represents associative structures
and how this representation is involved in guiding goal-directed
behaviours such as reward-based decision-making. A recent fMRI
study showed that different hidden task states, or underlying
associative structures, can be decoded from human mOFC and
the decoding accuracy was positively correlated with behavioural
performance in the task28. Our finding, that OFC encodes the
reward in associative structure specific format during prospective
evaluation, suggests that OFC emphasizes how the reward-
predicting events will unfold and how to obtain the reward, or in
reinforcement learning terms, it represents accurate state and
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Figure 6 | Principal Component Trajectories. Population activation states from described and experienced trials converged as trial proceeded. (a) Scree

plot: total variance in the data explained by number of principal components. Top three principal components together explained 71.68% of the variance in

the data. (b) Trajectories based on the top three principal components: population activation states from the two trial types took up mirrored but separate

coordinates in the top PC space, which gradually converged as trial proceeded. (c) Euclidean distance between population activation states from described

and experienced trials: data are aligned at the beginning of cue epoch for offer 1 (x-axis). Population activation states were most separated during

prospective evaluation; this separation reduced to below significance when choice was carried out and reward was delivered. Dotted grey lines indicate

significance cutoffs calculated from 1,000 iterations of permutation test and the solid grey line indicates mean Euclidean distance from permuted data.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15821 ARTICLE

NATURE COMMUNICATIONS | 8:15821 | DOI: 10.1038/ncomms15821 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


reward expectations to guide action selection during prospective
evaluation. Subsequently, OFC uses both associative structure
specific and reward general encodings during post-choice phase
(reward outcome delivery), suggesting that this multiplexed
learning signal is potentially used to update or reinforce the
current associative structure during reward delivery.

It is important to note that, although OFC lesion in rodents
impairs performance in a broad set of tasks that rely on cognitive
map representation, such as reinforcer devaluation, reversal
learning, and Pavlovian-instrumental transfer7,9, the results in
monkeys are more heterogeneous. For example, excitotoxic lesion
of medial OFC in monkeys impaired performance only in
reinforcer devaluation but not reversal learning29. One possibility
is that reversal learning relies on the adjacent lateral OFC in
monkeys30,31. Therefore, it is hard to tell whether our results
will generalize to other sub-regions of OFC. Speculatively,
these various sub-regions of OFC in monkeys may support
representations of different aspects of the associative structure or
the cognitive map. This possibility calls for direct test in future
research.

Relatedly, recent studies have greatly enriched our under-
standing of OFC function. OFC is now considered as a crucial
region to a broad spectrum of goal-directed behaviours9,28,32–40.
Moreover, the involvement of OFC in such a variety of
goal-directed behaviours suggests that OFC may be part of
a broader frontal network underlying goal-directed learning and
decision-making, including economic choice41–43, rather than
being a pure value region44,45. Consistent with these views, our
results suggest that OFC (at least Area 13) recruits the associative
structure specific neural activations to encode offers prospectively
to guide subsequent choice behaviour. An intriguing venue for
future research would be investigating OFC’s role in goal-directed
behaviour as a part of the proposed distributed network43.

The behavioural data are interesting by themselves. We
observed that monkeys are more accurate at choosing the
larger reward on experienced trials than on described trials. This
result is consistent with previous findings showing that gambles
whose statistics are based on description and on experiences are
processed in different ways in humans46,47 and monkeys48. This
observation might also reflect higher uncertainty in the reward
representation for described offers where the dynamic pairing of
offer cue and one of the five values was not directly observable but
inferred, whereas the pairing in experienced trials was directly
observable. Alternatively, the modality of the offer may affect the
way it is framed: the way in which an offer is presented—or
framed—can measurably affect preferences in humans49 and
monkeys50–54. Future research will be required to disambiguate
these possibilities.

Methods
Subjects. Two male rhesus macaques (Macaca mulatta) served as subjects to the
current experiment. All animal procedures were approved by the University
Committee on Animal Resources at the University of Rochester and were designed
and conducted in compliance with the Public Health Service’s Guide for the Care
and Use of Animals.

Recording site. A Cilux recording chamber (Crist Instruments) was placed over
the area 13 (ref. 55) of OFC (Fig. 1b and Supplementary Fig. 1). The targeted area
expands along the coronal planes situated between 28.65 and 33.60 mm rostral
to the interaural plane with varying depth. Position was verified by magnetic
resonance imaging with the aid of a Brainsight system (Rogue Research Inc.).
Neuroimaging was performed at the Rochester Center for Brain Imaging, on a
Siemens 3T MAGNETOM Trio Tim using 0.5 mm voxels. We confirmed recording
locations by listening for characteristic sounds of white and grey matter during
recording, which in all cases matched the loci indicated by the Brainsight system.

Electrophysiological techniques. Single electrodes (Frederick Haer & Co.,
impedance range 0.8–4 MU) were lowered using a microdrive (NAN Instruments)

until waveforms of between one and five neuron(s) were isolated. Individual action
potentials were isolated on a Plexon system (Plexon). We defined a priori our
sample size of the current study with a power analysis. Specifically, power analysis
estimates the minimum sample size required to detect an effect of a given size with
a certain degree of confidence (significance level, that is, probability of Type I error,
and, power, that is, 1 minus probability of Type II error). To estimate the effect
size, we used the mean effect size of a previous study from our lab that recorded in
the same region (Area 13 of OFC) and conducted the same ensemble analysis as in
the current study20. In this previous study, mean effect size of significant
correlations between two sets of regression coefficients is r¼ 0.386 (effect size of all
significant correlations reported in the paper: 0.68, 0.33, 0.41, 0.31 and 0.2).
We used 0.05 as significance level and 0.85 as power. A power analysis with these
parameters suggests that the minimum sample size required to detect an effect size
of 0.386 with significance level 0.05 and power 0.85 is n¼ 57. To replicate the same
effect in two animals, our goal was to collect at least 57 neurons from each animal.
Eventually, we collected 65 and 60 neurons from each animal, respectively.

Neurons were selected for study solely based on the quality of isolation; we
never preselected based on task-related response properties. All collected neurons
for which we managed to obtain at least 399 trials were analysed; no neurons were
excluded from analysis.

Eye tracking and reward delivery. Eye position was sampled at 1,000 Hz by an
infrared eye-monitoring camera system (SR Research). Stimuli were controlled by a
computer running MATLAB (Mathworks) with Psychtoolbox56 and Eyelink
Toolbox57. A standard solenoid valve controlled the duration of juice delivery. The
relationship between solenoid open time and juice volume was established and
confirmed before, during, and after recording.

The riskless choice task. Each trial started with an initial eye fixation on a white
dot (radius: 10 pixels) at the center of the screen (Fig. 1a, resolution, 1,024� 768).
After 200 ms, the offer 1 cue appeared on the screen (rectangle 300� 80 pixels,
11.35� 4.08 DVA) for 500 ms. A grey cue indicated that the forthcoming offer 1
would be in a described format; a white cue indicates that the offer 1 would be in an
experienced format.

On described trials, offer 1 size was revealed via the presentation of a rectangle
with one of the five colours (red, yellow, blue, green, cyan) during offer 1 epoch;
each colour predicted an reward size (75, 100, 150, 200, 250ml water reward). On
experienced trials, the screen remained blank and subjects received an aliquot of
water equal to the offered size and thus gained information about the offer size
directly. The set of possible offer 1 sizes were matched for the two trial types. The
offer 1 epoch lasted for 750 ms.

Subsequently, offer 2 appeared. Offer 2 came in three sizes (150, 175, 200 ml
water reward); the size was indicated by a natural scene picture appearing
on the opposite side of the screen from the offer 1 (rectangle 300� 80 pixels,
11.35� 4.08 DVA). The offer 2 epoch lasted for 500 ms.

After another 200 ms fixation, both options, the offer 1 cue (a grey rectangle on
described trials and a white rectangle on experienced trials) and offer 2 (the natural
scene picture), reappeared in their original positions. Thus, subjects need to maintain
the value of offer 1 in working memory to choose successfully. The subject chose an
option by fixating on it for 300 ms. A magenta frame then appeared around the
chosen option (300 ms). The chosen reward was then delivered at the beginning of
the 750 ms outcome epoch started. A 1,000-ms black-screen inter-trial interval
followed. The trial type (experienced or described), offer position, offer 1 size and
offer 2 size were all randomized independently for each trial.

We defined associative structures in this task as the modalities and associative
event sequences with which offer 1 size was revealed. Specifically, for described offer
1, its size was revealed via a visual cue, in a stimulus-stimulus association
(that is, a grey rectangle followed by one of the five coloured rectangles, forming a
stimulus to conditioned reinforcer/secondary reward associative event sequence). For
experienced offer 1, its size was revealed via a gustatory cue (a primary reward), in a
stimulus-reward association (that is, a white rectangle followed by one of the five sizes
of water reward, forming a stimulus to primary reward associative event sequence).

No blinding procedure was done.

Statistical methods. All choices were counted as correct when subjects selected an
option with value greater than or equal to the non-chosen alternative. Chance level
of correct choice rate (56.67%) was calculated based on experimental design and
each possible combination of offer 1 and 2 sizes. Chi-square test, binomial test, and
power analysis were conducted using R. Log odds, relative risk, R2, and Hedge’s G
were reported as the effect size for chi-square test, binomial, linear regression, and
t-test, respectively. Subjects’ choice behaviour was fitted using a logistic regression
model and was conducted using MATLAB (Mathworks).

PSTHs were constructed by aligning spike rasters to the presentation of the
offer 1. Firing rates were calculated in 10 ms bins but were generally analysed in
longer epochs. For display, PSTHs were smoothed using a 200 ms running boxcar.

For all regression analyses fitting firing rates against predictor of interest, the
firing rates were normalized (z-scored) for each neuron to avoid spurious
correlations. The proportion of neurons tuned for each predictor of interest
(described offer size, experienced offer size and outcome size) was determined
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based on linear regression analysis, fitting normalized firing rates from the
event-related epoch against each single predictor of interest:

FRnorm ¼ B1 � Predictorþ intercept:
To test for reactivation response, we first selected trials in which offer 1 was

chosen. Based on the selected trials, we fitted the following linear regression models
with normalized firing rates from event-related epochs:

FRnorm ¼ BOFR:D � described offer sizeþ intercept;

FRnorm ¼ BOFR:E � experienced offer sizeþ intercept;

FRnorm ¼ BOTC:D � described outcome sizeþ intercept;

FRnorm ¼ BOTC:E � experienced outcome sizeþ intercept:
These regression coefficients from the entire sample contain information about

population tuning formats (strength and direction). Therefore, we used Spearman’s
correlation between BOFR.D and BOTC.D for described trials, and between BOFR.E and
BOYC.E for experienced trials, to measure the similarity in coding format and thus
reactivation of outcome responses during offer 1 epoch. We chose Spearman’s
correlation (instead of Pearson) to minimize the influence of the regression
coefficients’ unknown distribution and potential outliers.

Subsequently, we compared the neuronal participation in signalling offers and
outcomes by correlating absolute value of BOFR.D and absolute value of BOTC.D for
described trials, and then, absolute value of BOFR.E and absolute value of BOTC.E for
experienced trials.

Finally, we also compared encoding patterns and neuronal involvement for
signalling two offers and two outcomes by correlating the signed and absolute
values of BOFR.D and BOFR.E, and then, BOTC.D and BOTC.E.

As the correlation analysis was performed on regression coefficients whose
distribution was unknown, we also tested the significance of the observed
correlation coefficients using a permutation test. For the permutation test, all
regression was re-conducted by keeping the normalized firing rates the same as in
the original analysis but randomizing the predictors in each of the regression model
above. Then we correlated the permutation regression coefficients. Subsequently,
we compared the correlation we observed against those from 1,000 iterations of the
permutation test. The significance cutoff was set as higher than 95% of the
correlation coefficients from the permutation analysis.

To test for reactivation response using alternative regression models, we
included all trials for analysis, instead of selecting only offer1-chosen trials. We
then fitted the following linear regression models with normalized firing rates from
event-related epochs:

FRnorm ¼ BOFR:D � described offer sizeþ intercept;

FRnorm ¼ BOFR:E � experienced offer sizeþ intercept;

FRnorm ¼ BOTC:D � described outcome sizeþB2 � choiceþ intercept;

FRnorm ¼ BOTC:E � experienced outcome sizeþB2 � choiceþ intercept:
Choice was defined as a binary variable of choosing either offer 1 or 2. The first

two of this set of regression models included only offer size as a single predictor,
since no other meaningful predictors had been revealed yet during offer 1
presentation. The remaining regression models included both outcome size and
choice as predictors, since choice is a prominent confounding predictor besides
outcome size during outcome epoch, and this regression model allows us to test the
encoding for outcome size while controlling for choice. Subsequently, we compare
the encoding patterns for offers and outcomes by correlating BOFR.D and BOTC.D for
described context, and then, BOFR.E and BOTC.E for experienced context. Since the
correlation analysis was on regression coefficients whose distribution was
unknown, we also tested the significance of the observed correlation coefficients
using a permutation test.

Fisher’s transformation test was used to compare two correlation coefficients.
For paired sample, z-value is calculated according to:

r01 ¼ 0:5 log
1þ r1

1� r1
; r02 ¼ 0:5 log

1þ r2

1� r2
;

z ¼ r01 � r02
1=

ffiffiffiffiffiffiffiffiffiffiffi
n� 3
p ;

where n is the sample size.

Decoding analyses. For the decoding analysis, we chose a non-linear neural net-
work decoding technique that is considered to perform well in non-linear, multiclass
classifications58–62. We chose the non-linear decoder because the population neural
response in frontal cortex is considered to be highly multiplexed and non-linear, and,
the classification of neural activity on offer sizes in the current data set is multi-way
(five offer sizes) instead of binary. We also replicated the decoding results
with a more standard SVM as error-correcting output codes multiclass model
(https://www.mathworks.com/help/stats/classificationecoc-class.html).

To generate population activation states for the decoding analysis, we first
separated all trials of each neuron by offer size (5)� trial type (2) and therefore

into 10 groups. On average, we obtained 45 trials in each group. We then randomly
sampled one trial out of each group. Subsequently, we averaged normalized firing
rates from the selected trial for each event-related epoch (offer 1 and outcome) and
for each neuron. We then polled all 125 neurons’ averaged response during each
epoch to generate one population activation state for that particular epoch. We
sampled one trial with replacement from each group for each neuron
independently and generated in total 500 population activation patterns for offer 1
and outcome epochs. The number 500 was chosen because neural network decoder
is computationally expensive and its training requires relatively large set of
exemplars61,62.

We separated the population activation states into training and testing subsets
following a four-fold cross-validation procedure, leading to four sets of 375 training
population activation states and 125 testing population activation states. Note that
even though independent sampling with replacement for each neuron might lead
to small overlap in population activity patterns between training and testing sets, all
test sets were only used to determine that our decoders were successfully trained to
reach high performance and were never used to test for main hypothesis. All of our
main analyses involved training the decoder with neural response from outcome
epoch and then testing with neural response from offer epoch, and vice versa. Due
to the fact that subjects rarely chose and received smaller-sized offers during
outcome epoch, population activation states for smaller-sized outcomes include
only response from neurons with corresponding data.

For the non-linear neural network decoding analyses, there are three layers in
the network: an input layer with 125 nodes taking in one population activation
pattern; a hidden layer with 40 nodes connected to the input layer and the output
layer; an output layer with 5 nodes each corresponding to one of the five sizes of
offer 1/outcome. The non-linear neural network decoders were trained with
standard back-propagation algorithm62,63. The neural networks’ weights were
initialized as a small random number between � 0.01 and þ 0.01. Total number of
training epochs was 1,000. A single run through the back-propagation algorithm
contains one forward pass and one backward pass.

During the forward pass, the activation of each layer was calculated as the
weighted sum of the previous layer with a transformation activation function. The
activation of the whole input layer is one population activation state. Activation of
each node corresponds to response of one neuron:

xi tð Þ ¼ population activation patterni tð Þ;

xi(t) is the activation of the ith input units which equals to the neural response of
the ith neuron in the tth population activation state.

The activation of hidden layer is the weighted sum of input layer transformed
with a logistic activation function:

sj tð Þ ¼
Xi

1

wji nð Þxi tð Þ;

hj tð Þ ¼ 1
1þ e� sj tð Þ ¼

1

1þ e�
Pi

1
wjiðnÞxi tð Þ

;

sj(t) is the hidden unit j’s weighted sum input from the input layer. hj(t) is the
activation of the jth hidden unit, which is sj(t) transformed with a logistic activation
function. wji(n) is the weight on the connection between input unit i and hidden
unit j during the nth training epoch.

The activation of the output layer is the weighted sum of hidden layer
transformed with a softmax activation function:

sk tð Þ ¼
Xj

1

wkj nð Þhj tð Þ;

yk tð Þ ¼ esk tð Þ
Pp

1 esp tð Þ ¼
e
Pj

1
wkj nð Þhj tð Þ

Pp
1 e
Pj

1
wpj nð Þhj tð Þ

;

sk(t) is the output unit k’s weighted sum input from the hidden layer. wkj(n) is
weight on the connection between hidden unit j and output unit k during the
nth training epoch. yk(t) is the activation of the kth output unit, which is sk(t)
transformed with a softmax activation function based on activation of all of
the p output units (here p¼ 5).

During the backward pass, partial derivatives were calculated to update the
weights between the output layer and the hidden layer and the weights between the
hidden layer and the input layer. In a generic form, weight update uses gradient
ascent on the log likelihood function:

wab nþ 1ð Þ ¼ wab nð Þþ e
@log LðnÞ
@wab nð Þ ;

wab(n) is weight on the connection between unit b in the layer preceding the
weights and unit a in the layer succeeding the weights during the nth training
epoch. e is the learning rate that equals to 0.005.
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In multi-way classification with softmax, the class given the input x(t) has a
multinomial distribution:

p y� tð Þjx tð Þð Þ ¼
YC

c¼1

ycðtÞy
�
c ðtÞ;

where c indexes the classes and C is the number of possible classes. y* is the target
output or correct class label. The log likelihood function of this multinomial
distribution is:

logL ¼
X

t

X

c

y�c ðtÞ�logycðtÞ:

To update weights between the output units and the hidden units:

@logLðnÞ
@wkj nð Þ ¼

X

t

@logLðtÞ
@sk tð Þ �

@sk tð Þ
@wkj nð Þ ;

where

@logLðtÞ
@sk tð Þ ¼

X

p

@logLðtÞ
@yp tð Þ �

@yp tð Þ
@sk tð Þ

¼
X

p

y�p tð Þ
yp tð Þ �yp tð Þ�ðdkp � yk tð ÞÞ;

dkp¼ 1,if p¼ k; otherwise, it equals 0. Again, y�p tð Þ is the value for the correct class
label for the pth output unit corresponding to the tth population activation state.
yp(t) is the actual neural network output value for the pth output unit. And

@sk tð Þ
@wkj nð Þ ¼ hj tð Þ:

To update weights between the hidden units and the input units:

@logLðnÞ
@wji nð Þ ¼

X

t

@logLðtÞ
@hj tð Þ �

@hj tð Þ
@sj tð Þ �

@sj tð Þ
@wji nð Þ ;

where

@logLðtÞ
@hj tð Þ ¼

X

k

y�k tð Þ� yk tð Þ
� �

�wkj nð Þ;

Wkj(n) is the weight on the connection between hidden unit j and output
unit k during the nth training epoch. y�k tð Þ is the value for the correct class label for
the kth output unit corresponding to the tth population activation state. yk(t) is the
actual neural network output value for the kth output unit. And

@hj tð Þ
@sj tð Þ ¼ hj tð Þ�½1� hj tð Þ�;

@sj tð Þ
@wji nð Þ ¼ xi tð Þ:

As defined above, hj(t) is the activation of the jth hidden unit, and, xi(t) is
the activation of the ith input units which equals to the neural response of the
ith neuron in the tth population activation state.

In other words, the non-linear neural network decoder takes population
activation patterns (a 125� 1 vector) as input, computes through one hidden layer
of 40 hidden units with the logistic activation function, and then classifies the
activation of the hidden layer into one of five offer sizes with the softmax activation
function at the five-unit output layer. Decoders were each trained on population
activation states for either described or experienced trials. Final decoding accuracy
was determined as the averaged accuracy of four cross-validation sets.

An additional set of decoding analyses was run using SVM. These analyses
utilized the Statistics and Machine Learning Toolbox of MATLAB. In short, to
perform multi-way classification, we trained the SVM decoders as error-correcting
output codes multiclass model (http://www.mathworks.com/help/stats/
fitcecoc.html), to classify each population activation state as representing one size
of offer 1/outcome versus all other sizes of offer 1/outcome. The same population
activation states generated above for non-linear neural network decoding were used
to train SVM. All of our decoding analyses using SVM involved training the
decoder with neural response in outcome epoch and then testing with neural
response in offer epoch, and vice versa.

Principal component analysis. We first defined the population activation state as
a 125-dimensional vector, with each neuron taking up one dimension. Then we
computed the activation state for each of five 300-ms epochs (offer cue, offer 1,
offer 2, choice and outcome) in each trial type, by averaging firing rates for each
neuron across all trials and across time bins in each epoch. Subsequently, we
conducted a standard principal component analysis on the 125-dimensional,
5-epoch, 2-trial-type, population responses, using the Statistics and Machine
Learning Toolbox of MATLAB (https://www.mathworks.com/help/stats/pca.html).

Analysis windows. The analysis window is the peak-encoding period, within each
event epoch by task design, based on 300 ms-window sliding regression analysis of

normalized firing rates against predictor of interest. Offer 1 analysis window lasted
300 ms after 200 ms of offer 1 onset. Offer 2 analysis window was defined as a
300 ms window around peak encoding of Offer 2 size within Offer 2 presentation
epoch. Since after onset of choice epoch, the trial would not precede till subjects
successfully make a choice and the decision time varied trial by trial, we defined
choice epoch as a 1,000 ms window within in choice period. Outcome analysis
window was defined as a 400 ms window around peak encoding of outcome size
within outcome event epoch. Inter-trial interval was defined as a 1,000 ms epoch
following the outcome epoch.

Data availability. The data sets generated during the current study are available
on the Hayden lab website, http://www.haydenlab.com/, or from the authors on
reasonable request. The code generated to do the analyses for the current study is
available from the corresponding author on reasonable request.
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