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Abstract: Quetiapine, an atypical antipsychotic, is effective in the management of schizophrenia,
depression, and anxiety. Although quetiapine overdosage and misuse have been reported, its abuse
potential has not been investigated in animals. In this study, the abuse potential of quetiapine was
assessed based on the conditioned place preference (CPP) paradigm of drug addiction in a mouse
model. First, mice received intraperitoneal injections of quetiapine (40, 80, or 120 mg/kg) every other
day during the conditioning phase. In the second experiment, mice were pretreated with 0.03 mg/kg
SKF-35866, a D1 receptor antagonist, before receiving saline or quetiapine (120 mg/kg) during the
conditioning phase. No significant changes in time spent in the quetiapine-paired chamber were
observed compared with time spent in the saline-paired chamber in mice treated with 40 or 80 mg/kg.
In contrast, the preference to the quetiapine-paired chamber was significantly increased in mice
treated with 120 mg/kg quetiapine, and this effect was blocked by SKF-35866 pretreatment. These
results demonstrated, for the first time, the abuse potential of quetiapine in an animal model of drug
addiction. Interestingly, this CPP-inducing effect was likely mediated by activating D1 receptors.

Keywords: quetiapine; reward; conditioned place preference; abuse

1. Introduction

Quetiapine, an atypical antipsychotic and derivative of dibenzothiazepine, is effective
in the management of schizophrenia, bipolar disorder, and major depressive disorder,
in combination with serotonin-norepinephrine reuptake inhibitors or selective serotonin
reuptake inhibitors [1,2]. In addition, quetiapine has shown efficacy in the treatment
of depression and anxiety as a monotherapy [3,4]. Notably, the effects of this drug are
mediated by blocking various receptors, including serotonin (5-HT1A, 5-HT2A), dopamine
(D2), adrenergic (α1, α2), and histamine (H1) receptors [5].

Some cases of quetiapine overdosage and misuse have been reported [6–10]. In a
retrospective review of 3497 cases of atypical antipsychotic drugs (2118 of which were
quetiapine and 1379 of which were other medications, such as risperidone, olanzapine,
aripiprazole, clozapine, and ziprazidone), the intentional abuse of quetiapine was com-
pared with that of other atypical antipsychotic drugs, and quetiapine was reported the
most commonly abused atypical antipsychotic [11]. In another systematic, retrospective
review of data gathered from a drug abuse warning network on quetiapine-related visits
to the emergency department, a high number of visits related to the misuse and abuse of
quetiapine was reported, suggesting high potential for abuse [12]. These cases of quetiapine
abuse suggest that quetiapine could be a new abused agent. However, this drug is widely
available and is not designated as a controlled substance, enabling abusers to obtain the
drug easily without being arrested or punished.

In the central nervous system, several neurotransmitters can be affected by psychoac-
tive drug intake [13]. For example, dopamine has strong effects on drug-seeking and
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reinforcing behaviors [14]. In fact, increased concentrations of dopamine in the brain re-
gions involved in drug-seeking behaviors have been reported following exposure to several
abuse-related drugs [15], and drug-seeking behaviors in response to several drugs can be
prevented by blocking dopaminergic receptors [16–18]. In particular, dopaminergic D1
receptors have been reported to play major roles in the reward system in the brain [19–23].
However, motor functions have been consistently reported to be mediated through D2
receptors [24,25].

Preclinical studies of quetiapine abuse potential have yielded inconsistent results. In
a conditioned place preference (CPP) animal study, 10, 20, or 40 mg/kg quetiapine did
not show any effects on CPP when administered alone [26]. In another study that tested
quetiapine abuse potential in rodents using CPP and self-administration animal models,
the tested doses (0.1, 0.5, and 1 mg/kg) did not produce any significant increase in place
preference scores. These CPP findings suggested that there was no abuse potential for these
low doses. In self-administration experiments, animals engaged in frequent quetiapine
self-administration, suggesting that this drug may have reinforcing effects [27]. However,
the abuse potential of quetiapine remains unclear.

Therefore, in this study, the abuse potential of quetiapine was evaluated in a CPP
model. Additionally, the possible mechanisms through which the drug may activate the
reward system in the brain to promote abuse were also assessed.

2. Results
2.1. Experiment 1

In the control group treated with saline, two-way RM ANOVA revealed a nonsignificant
main effect of phase (F (1, 7) = 1.000, p = 0.3506) or chamber (F (1, 7) = 0.1482, p = 0.9241)
and a nonsignificant phase × chamber interaction (F (1, 7) = 0.2759, p = 0.8704; Figure 1A).
In the Quet-40 group treated with quetiapine (40 mg/kg), two-way RM ANOVA revealed a
nonsignificant main effect of phase (F (1, 9) = 1.040, p = 0.3345) or chamber (F (1, 9) = 0.7591,
p = 0.4062) and a nonsignificant phase × chamber interaction (F (1, 9) = 1.811, p = 0.2114;
Figure 1B).
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Figure 1. (A) Time spent in chamber 1 compared with chamber 2 during the pretest and post-test in
the control group. (B) Time spent in the quetiapine-paired chamber compared with the saline-paired
chamber during the pretest and post-test in the Quet-40 group (treated with quetiapine 40 mg/kg).
Values are shown as means ± standard errors of the means.

In the Quet-80 group treated with quetiapine (80 mg/kg), two-way RM ANOVA revealed
a nonsignificant main effect of phase (F (1, 7) = 1.000, p = 0.3506) or chamber (F (1, 7) = 0.9837,
p = 0.3543) and a nonsignificant phase × chamber interaction (F (1, 7) = 1.517, p = 0.2578;
Figure 2A). In the Quet-120 group treated with quetiapine (120 mg/kg), two-way RM ANOVA
revealed a nonsignificant main effect of phase (F (1, 8) = 1.000, p = 0.3466), but a significant
effect of chamber (F (1, 8) = 0.6.469, p = 0.0345) and a significant phase × chamber interaction
(F (1, 8) = 9.112, p = 0.0166; Figure 2B). Newman–Keuls multiple comparisons tests showed
that there was a significant increase in the time spent in the quetiapine-paired chamber
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compared with the saline-paired chamber during the post-test (p < 0.05). No significant
changes were detected in the time spent in the quetiapine-paired chamber compared with
the saline-paired chamber during the pretest. There were also no significant changes when
comparing the time spent in any given chamber between the post-test and pretest.
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during pretest and post-test in the Quet-80 group (treated with quetiapine; 80 mg/kg). (B) Time
spent in the quetiapine-paired chamber compared with the saline-paired chamber during pretest
and post-test in the Quet-120 group (treated with quetiapine; 120 mg/kg). Values are shown as
means ± standard errors of the means. *p < 0.05 compared with the saline-paired chamber.

2.2. Experiment 2

In the SKF-V group treated with SKF (0.03 mg/kg) followed by saline, two-way RM
ANOVA revealed a nonsignificant main effect of phase (F (1, 6) = 1.000, p = 0.3559) or
chamber (F (1, 6) = 0.02992, p = 0.8684) and a nonsignificant phase × chamber interac-
tion (F (1, 6) = 0.007901, p = 0.9321; Figure 3A). In the SKF-Quet group treated with SKF
(0.03 mg/kg) followed by quetiapine (120 mg/kg), two-way RM ANOVA revealed a non-
significant main effect of phase (F (1, 7) = 2.320, p = 0.1715) or chamber (F (1, 7) = 0.03032,
p = 0.8667) and a nonsignificant phase × chamber interaction (F (1, 7) = 0.004477, p = 0.9485;
Figure 3B).
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3. Discussion

In this study, the ability of quetiapine to induce CPP in mice was discovered. The
important roles of D1 receptors in this effect were also elucidated. The findings suggested
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that quetiapine activated the reward system in the brain, which could explain the increased
place preference found in this study with the highest tested dose of 120 mg/kg. Notably,
one preclinical study contradicted the current findings and concluded that quetiapine did
not show any addictive potential because it did not affect place preference in the tested
rats [26]. However, this previous study tested lower doses of quetiapine (10, 20, and
40 mg/kg) compared with the doses used in the current study (40, 80, and 120 mg/kg).
Consistent with this previous study, CPP was not affected by 40 mg/kg quetiapine in the
current study. Interestingly, when the dose was increased to 80 mg/kg, preference tended
to increase, although the change was not significant. Furthermore, a significant preference
for the quetiapine-paired chamber was found when the dose was increased to 120 mg/kg.
This suggested that the drug had dose-dependent effects on the reward system in the brain.
Importantly, the findings in this study were supported by several case reports of quetiapine
abuse/misuse at higher doses. For example, a 34-year-old female subject with a history of
substance use disorder crushed her pills, dissolved them in water, and injected herself with
600 mg quetiapine [28]. Similarly, several reports have described cases of patients with a
history of polysubstance abuse who snorted [29] or received [30] high doses of quetiapine
and experienced rush sensations and withdrawal symptoms. In addition, a retrospective
study was conducted on cases of abuse/misuse of quetiapine from poison centers in the
USA from 2005 to 2011. In total, 1948 cases met the criteria for misuse, defined as improper
use of drugs, such as increasing the dose to enhance its effects, whereas 1168 cases met the
criteria for abuse, i.e., the intentional use of the drug to get high, including recreational use;
higher numbers were observed among adolescents [31].

Quetiapine has multiple street names, including “quell,” “Susie-Q,” “baby heroin”,
and “Q-ball” [32–35]. Thus, the drug is a known, abuse-related drug among addicts, further
supporting the current findings on CPP induction in a mouse model of drug addiction.
Some previous studies have been conducted in animals to elucidate the effects of quetiapine
and determine whether the drug induced addiction. In a study of the potential dependence
of quetiapine in mice, researchers used the same CPP method, but lower doses (5, 7,
and 10 mg/kg) of quetiapine and found a dose-dependent effect; however, the result
was not statistically significant. In self-administration experiments, animals engaged in
frequent self-administration of quetiapine, suggesting that this drug may have reinforcing
effects [27].

Because the drug can function by blocking various receptors, including serotonin
(5-HT1A, 5-HT2A) receptors and dopamine (D2) receptors [36,37], quetiapine can increase
the release of dopamine [38]. Accordingly, quetiapine abuse may be driven by D1 receptor
activation, which is well known to activate the reward system in the brain and lead to
addiction [39]. Although the exact mechanism through which quetiapine can induce reward
is not known, several well-known, abuse-related drugs have been shown to induce drug-
seeking behavior through the modulation of dopamine [40]; the same mechanism may be
involved in quetiapine abuse. Rewarding and reinforcing behaviors have been shown to be
induced by dopamine release in the nucleus accumbens and D1 receptor activation [41,42].
Interestingly, SKF-83566 has been shown to interfere with dopamine release induced by
cocaine and block hyperlocomotion caused by amphetamine exposure [43,44]. In this
study, the effects of blocking D1 receptors were tested by pretreating mice with a D1
antagonist, SKF-35866, before the administration of the dose of quetiapine that induced
CPP (120 mg/kg). This pretreatment with SKF-35866 completely blocked CPP to quetiapine,
suggesting that D1 receptors play important roles in activating the reward system of the
brain in response to quetiapine.

One limitation of this study is that dopamine release and its concentration in the key
brain regions of the reward pathway were not assessed following exposure to quetiapine.
Further studies are needed to explore the neurobiological changes induced by quetiapine.
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4. Materials and Methods
4.1. Animals

Male BALB/c mice (King Fahd Medical Research Center, Jeddah, Saudi Arabia),
weighing 20–30 g at the beginning of the study, were housed in standard plastic tubes with
controlled humidity (30%) and temperature (21 ◦C) on a 12:12 light–dark photoperiod,
and were allowed to habituate for 7 d before experiments. Mice were provided food and
water ad libitum throughout the experiment. All experiments were performed during the
light cycle. In accordance with the Institutional Animal Care and Use Committee of the
National Institutes of Health guidelines, the experimental procedures of the animal study
were approved by the Research Ethics Committee at Taif University.

4.2. Drugs

Quetiapine was a donation from Riyadh Pharma (Riyadh, Saudi Arabi). SKF-83566
was obtained from Tocris Bioscience (Ellisville, MO, USA). Saline solution vehicle (0.9%
NaCl) was used to reconstitute all drugs used in this study.

4.3. Experimental Design

Experiment 1: Animals were randomly separated into four groups: control group (n = 8),
administered vehicle (10 mL/kg, intraperitoneal (i.p.) injection) for 8 d; Quet-40 group (n = 8),
administered quetiapine (40 mg/kg, i.p. injection four times) and vehicle (10 mL/kg, i.p.
injection four times) for 8 d during the conditioning phase; Quet-80 group (n = 8), administered
quetiapine (80 mg/kg, i.p. injection four times) and vehicle (10 mL/kg, i.p. injection four
times) for 8 d during the conditioning phase; and Quet-120 group (n = 8), administered
quetiapine (120 mg/kg, i.p. injection four times) and vehicle (10 mL/kg, i.p. injection four
times) for 8 d during the conditioning phase.

Experiment 2: Animals were randomly assigned to two groups: SKF-V group (n = 7),
administered SKF-83566 (0.03 mg/kg, i.p. injection) 30 min before vehicle (10 mL/kg, i.p.
injection eight times) for 8 d during the conditioning phase; and SKF-Quet group (n = 8),
administered SKF-83566 (0.03 mg/kg, i.p. injection) 30 min before quetiapine (120 mg/kg,
i.p. injection four times) for 8 d during the conditioning phase.

4.4. CPP Paradigm

The CPP apparatus was made of acrylic and consisted of two conditioning chambers,
which were identical in size and distinguished by both tactile and visual cues, as described
previously [45]. In the habituation phase (days 1–3), each mouse was placed in the start box
with the door closed for 3 min. Then, the door was opened, and the mouse had free access to
both chambers for 30 min. On day 3, mouse movement in the two chambers was recorded
(pretest) and the time spent in each chamber was calculated using the ANY-maze software
(Stoelting, USA). An unbiased CPP design was followed and, to eliminate possible bias
to any chamber, mice spending >67% of the total time in any one chamber were excluded
from the study [45–47]. Moreover, half of the animals were randomly assigned to receive
quetiapine in chamber 1 and the remaining half received it in chamber 2.

In the conditioning phase (days 4–11), each mouse received the selected dose of
quetiapine according to the assigned group and was confined, immediately after the
injection, into the designated chamber for 30 min. The next day, each animal received the
vehicle dose (10 mL/kg) and was confined into the opposite chamber for 30 min. On day
12, mouse movement in the two chambers was recorded (post-test) and the time spent
in each chamber was calculated using the ANY-maze system. In experiment 2, the same
process was performed during the conditioning phase, except that animals received a
30-min pretreatment with SKF-83566 before the administration of saline or quetiapine
(Figure 4).
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4.5. Statistical analysis

Two-way repeated measures (RM) analysis of variance (ANOVA; phase × chamber)
was used to analyze the time spent in the conditioning chambers. Newman–Keuls compar-
isons were applied when significant main effects or interactions were identified. All data
were statistically analyzed using GraphPad Prism, with a significance level of 0.05.

5. Conclusions

The findings of this study showed, for the first time, that quetiapine could cause drug-
related effects in CPP experiments in mice. The results also showed that this CPP-inducing
effect was likely mediated by activating D1 receptors, as is addiction. Based on this
important evidence, the use of this drug should be restricted. Healthcare providers should
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authorities may consider these findings when establishing guidelines for the restricted use
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