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Impact of Sodium Glucose Cotransporter 
2 Inhibitors on Nonalcoholic Fatty Liver 
Disease Complicated by Diabetes Mellitus
Enxiang Zhang,1-3* Yang Zhao,4,5* and Hongbo Hu2

Sodium glucose cotransporter 2 (SGLT2), a type of membrane protein highly expressed in the kidney, can regulate 
plasma glucose through the glomerular filtration process by reabsorption from the kidney. SGLT2 inhibitors, which are 
newly developed oral antidiabetic drugs, can play a role in liver diseases by inhibiting SGLT2- mediated renal glucose 
reabsorption and inducing glycosuria. Nonalcoholic fatty liver disease (NAFLD) is the most common type of liver dis-
ease, resulting in severe liver dysfunction. During the progression of NAFLD, there are some hallmark complications, 
including lipid metabolism disorders, inflammation induction, and hepatocyte death. Herein, we review several SGLT2 
inhibitors that are capable of protecting individuals with NAFLD from severe complications by inhibiting de novo lipo-
genesis, oxidative responses, inflammation induction, and hepatocyte death. (Hepatology Communications 2021;5:736-748).

Type 2 diabetes mellitus (T2DM) is a metabolic 
disease characterized by hyperglycemia result-
ing from insufficient insulin secretion and 

insulin resistance.(1) T2DM can cause severe complica-
tions, including diabetic kidney diseases,(2) cardiovas-
cular diseases,(3) liver diseases (including nonalcoholic 
fatty liver disease [NAFLD] and liver cancer),(4) and 
neurosystem syndrome, such as central diabetes insipi-
dus.(5) Over the past several years, the total prevalence 
of T2DM has greatly increased, and it is now a bur-
den disease globally. The complicated pathogenesis of 
T2DM means multiple medications may be needed in 
order to control blood glucose levels (Fig. 1).

Clinically, there are several antidiabetic drugs tar-
geting different organs, including liver, adipocytes, 
intestine, and pancreas. Generic and branded antidi-
abetic drugs fall under several types: (1) Biguanides 

are incredibly common and include metformin, which 
was reported to lower hepatic glucose production.(6) 
(2) Sulfonylureas, which were first developed in the 
1950s, include glipizide, glyburide, chlorpropamide, 
and tolbbutamide. Mechanically, this type of drug 
improved diabetes mainly by increasing the release 
of insulin from the pancreas.(7) (3) Alpha- glucosidase 
inhibitors include acarbose and miglitol and mainly 
target the intestine by competitive and reversible inhi-
bition of alpha- glucosidase in the intestine, which leads 
to a lower rate of glucose absorption through delayed 
carbohydrate digestion and extended digestion time.(8) 
(4) Thiazolidinediones, such as pioglitazone, can bind 
to a receptor called peroxisome proliferator activated 
receptor gamma in adipocytes and then, following the 
sensitivity to insulin, promote fat cell maturation and 
fat deposition into peripheral tissues.(9) (5) Dipeptidyl 
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peptidase 4 inhibitors, such as sitagliptin, saxagliptin, 
and vildagliptin, can induce inactivation of incretins, 
such as glucagon- like peptide 1 and gastric inhibitory 
polypeptide, following induction of insulin secretion 
from pancreas and inhibition of glucagon release, 
which help lower blood glucose.(10)

Excitingly, several types of medicine for T2DM have 
recently been approved by the U.S. Food and Drug 
Administration. Sodium- glucose transport protein 2 
(SGLT2) inhibitors, such as canagliflozin (Invokana), 
dapagliflozin (Farxiga), and empagliflozin ( Jardiance), 
can reduce blood glucose levels.(11- 13) Other inhibi-
tors are waiting for clinical approval. These include 
ipragliflozin, tofogliflozin, and luseogliflozin (Fig. 2).

SGLT2, a type of membrane protein highly 
expressed in the proximal tubules, can regulate plasma 
glucose in the glomerular filtration process by reab-
sorption from kidney.(14) This means that inhibiting 
the level of SGLT2 to control blood glucose level 
could potentially be used to cure T2DM. Currently, 
SGLT2 inhibitors are structurally classified into 
C- glucoside,(15) O- glucoside,(16) N- glucoside,(17) and 
nonglucoside.(18) Of these, the C- glucoside type, 
including dapagliflozin, canagliflozin, ipragliflozin, 

empagliflozin, tofogliflozin, and luseogliflozin, is 
widely used due to its higher chemical and metabolic 
stability.(19)

Over the past several years, much research has 
been undertaken on the role of SGLT2 inhibitors 
in the treatment of T2DM. SGLT2 inhibitors rep-
resent a new class of oral diabetic medication that 
reduces hyperglycemia by suppressing the reabsorp-
tion of glucose in the proximal tubules and improving 
insulin resistance, glucotoxicity, and lipotoxicity.(20- 22) 
The current review is mainly focused on the poten-
tial roles of SGLT2 inhibitors in chronic liver diseases 
(NAFLD) and related mechanisms.

NAFLD is the most common type of liver disease, 
affecting 25% of the general population worldwide(23) 
and 80% of patients with obesity.(24) It is closely asso-
ciated with a group of disorders that include obesity 
and T2DM. Although simple steatosis in the ini-
tial stage may not cause severe complications, it will 
develop to nonalcoholic steatohepatitis (NASH), 
fibrosis, cirrhosis, and possibly liver cancer. The num-
ber of patients with NASH waiting for a liver trans-
plant has grown dramatically over the last decade, 
surpassing alcoholic liver diseases except for hepatitis 
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Fig. 1. Intertissue relationships regarding glucose and lipids metobolism. Abbreviation: G6P, glucose 6- phosphate.

Fig. 2. Mechanims of SGLT2 inhibitors and its structure. Abbreviation: GLUT2, glucose transporter 2.
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C.(25) During the progression of NASH, abnormal 
lipid accumulation, one of the disease’s key features, 
combined with inflammatory response, oxidative 
response, and fibrosis, make it a risk factor for hepatic 
cirrhosis and hepatocellular carcinoma (HCC). Based 
on the mechanisms of NASH, some results have indi-
cated that patients with NAFLD could benefit from 
body weight loss; a moderate caloric restriction of 
around 1,200 kcal/day would be sufficient to decrease 
lipid droplet (LD) accumulation following normal-
ized insulin level.(26) However, there are as yet no 
established treatments for NASH even though sev-
eral novel drugs are under clinical trials, including an 
inhibitor of apoptosis signal regulating kinase- 1, a 
farnesoid X receptor agonist, and a fibroblast growth 
factor 19 agonist. Therefore, searching for novel drugs 
for NASH is an urgent task.(27)

SGLT2 inhibitors, which are newly developed, oral, 
antidiabetic drugs, in liver diseases could inhibit SGLT2- 
mediated renal glucose reabsorption and induce glycos-
uria.(28) SGLT2, one type of membrane protein highly 
expressed in the kidney, could regulate plasma glucose 
in the glomerular filtration process by reabsorption 
from the kidney. SGLT2 inhibitors have been shown to 
have roles in reducing the renal threshold for glucose, 
thus allowing excretion of glucose into urine,(29) which 
is beneficial to the patient with obesity and T2DM. In 
terms of roles in improving obesity, SGLT2 inhibitors 
could be useful for the treatment of NAFLD. Recently, 
SGLT2 inhibitors have been demonstrated to benefit 
the liver in mouse models of NASH by reducing body 
weight(30); reducing some liver enzyme levels in serum, 
including alanine aminotransferase [ALT] and aspar-
tate aminotransferase [AST](31,32); and lowering LD 
accumulation,(33) oxidative response,(34) and inflamma-
tion induction.(35) In addition, some clinical cases have 
shown that patients suffering from NASH are benefit-
ing from some SGLT2 inhibitors.(36- 40)

Histopathologic 
Improvement of NAFLD 
With SGLT2 Inhibitors

Nonalcoholic liver diseases cover a wide spectrum 
of liver pathologies ranging from nonalcoholic fatty 
liver, liver cirrhosis, HCC, and liver failure, even 

without excessive alcohol intake. One study(41) found 
that histopathologic features in 5 patients showed a 
decrease in steatosis score, lobular inflammation, bal-
looning and fibrosis stage after 24 weeks of treatment. 
During their research, 6 patients showed decreases in 
serum exosome of microRNA- 122 (miR- 122) ratios 
along with histologic improvement after 1 day of 
SGLT2 inhibitors. They also found that miR- 122 in 
serum is associated with the histologic severity of liver 
disease and the risk of metabolic syndrome develop-
ment and evidenced the usefulness of serum exosome 
miR- 122 as an early predictor of histologic improve-
ment. However, long- term perspective research should 
be applied to confirm the impacts of SGLT2 inhib-
itors on histologic improvement, including glucose 
metabolism.(42) Additionally, Lai et al.(43) reported 
that a 6- month treatment of empagliflozin could sig-
nificantly improve steatosis, hepatocyte ballooning, 
and fibrosis in a small cohort of patients with biopsy- 
proven NASH with T2DM. In summary, SGLT2 
inhibitors show significant potential in the improve-
ment of NAFLD/NASH and T2DM.

Key Regulatory 
Mechanisms of SGLT2 
Inhibitors Involved in the 
Prevention of NAFLD/
NASH
taRgeting liVeR FunCtion 
anD liVeR enZymes

Liver is one of the main organs in our body 
metabolizing carbohydrate, protein, and fats(44); 
therefore, maintaining normal liver function is 
important to ensure quality of life. Patients with 
NASH suffer from liver dysfunction, so targeting 
liver function would seem to be a suitable method 
for therapy for these patients. Because of the met-
abolic role of liver, a number of enzymes in the 
liver and some products of the metabolic pathway 
that are very sensitive to abnormalities are consid-
ered to be biochemical markers of liver dysfunction; 
these include ALT, AST, ratio of aminotransfer-
ases (ALT/AST), alkaline phosphatase (ALP), and 
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gamma- glutamyltransferase (GGT). Patients with 
NAFLD/NASH and related liver dysfunction have 
a high level of ALT, AST, ALP, and GGT compared 
to the normal condition.(45) Excitingly, treatment 
with SGLT2 inhibitors could correct the abnormal 
levels of these liver enzymes.

Based on results from clinical cases, doses of  
50 mg/day of ipragliflozin for 3 months,(36) 6 months,(46) 
and 12 months(47); 5 mg/day(48) and 10 mg/day(37) of 
dapagliflozin for 6 months; 100  mg/day of canagli-
flozin for 6 months(40) and 12 months,(49); 10 mg/day  
of empagliflozin for 6  months(39); and 2.5  mg/day 
of luseogliflozin for 6  months(50) could normalize 
the level of ALT, AST, ALP, and GGT and induce 
a loss of body weight. In addition, treatment with an 
SGLT2 inhibitor could decrease hepatic triacylglyc-
erol (TAG) level, resulting in a reduced liver to body 
ratio.(51) In line with clinical case findings, Tahara 
et al.(34) reported that ipragliflozin has a therapeutic 
effect in an amylin  liver NASH model by decreasing 
levels of ALT and AST, hepatic lipid content, number 
of apoptotic cells, and areas of fibrosis.

In addition, the ratio of liver to spleen on com-
puted tomography is used as an indicator of liver 
function clinically; this ratio has a negative correla-
tion with the degree of chronic liver disease.(52,53) 
A liver to spleen ratio  <1.0 is defined as liver dys-
function.(54) As Bando et al. reported,(55) a 12- week 
ipragliflozin treatment given to Japanese patients 
with T2DM resulted in an increased liver to spleen 
ratio from 0.92  ±  0.26 to 0.98  ±  0.25 (P  <  0.001). 
Consistently, two other types of SGLT2 inhibitors, 
dapagliflozin and luseogliflozin, showed the same 
positive outcomes as ipragliflozin by increasing the 
liver to spleen ratio of patients with NASH clini-
cally.(50,56) Although almost all these clinical studies 
involved Japanese patients, these studies did suggest 
significant therapeutic effects of SGLT2 inhibitors 
in patients with NASH with T2DM through liver 
function modification.

taRgeting lipiD metaBolism
The hallmark of NAFLD is hepatic lipid accumu-

lation, which results from an imbalance when fatty 
acid uptake and de novo synthesis exceed oxidation 
and secretion. Regarding lipid metabolism, patients 
with NAFLD show decreased oxidation and elevated 
lipogenesis, resulting from insulin resistance.(57) 

Elevated de novo lipogenesis (DNL) is activated 
by two major pathways, sterol regulatory element 
binding protein 1c (SREBP1c) and carbohydrate 
responsive element binding protein (ChREBP), 
which can be activated by increased insulin signaling 
and increased glucose concentrations, respectively. 
SREBP1c can be activated by liver X receptor alpha. 
Once activated, alpha will heterodimerize with reti-
noid X receptor following the increase of SREBP1c 
messenger RNA (mRNA). The activated SREBP1c 
can in turn activate DNL through transcriptional 
up- regulation of several genes involved in fatty acid 
synthesis, including Fas cell surface death receptor 
(FAS) and acetyl- coenzyme A (CoA) carboxylase 
(ACC). In addition, SREBP1c can be activated by 
the phosphoinositide 3- kinase and protein kinase 
B pathways, resulting in forkhead box protein O1 
(FOXO1) phosphorylation. Phosphorylation of 
FOXO1 can prevent its translocation to the nuclear 
periphery, resulting in the inhibition of glycogene-
sis. In contrast to SREBP1c, ChREBP can be acti-
vated by the postprandial rise in glucose delivery to 
hepatocytes following the increase in glycolysis and 
pyruvate. Pyruvate, in turn, will form acetyl- CoA as a 
lipogenic substrate through pyruvate dehydrogenase. 
ChREBP loss can induce inhibition of acetyl- CoA, 
resulting in decreased secretion of very low- density 
lipoproteins (VLDLs), followed by the accumula-
tion of fatty acids in cells and potentially forming 
TAG,(58- 61) which is presumed to be removed from 
liver by VLDLs. However, in NAFLD, the excretion 
of VLDLs is inhibited. Thus, a decrease in DNL 
and an increase in fatty acid oxidation and VLDL 
excretion will contribute to improved hepatic ste-
atosis. Herein, we review the effects of some SGLT2 
inhibitors on lipid metabolism (Fig. 3).

According to Paglialunga and Dehn,(62) hepatic 
DNL is only elevated in healthy people postpran-
dially but patients with NAFLD gain an increase in 
DNL in a fasting condition and no further increase 
postprandially. Considering the sustained elevation 
of DNL in NAFLD, some research with SGLT2 
inhibitors have shown SGLT2 inhibitor treatment 
exerts an inhibitory role in DNL. Hepatic lipogen-
esis involves a complex network of nuclear receptors 
that coordinates the regulation of enzymes involved 
in different steps of hepatic lipid metabolism from 
DNL to fatty acid oxidation and uptake and to TAG 
secretion (Fig. 3).



Hepatology CommuniCations, Vol. 5, no. 5, 2021 ZHANG, ZHAO, AND HU

741

inhibition of Hepatic Dnl
Targeting the process of DNL, ACC2 catalyzes 

acetyl- CoA to form malonyl- CoA, which is catalyzed 
by fatty acid synthase and stearoyl- CoA desaturase 1 
(SCD1) to fatty- acyl (FA)- CoA. Accumulated FA- CoA 
becomes lysophosphatidic acid (LPA) by glycerol- 3- 
phosphate acyltransferase (GPAT). Then, LPA stimu-
lates diacylglycerol (DAG) generation, which also comes 
from monoacylglycerol (MAG) by monoacylglycerol 
acyltransferase (MGAT1). Finally, all the DAG is cata-
lyzed by diacylglycerol acyltransferase (DGAT) to TAG.

aCC inHiBition
ACC can catalyze carboxylation of acetyl- CoA 

into malonyl- CoA, and its activity can be regu-
lated by phosphorylation and allosteric and protein– 
protein interaction.(63) Phosphorylation of adenosine 
monophosphate– activated protein kinase (AMPK) 
will inhibit ACC activity, leading to the inhibition 
of DNL and activation of oxidation. In addition, 

Srebp1c can activate ACC to enhance lipogenesis. 
Therefore, inhibition of ACC activity will negatively 
regulate DNL, which is beneficial for controlling 
NAFLD. SGLT2 inhibitors have been shown to 
negatively regulate the activity of ACC. As demon-
strated by Komiya et al.,(64) ipragliflozin treatment 
in a high- fat diet (HFD) mouse model could atten-
uate the expression of DNL, including Srebp1c and 
Acc1 in the liver. Additionally, empagliflozin treat-
ment in an Otsuka Long Evans Tokushima Fatty 
Rat model could induce a high level of phosphor-
ylation of AMPK, which can inhibit the activity of 
ACC.(65) In summary, a therapeutic role of SGLT2 
inhibitors is promising in chronic liver diseases by 
inhibiting ACC activity.

sCD1
SCD1 is responsible for converting stearoyl- CoA 

to oleoyl- CoA; thus, chemical or genetic inhibition 
of SCD1 is capable of inhibiting DNL and plays a 
significant role in NAFLD therapy.(66,67) Ntambi 

Fig. 3. Metabolic pathways in diabetic liver. Abbreviations: Ac- CoA, acyl- coenzyme A; Akt1/2, protein kinase B 1 and 2; FASN, fatty 
acid synthase; FBPase, G6Pase, GLUT, PC, PEPCK, PKCε, protein kinase C epsilon.
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et al.(66) have reported that SCD1- knockout mice 
are protected from diet- induced obesity, and SCD1 
antisense oligodeoxynucleotide (ASO) therapy was 
shown to protect mice from NAFLD development 
in an HFD model.(56) Taken together, SCD1 is now 
a therapy target for NAFLD. As reported by Omori 
et al,(68) after 8 weeks of dapagliflozin treatment, dia-
betic (db)/db mice showed lower SCD1 expression, 
which helped to protect mice from liver steatosis. 
Ipragliflozin treatment given to obese (ob)/ob mice 
also consistently showed significant hepatic protective 
outcomes by inhibiting SCD1.(64) Considering the 
research of SGLT2 inhibitor involvement in the inhi-
bition of SCD1, we cannot deny the protective thera-
peutic role of SGLT2 inhibitors in NAFLD.

mgat
MGAT enzymes comprise a family of three 

enzymes (MGAT1- 3) that catalyze the acylation 
of both MAG and DAG to form DAG and TAG, 
respectively.(69) MGAT1 and MGAT2 are mostly 
active in rodents and humans, while MGAT3 is active 
in humans.(70) Mice fed an HFD gained high levels 
of MGAT1,(71) and MGAT1 knockout reduced the 
TAG content in the liver of mice fed a 40% high- 
fat/fructose and cholesterol diet.(72) In addition, the 
inhibitor of MGAT2 has been reported to have the 
capacity of preventing hepatic steatosis.(73) Research 
on MGAT in NAFLD has shown that dapagliflozin 
treatment in db/db mice (NAFLD mouse model) 
reduced the expression of MGAT1,(68) which led to 
a healthier liver.

acyl- Coa:Dgat
DGAT is capable of acylating DAGs into tri-

glycerides. There are two isoforms, DGAT1 and 
DGAT2. Hepatic steatosis and insulin resistance 
were reversed by either DGAT1 knockout in mice 
or knocking down by ASO.(74,75) Compared with 
the application of DGAT1 inhibitors, DGAT2 
inhibitors are better tolerated in many patients 
with NAFLD.(76) Ji et al.(77) found that the hepatic 
DGAT2 mRNA level of HFD mice was elevated 
whereas canagliflozin reversed this effect, which is 
indicative of its role in suppressing TAG synthe-
sis and ultimately LD accumulation by DGAT2 
down- regulation. However, DGAT2 had a para-
doxical effect on hepatic DAG levels; its inhibition 

decreased DAG, and its activation increased DAG. 
DAG- induced activation of protein kinase C epsi-
lon impaired the insulin signal(78) but increased 
the hepatic content of acetyl- CoA, which poten-
tially goes to mitochondria for β- oxidation follow-
ing an increase in the mitochondrial tricarboxylic 
acid (TCA) cycle, pyruvate carboxylase, and hepatic 
glucogenesis.(76) Finally, all those can be attributed 
to the most severe pathologic disorders, such as 
inflammation and cell toxicity.(79,80) It is possibly 
the transient increases in early lipid intermediates 
following DAG inhibition might reduce DNL.(76) 
More clinical trials should be conducted to measure 
the function of DGAT in patients with NAFLD.

aCtiVation oF β- oXiDation
Free fatty acids (FFAs) absorbed into cells will 

move to mitochondria from acyl- CoA to CO2 and 
H2O through the TCA cycle. During this process, the 
carnitine shuttle plays a key role. FA- CoA is trans-
ported from outside to inside the mitochondria by 
carnitine palmitoyl transferase 1 (CPT1); however, 
hepatic CPT1 activation was inhibited by an over-
whelming level of malonyl- CoA in patients with 
NAFLD.(81) This suggests that CPT1 is a promising 
therapeutic target for NAFLD.

As mentioned previously, SGLT2 inhibitors can 
inhibit the activation of ACC, which has a role in the 
formation of malonyl- CoA. Honda et al.(32) reported 
ipragliflozin treatment in amylin liver- NASH diet 
NAFLD mice could partially reverse the expression 
of CPT1 compared with the vehicle group, following 
decreasing FFA levels, which induce inflammation 
and lipotoxicity.(82- 84) Consistently, plasma nones-
terified fatty acids and 3- hydroxybutyrate increases 
were detected in fasted ipragliflozin- treated animals 
and urinary 3- hydroxybutyrate excretion,(53) sug-
gesting possible enhanced fatty acid oxidation. In 
summary, SGLT2 inhibitors can increase fatty acid 
β- oxidation.

targeting Hepatocyte Death and 
Fibrosis

The pathogenesis of NASH involves lipotoxic-
ity, gut/nutrient- derived signals, adipocytokines, and 
genetic factors.(85- 87) Although the mechanisms for 
NAFLD pathogenesis are still enigmatic, the two- hit 
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hypothesis is the most widespread theory for the devel-
opment of NAFLD. Abnormal triglyceride accumula-
tion in the liver induced by hepatic DNL increases 
and impaired fatty acid oxidation results from insulin 
resistance following reactive oxygen species (ROS) 
production (first hit). Hepatocytes overwhelmed by 
ROS due to oxidative stress (OxS) increase following 
endoplasmic reticulum stress and inflammation (sec-
ond hit), which then leads to NASH, which may, in 
turn, progress to hepatic fibrosis and cirrhosis due to 
marked cell death, ballooning, apoptosis, and necrosis 
(third hit).(88) Therefore, maintaining oxidative bal-
ance is essential to control NAFLD, even for normal 
subjects. This next section will focus on the effects 
of SGLT2 inhibitors on OxS reduction and anti- 
inflammatory effects (Fig. 4).

oxs inHiBition (oXiDatiVe Response) 
By sglt2 inHiBition

OxS plays a key role in the progression of NAFLD 
from simple steatosis to NASH(88) and occurs 
through ROS production initiating lipid peroxida-
tion by targeting the double bonds of polyunsatu-
rated fatty acid. This is followed by the production of 

4- hydroxy- 2- nonenal (4- HNE) and malondialdehyde 
(MDA),(88) which can be inhibited by some antioxi-
dant compounds, such as catalase, glutathione (GSH), 
GSH S- transferase, superoxide dismutase (SOD), 
coenzyme Q, and Cu- Zn SOD.(89- 91) Recently, Tahara 
et al.(34) reported that one of the SGLT2 selective 
inhibitors (ipragliflozin) has a great capacity to con-
trol hepatic steatosis by OxS inhibition in type 2 dia-
betic mice. Consistently, canagliflozin, another type of 
SGLT2 inhibitor, has also reversed the diabetic high- 
fat fed induced hepatic diabetic high fat fed group.(34) 
According to their research, hepatic MDA levels in 
the HFD group treated with canagliflozin (20 mg/kg) 
were significantly decreased compared with the HFD 
group without treatment. In contrast, hepatic activity 
of SOD and glutathione peroxidase increased signifi-
cantly in the HFD group treated with canagliflozin. 
Taken together, SGLT2 inhibitors display promising 
therapeutic effects on NAFLD/NASH by the abla-
tion of ROS production.

anti- inFlammatoRy eFFeCts
Hepatic inflammation is associated with the 

majority of acute and chronic liver diseases.(92) Lipid 

Fig. 4. Inflammatory responses induction in NAFLD/NASH. Abbreviation: GPx, glutathione peroxidase.
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accumulation induced by an HFD in mouse liver leads 
to subacute hepatic inflammation through nuclear 
factor kappa B (NF- κB) activation, with increased 
downstream inflammatory cytokines, such as tumor 
necrosis factor (TNF)- α, interleukin (IL)- 6, and IL- 
1β,(93) and chemokines, including monocyte chemo-
attractant protein 1 (MCP- 1) and IL- 18.(94) Several 
types of cells are involved during cytokine secretion 
following inflammatory effects; these include den-
dritic cells, macrophages, and T cells. Dendritic cells 
are antigen- presenting cells in our body that act 
mainly as messengers between the innate and the 
adaptive immune system. For example, stimulated 
dendritic cells can induce rapid production of IL- 12, 
which can help send naive cluster of differentiation 
(CD)4 T cells toward a Th1 phenotype.(95) Regarding 
macrophages, there are two main types of activated 
macrophages, M1 and M2. M1 is the classic macro-
phage; it can be activated by lipopolysaccharide and 
interferon- gamma (IFN- γ), following the induction 
of IL- 12 secretion.(96) In contrast, M2 is an alter-
natively activated macrophage. Its main role is in 
wound repair and regeneration by secretion of anti- 
inflammatory cytokines, such as IL- 10. The T cell is a 
type of lymphocyte that develops in the thymus gland 

and plays a central role in the immune response. T 
cells are grouped into a series of subsets based on their 
function, with the two main groups being convention-
ally adaptive T cells and innate- like T cells.(97) Among 
conventionally adaptive T cells, helper CD4+ T cells 
can produce several cytokines, such as IL- 4, IL- 17, 
and IFN- γ. Another subset of conventionally adap-
tive T cells consists of cytotoxic cells, which are CD8+ 
T cells. These cells can also produce the key cyto-
kines IL- 2 and IFN- γ, which influence the functions 
of other cells, in particular macrophages and natural 
killer cells.(98) The increased inflammatory signaling is 
both a hallmark and driver of more advanced liver dis-
eases, including NASH. Treatment with ipragliflozin 
in HFD mice can inhibit TNF- α and IL- 6 levels.(34) 
Consistently, empagliflozin treatment in HFD mice 
is also capable of reducing the levels of TNF- α, IL- 6, 
and MCP- 1.(99)

Considering the mechanisms of NF- κB signaling 
in inflammation, NF- κB targets inflammation directly 
not only by increasing the production of inflammatory 
cytokines and chemokines but also by being a central 
mediator of NLR family pyrin domain containing 3 
(NLRP3) inflammasome activation; NF- κB acts by 
inducing the transcriptional expression of NLRP3 

Fig. 5. SGLT2 inhibitors are capable of attenuating the abnormal oxidative response and inflammatory responses following the 
protective roles in inhibiting hepatocytes death in the development of NAFLD. Abbreviations: SGLT2i, sodium‐glucose transport protein 
2 inhibitor; TUNEL, terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick‐end labeling.
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and proinflammatory (pro)IL- 1β.(100,101) The NLRP3 
inflammasome can promote autocatalytic activation 
of the cysteine protease caspase- 1 and mediates the 
proteolytic activation of proinflammatory cytokines, 
including proIL- 1β. In particular, a causal role for 
IL- 1β and its contribution to the impairment of insu-
lin signaling is well recognized.(102) As reported by 
Benetti et al.,(103) empagliflozin reduced activation 
of the NLRP- 3 inflammasome pathway in the liver, 
which is related to triglyceride decrease. NLRP- 3 
activation can lead to proIL- 1β and proIL- 18.(104) In 
addition, an SGLT2 inhibitor significantly suppresses 
NLRP3 inflammasome activation and subsequent 
secretion of IL- 1β and IL- 18 in human macrophages 
by decreasing serum levels of insulin among patients 
with T2DM and cardiovascular disease.(105) Taken 
together, SGLT2 inhibitors can exert a protective 
role in steatosis by ablation inflammatory responses 
following inhibition of caspase- dependent apoptosis 
(caspase 3 activation) induction.(106)

SGLT2 inhibitors can directly reduce body weight 
and blood glucose level by reversing the effects of 
insulin resistance in T2DM. Mechanically, it can 
inhibit overwhelmed DNL in NAFLD and reacti-
vate inhibited fatty acid oxidation to help lipids move 
out of the liver. Finally, SGLT2 inhibitors are capable 
of attenuating the abnormal oxidative response and 
inflammatory responses through their protective roles 
in inhibiting hepatocyte death (Fig. 5).
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