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Abstract
As the ratio of the copy number of the most replicated to the unreplicated regions in the

same chromosome, the definition of chromosomal replication complexity (CRC) appears to

leave little room for variation, being either two during S-phase or one otherwise. However,

bacteria dividing faster than they replicate their chromosome spike CRC to four and even

eight. A recent experimental inquiry about the limits of CRC in Escherichia coli revealed two

major reasons to avoid elevating it further: (i) increased chromosomal fragmentation and

(ii) complications with subsequent double-strand break repair. Remarkably, examples of

stable elevated CRC in eukaryotic chromosomes are well known under various terms like

"differential replication," "underreplication," "DNA puffs," "onion-skin replication," or "re-rep-

lication" and highlight the phenomenon of static replication fork (sRF). To accurately

describe the resulting "amplification by overinitiation," I propose a new term: "replification"

(subchromosomal overreplication). In both prokaryotes and eukaryotes, replification, via

sRF processing, causes double-strand DNA breaks and, with their repair elevating chromo-

somal rearrangements, represents a novel genome instability factor. I suggest how static

replication bubbles could be stabilized and speculate that some tandem duplications repre-

sent such persistent static bubbles. Moreover, I propose how static replication bubbles

could be transformed into tandem duplications, double minutes, or inverted triplications.

Possible experimental tests of these models are discussed.

Limits and Dangers of Elevated Chromosomal Replication

Complexity

Chromosomal replication complexity (CRC) is defined as the ratio of the copy number of the
most replicated to the unreplicated regions in the same chromosome [1]. In the eukaryotic
chromosomes, with multiple and alternative replication origins firing once and only once dur-
ing each cell cycle [2], CRC becomes two during S-phase and returns to one at the end of it. At
the population level, replication complexity of a eukaryotic chromosome can bemeasured dur-
ing synchronized S-phase as the ratio of the copy number of early replication origins to the
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copy number of chromosomal regions known to replicate late in that particular genome, like
human centromeres [3] or yeast telomeres [4]. In the prokaryotic cells, with their (1) unique
replication origins [5]; (2) defined termination zones [6]; and (3) cell division soon after termi-
nation of the chromosomal replication [7,8], during rapid growth with continuous replication,
CRC is simply defined as the origin-to-terminus ratio [1]. Under slow growth conditions, CRC
in prokaryotic cells also fluctuates between one and two (Fig 1A). However, some bacterial
cells are capable of dividing two times faster than their minimal chromosomal replication time
[9]. To avoid slowing their rapid growth to wait for the lagging chromosomal replication, these
bacteria are capable of inducing an extra replication round in the same chromosome to bring
up the trailing DNA mass synthesis rate to the cell mass increase rate and CRC to four (Fig 1A)
[9–11]. The same trick also helps at moderate cell division rates when DNA synthesis is inhib-
ited due to limited DNA precursors or a mutation in the DNA metabolism.Under these condi-
tions, replication forks move slower, and the cells again have to induce additional replication
rounds [12–15].
We have studied limits of elevated CRC in E. coli more systematically and found that when

cells stabilize at CRC~8 (Fig 1A) due to modest inhibition of replication forks, they experience

Fig 1. Chromosomal replication complexity: the prokaryotic perspective and the mis-repair complication. A. When chromosomal replication

becomes rate limiting for growth, bacterial cells are capable of elevating chromosomal replication complexity up to eight. Small cyan circles denote

replication origins, small orange circles denote replication forks, and small light-purple squares with an empty diamond inside denote replication termini. A

nonreplicating chromosome (CRC = 1) is on the left. B. Recombinational mis-repair as a result of attachment of a double-strand end to a cousin (instead of

the sister) DNA duplex should result in a pince-nez chromosome. Small yellow "star" marks the double-strand end formed as a result of replication fork

collapse. Purple lines identify the linear chromosome linking two circular chromosomes like in pince-nez.

doi:10.1371/journal.pgen.1006229.g001
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only modest growth inhibition.We called CRC~8 the natural CRC limit in the E. coli chromo-
some [1]. If replication forks are grossly inhibited, E. coli cells grow very slowly and stabilize at
a much-increased CRC~22 (the functional CRC limit). Others have observed this limit before
in overinitiatingmutants of E. coli [16]. At both the natural and the functional CRC limits, the
cell viability requires recombinational repair proficiency, suggesting formation of double-
strand DNA breaks and critical need in their repair [1]. In the extreme situation in which cells
have no control of a runaway initiation (achieved from an inducible replication origin), the E.
coli chromosome stabilizes around an incredible CRC~64. Even though the chromosome
seems to be physically intact in these cells, only one out of 20 wild-type (WT) cells survives this
challenge, making it the "tolerance CRC limit" of the E. coli chromosome [1]. In contrast to
WT cells, recAmutants survive this runaway overinitiation without loss of viability, suggesting
poisoning of WT cells by recombinational repair. We hypothesized that the nature of such
recombinational mis-repair, when correct repair at the DNA level generates a nonfunctional
chromosome at the level of the cell, is homologous pairing in conditions of elevated CRC that
leads to establishment of a new replication fork with the cousin duplex instead of the sister
duplex (Fig 1B) [1]. Such a mis-repair generates a structure in which two circular chromo-
somes are connected by an ever-lengthening bridge of a linear third chromosome, forming the
so-called pince-nez chromosome (Fig 1B) [17]—an occurrence that is currently considered
lethal—as, in fact, would be any circular chromosome with an odd number of replication forks
[1,18].

Differential Replication

Are eukaryotic cells capable of elevating their CRC above two? The textbook answer to this
question is "no," as the notoriously strict eukaryotic cell cycle, via the elaborate initiation con-
trol system, allows for one and only one firing event at all the replication origins licensed to fire
in a given replication round [19,20]. After initiation, the spent replication initiation factors are
disassembled and expelled from the nucleus into the cytoplasm, where the critical parts of the
initiation machinery are degraded [21].
Yet, examples of the so-called "differential replication" [22,23] in the cells of higher eukary-

otes show that relaxation of the strict regulation of replication initiation to achieve elevated
CRC in eukaryotic chromosomes is not only possible but is not unusual. Perhaps the best-
known example of the grossly elevated and variable CRC on the chromosomal scale are the
polytene chromosomes in higher animals and plants [24], in which centromeres and telomeres,
as well as many heterochromatic regions, appear to stay single copy due to specific protein fac-
tors [25], whereas the coding regions along the chromosome are present in the highly elevated
(up to a few thousand) and variable numbers (Fig 2A) [26,27]. A particular polytene chromo-
some phenomenon, called "splitting" [24], visually confirms variation of CRC along the chro-
mosome length.
Sometimes an additional local overreplication amplifies only a few specific genes within a

polytene chromosome. These so-called "DNA puffs" (as opposed to a more common transcrip-
tion puffs) [24], or localizednested replication bubbles (Fig 2B), are observedduring develop-
mental transitions in Diptera [22,28,29] and are also called "amplicons" there [30].
(Parenthetically, the term "amplicon" in reference to the elevated copy number at DNA puffs is
potentially confusing, as the first and still predominant use of "amplicon" is to describe linear
tandem amplification by rolling-circle replication of short DNA segments during packaging
into HSV-1 based vectors [31]. I propose to call DNA puffs "overreplicons" (Fig 2B) to stress
the local nature of overinitiation in this case.) Examples of DNA puffs includeDrosophila cho-
rion genes, amplified in ovarian follicle cells [32,33], and salivary gland DNA puff gene in
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Fig 2. Chromosomal replication complexity: the eukaryotic perspective and replication fork rear-

ending. A. A model of polytene chromosome of Charles Laird [26,27]. B. Stages of formation of an

overreplicon (DNA puff) as a result of overinitiation from an unregulated replication origin in the chromosome,

with a limited progress of replication forks that massively rear-end into static forks (sRFs) of the previous

round. Image credit: Olga Posukh. C. The model of replication fork rear-ending. Double black circles denote

telomeres. For clarity, a replication round consists of a single left-to-right fork. Magenta/yellow stars denote

the generated double-strand ends.

doi:10.1371/journal.pgen.1006229.g002
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Bradysia [34,35]. The maximal (local) CRC reaches ~64, with more typical ranges around 16
[30]. DNA puffs are also observed in plants [36].

Underreplication

Apparently, differential replication (both local in DNA puffs or global in polytene chromo-
somes) serves the purpose of maximizing gene expression [22,30]. DNA puffs maximize the
output of specific genes in highly specialized cells, whereas polytene chromosomes, in addition
to boostingmetabolism, allow cells of certain tissues to grow big (for example, when cell-to-cell
junctions are to be avoided in this location) by increasing their ploidy [37]. In both cases, dif-
ferential replication is critical for the cell function and is, apparently, controlled and main-
tained by yet-to-be-characterized systems.
Polytene chromosomes of Diptera provide a remarkably visual example of polyploidy, but

their unique feature is chromosomal condensation rather than polyploidy itself. In fact, poly-
ploidy due to endoreduplication is widespread in differentiated cells of higher eukaryotes [38],
supporting a higher metabolism and/or bigger cell volume. However, unless there are multiple
nuclei in the same cell, polyploidy is not evident, because, in most cases, polyploid nuclei do
not condense their chromosomes. There are at least two types of the modified cell cycle that
generate polyploid nuclei: endocycle (!S!G!) and endomitosis (!G1!S!G2! (m)!)
[37]. The best-known examples in mammals for endocycle are trophoblast giant cells [39],
whereas for endomitosis, these are megakaryocytes [40]. Remarkably, in contrast to the poly-
tene chromosomes of Drosophila that retain the basal copy number of the heterochromatic
regions [41], the two examples of the mammalian polyploid cells have uniform copy number
profiles [42], with only moderate underrepresentation in the copy number of the heterochro-
matic relative to euchromatic regions [43].
Comparison with the polyploid nuclei makes it obvious that polytene chromosomes under-

replicate their heterochromatic regions rather than overreplicate their euchromatic regions.
This underreplication does not affect their elevated CRC status, but it does shift attention from
the mechanisms of overinitiation at the origins to the mechanisms that suppress replication of
heterochromatin and to the possible structure of a static replication fork (sRF) (Fig 2B) and the
expected chromosomal lesions (Fig 2C), which will be discussed later. At least two phenomena
contribute to heterochromatin underreplication at the genome level [41]: (1) active suppression
of the replication initiation in heterochromatin and (2) replication fork stalling at the hetero-
chromatin boundaries. The protein complex responsible for sRFs at the heterochromatin
boundaries inDrosophila, whose name "suppressor of underreplication" (SuUR) reflects the
phenotype of the correspondingmutant [44,45], regulates heterochromatin-specific histone
modification [46]. Thus, "underreplication" is another code name for elevated CRC.

The Onion-Skin Replication

It is remarkable how essentially the same phenomenon is known by different names in differ-
ent fields. If similar local overinitiation-drivenDNA puffs (Fig 2B) are induced in the chromo-
somes by insertion of mobile genetic elements like viruses or relaxed-copy-number plasmids,
this is historically referred to as "onion-skin replication" [47]. Still, "onion-skin replication" is
just a visual description of an overreplicon, so it is encouraging to see this term applied to
describe the developmental DNA puffs in Diptera as well [30,48]. The important difference
from the DNA puffs or polytene chromosomes above is that, becausemobile elements insert at
random locations of the host chromosomes, no specialized system to maintain and control sta-
ble elevated CRC is suspected in the case of overreplication from exogenous replicons.
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A classic example of the onion-skin replication, the local overreplication-basedDNA ampli-
fication from an exogenous origin, is observed in cells infected with polyoma viruses (like
SV40) [49]. These viruses insert their genomes into the chromosome and stay dormant. Upon
DNA-damaging treatment, the virus awakens before excision and induces several rounds of
unscheduled replication to bring up the copy number of their genomes to over ten [49].
Another more sinister example is occasional chromosomal integration of a papilloma virus
genome, which is supposed to stay as an extrachromosomal circular plasmid with an elevated
copy number [50]. Naturally, the integrated papilloma virus genome tries to maintain its ele-
vated copy number within the chromosome, inducing onion-skin replication and amplifying
neighboring chromosomal regions [51]. Not surprisingly, such chromosomal integrations of
papilloma virus genome frequently lead to cancer [52].
Similar events are registered in bacterial chromosomes, in which the resident prophages

may undergo lytic induction preceding their excision from the chromosome [53,54] or when a
plasmid with relaxed copy number inserts into the chromosome by homology [55–57]. In case
of the temperate phage inducing this so-called "escape replication" [53], the cell is doomed,
whereas plasmid's attempt to maintain its regular copy number within the chromosome is tol-
erated if this copy number is down-regulated (by suppressor mutations) but becomes problem-
atic when the copy number reaches around 50 [57], confirming the existence of the "tolerance
limit" of CRC in E. coli's chromosome [1].

Subreplication?

If the steady-state CRC>>2 situations above can be rationalized in terms of overinitiation, is it
possible to encounter CRC< 2 in direct measurements of replicating chromosomes? Clearly,
CRC< 2 in a given replicating chromosome is theoretically impossible—by definition, it has to
be at least two for any replicating DNA molecule. It is also obvious that, if measured in a popu-
lation of cells with only some of them in S-phase, CRC will be less than two. But can it be mea-
sured as<2 in a population of cells when all of them are replicating their chromosomes and, if
"yes," does it reflect "subreplication" (some kind of a cryptic underreplication)?
This question highlights the importance of the "replication-opposite" reference points for

actual CRCmeasurement. For example, in the bacterial chromosome, with its uni-bubble for-
mat of replication, the natural reference points with opposite replication status are the replica-
tion origin and the terminus (Fig 1A). CRC in bacteria is simply expressed as the ori/ter ratio
and equals two in the population in which all chromosomes have a single replication bubble
(Fig 3A, top). Yet, by the same token, if there are additional initiations around the terminus in
some chromosomes, the ori/ter ratio will be less than two in such a population (Fig 3A, mid-
dle). Certain bacterialmutants depart from the uni-bubble replication; in E. coli, these are
rnhA and recGmutants, defective in the timely removal of R-loops [58,59]. Some of these stable
R-loops spawn replication bubbles via the replication initiation mechanism used by small plas-
mids [60]. In addition, the recG mutants tend to overinitiate during double-strand break repair
at D-loops [61]. Because, for unknown reasons, there is a preference for these R/D-loop initia-
tions in the chromosomal half centered on the terminus, whereas the actual initiation positions
vary from cell to cell in these cultures, the overall ori/ter ratio is significantly less than two in
the rnhA or recGmutants (Fig 3A, middle and bottom) [62,63]. In fact, the R/D-loop initia-
tions in these mutants are frequent enough to support chromosomal replication if the desig-
nated chromosomal origin, oriC, is deleted, with the expected inversion of the chromosomal
replication profile [62–64].
It should be stressed that, in any particular chromosome in these mutants that has a single

origin-initiated bubble, CRC is still strictly two (Fig 3A), because the ratio of the copy number
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of replicated to unreplicated regions within a single chromosome cannot be a noninteger. At
the same time, at the populational level, because of the "less than one" frequency and random
position of these R/D-loop initiations, the ratio of the "designated as most replicated" (oriC) to
the "designated as least replicated" (ter) chromosomal regions becomes less than two, flattening
the replication profiles of such chromosomes (Fig 3A, bottom) [62,65] and suggesting subrepli-
cation. In fact, just having an additional fixed-position ectopic replication origin in the E. coli
chromosome already lowers population-average CRC below two [66], demonstrating another
factor in reduction of the population-average CRC, which is shortening the chromosomal rep-
lication time (also observed in mutants in the nucleoid-associated proteins [67,68]).
Interestingly, the population-average CRC in the eukaryotic cells may also be less than two

during the S-phase—for example, at the minor replication origins or in the chromosomal arms
replicating late (or slowly) [69]. Still, if CRC is determined as the ratio of the regions that repli-
cate early in all cells to the regions that replicate late in all cells, it is strictly two in a population
of S-phase eukaryotic cells [69]. In summary, subreplication as an empirical phenomenon
emphasizes various factors complicating both CRCmeasurements and their interpretation.

DNA Replication Complexity

The previous discussionmakes it clear that various regions in the same chromosome may have
distinct replication complexities. For example, in the E. coli recG mutant, in conditions of rapid
growth, the two replication rounds coming from oriC will be met by an additional replication
bubble at the terminus region. Or, there could be regular bubbles along a eukaryotic chromo-
some and, among them, the onion-skin structure at the viral genome insertion site. Perhaps
the most convincing illustration of the intrachromosomal variation of local CRC is the

Fig 3. Explanation of subreplication and examples of the formalism of DNA replication complexity. A. Subreplication when the measurable

chromosomal replication complexity is less than two. The chromosome replication schemes on the left correspond to the marker frequency profiles on the

right (the chromosome is "linearized" at the terminus). The top row corresponds to WT E. coli cells, the middle row corresponds to the recG mutants, and the

bottom row shows the rnhA mutants. B. Formalism of DNA replication complexity. DNA duplexes are represented by single lines, replication forks are

marked by orange circles. Yellow rectangles on the left delineate the part of the molecule corresponding to the structure on the right. "B" stands for "bubble,"

and "Y" stands for a single fork. This formalism is applicable to replicating structures with a single maximum or a single minimum of replication complexity.

doi:10.1371/journal.pgen.1006229.g003
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"RC-fest" of the polytene chromosomes (Fig 2A). In all these cases of "intrachromosomal differ-
ential replication," the chromosome-wide replication complexity concept loses its descriptive
usefulness. The only thing that remains constant among all these examples is the replication
complexity of two around any replication bubble closest to its replication origin.
All these complications illustrate the fact that the original term "chromosomal replication

complexity" applies for undisturbed (WT) replication patterns of both prokaryotic chromo-
somes (unique origin, variable number of initiations) and of eukaryotic chromosomes (multi-
ple origins, strictly one initiation per cell cycle). Examples of alternative origins with a
variable number of initiations in the same chromosome call for metrics of the replication
complexity at the subchromosomal scale. A useful termmay be "local replication complexity"
of a replicon, the "replicon" being defined as the DNA segment replicated from a single initia-
tion site. Practitioners view replication complexity via the prism of methods like 2-D agarose
gel electrophoresis for discrimination between various branched DNA species (Fig 3B)
[70,71] and would appreciate their own term. Such detectionmethod-friendlymetrics for
molecular biology could be "DNA replication complexity" (DRC) (the ratio of the copy num-
ber of the most replicated to the nonreplicated parts of a defined chromosomal segment with
a single replication origin or terminus) as a characteristic of branching in any definedDNA
piece, precisely describing the number of replication bubbles and individual forks in it
(Fig 3B).

Re-replication Destabilizes Chromosomes

As mentioned in the introduction, increased CRC in E. coli is linked to formation of double-
strand DNA breaks [1,72–74], so cell survival becomes dependent on recombinational repair
[73,75,76]. The same relationship is found in human cells, in which relaxed control over repli-
cation initiation in certainmutants results in more than one firing from some replication ori-
gins within a single replication round, leading to local overreplication (called "re-replication")
[20]. Re-replication and onion-skin replication in human cell lines cause formation of double-
strand DNA breaks and dependence of these cells on recombinational repair [77]. Similarly,
the under-replicated heterochromatic regions in theDrosophila polytene chromosomes accu-
mulate double-strand ends [78] and are sites of binding of histone gamma-H2A, the hallmark
of double-strand ends [44]. Onion-skin replication in theDrosophila follicle cells also attracts
histone gamma-H2A binding and has to be supported by double-strand break repair [32].
Thus, in both prokaryotic and eukaryotic experimental systems, elevated CRC causes chromo-
somal fragmentation and dependence on double-strand break repair.
The model of replication-dependent double-strand DNA breakage that explains this chro-

mosomal fragmentation best is "replication fork rear-ending" due to replication fork crowding
and sRFs (Fig 2C) [78–81]. In its essence, when there is more than one replication round in the
same DNA and replication forks of the previous rounds are stalled or move slower than repli-
cation forks of the subsequent rounds, the latter may rear-end the former, releasing two of the
four replication arms as double-strand ends (Fig 2C).
Replication fork rear-ending with subsequent homology-driven reassembly predicts that, in

DNA with repeats, repeat-mediated rearrangements will be stimulated. Indeed, re-replication
in eukaryotic cells elevates the frequency of rearrangements [82–84] and causes cancer in
humans [84–86]. Thus, the three classic hallmarks of genetic instability—(1) formation of dou-
ble-strand ends; (2) dependence of the affected cells on double-strand break repair; and (3)
increased repeat-mediated chromosomal rearrangements—are all present in cells with elevated
CRC, establishing elevated CRC as a factor of genome instability. There were several indepen-
dent proposals some 30 years ago linking re-replication with genome instability [84,87–89].
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Amplification Versus Replification

Any region of a chromosome, in either prokaryotes or eukaryotes, is tandemly duplicated in a
population with a frequency of 10−3 [89,90]. A tandemly duplicated region is "copy-number-
unstable" in that it can be either further amplified, or resolved back to a single copy (Fig 4A,
left), by homologous recombination via intermolecular unequal sister-chromatid exchange, as
first proposed by Sturtevant [91], or via intramolecular pop-out. According to this paradigm,
amplification of a chromosomal region is a two-step process: the slow formation of a "founder"
tandem duplication is followed by a much faster amplification to multiple copies or reversal to
a single copy (Fig 4A, left). Alternatively, there are also schemes that envision amplification as
a single multistage catastrophic event [92], notably, the "spiral amplification" idea [93].
I have noticed that the elevated CRC situation offers a 2-D alternative to the classic linear

duplication/amplification scheme. Indeed, some of these duplications and amplifications could
be in fact regions of stably elevated CRC—basically, static replication bubbles or sets of nested
static bubbles (Fig 4A, right). To stress its replicative nature, I propose the term "replification"
for such amplification by localized overinitiation, in contrast to the classic "amplification" by
tandem iteration. In nondividing cells, such static replication bubbles could be stabilized by
replication fork "locking" [94,95]. In cycling cells, static bubbles could be facilitated by pairs of
unidirectional termination sites (Fig 4B) and by analogy with such termination sites in the E.
coli chromosome and the RFB sites in the eukaryotic rRNA operons [6]. If replication from the
"outside" replication origins reaches these termination sites before replication from the "inside
origin," the new replication round across the preexisting bubble will simply duplicate it (Fig
4B). An illustration of this scenario is found in the E. coli recGmutants, in which replication
bubbles robustly initiate both at oriC and in the terminus, but progress of the terminus bubble
is soon constrained by the termination sites, leading to the characteristic bi-modal chromo-
somal marker frequency profile (Fig 3A middle) [63,65,96].
The robust scenario of a static bubble can be scaled up to explain a frozen set of nested bub-

bles (replification), with each bubble blocked at its dedicated pair of termination sites as long
as there are replication origins between termination sites (Fig 4C, left). With these alternating
origins and termination sites (the arrangement found, for example, at the eukaryotic ribosomal
DNA array [6]), such replification structure could become quite complex, maintaining the
desired copy number of the region (Fig 4C, left). As an interesting, simpler variation of this
arrangement, if there are multiple firings of a replication origin between the closest pair of ter-
mination sites, the replified structure becomes unstable in this case, as multiple replication
forks rear-end into the original forks blocked at the termination sites, forming linear DNA
fragments spanning the chromosomal segment between the termination sites (Fig 4C, right, a
schematic presentation of Fig 2B). The scenario analogous to unstable nested bubbles is
observed in the underreplicated heterochromatic regions of polytene chromosomes [25,46,78].

Conversion of a Static Replication Bubble into a Tandem

Duplication

Although the replification scenario looks mechanistically sound, its pure form explains only
amplifications with no new DNA junctions, whereas a lot of amplifications are known to be
associated with newDNA junctions ("B/A" in Fig 4A). In fact, these novel DNA junctions asso-
ciated with tandem duplications caused initial attention because of the expected insights into
the mechanisms of formation of the founder tandem duplications. However, in eukaryotes,
these junctions were invariably found to have either no homology or a microhomology of one-
to-few nucleotides between the joined ends [92,97]. In bacteria, the level of microhomology at
the new junctions tends to be higher ([98], reviewed in [99]), and these rearrangements are

PLOS Genetics | DOI:10.1371/journal.pgen.1006229 October 6, 2016 9 / 20



Fig 4. Static replication bubbles. A. Amplification (tandem iteration) versus replification (elevated

replication complexity). The classic model of tandem duplication leading to amplification via unequal

crossing-over is shown on the left. The possibility of the corresponding elevated replication complexity

(replification) is shown on the right. B. A combination of unidirectional termination sites (purple pacman

"pokemons") and appropriately spaced replication origins (tiny cyan circles) should be able to stably maintain
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more frequent in mutants with replication defects, inspiring models based on various long-
range template switching events at stalled or broken replication forks [100–102]. Formation of
the novel DNA junctions could have beenmechanistically independent of amplification, but,
at least in some cases, specific new DNA junctions were amplified with the rest of the amplified
DNA segment, meaning that formation of the junctionmust have preceded amplification.
Several general schemes explaining formation of the initial tandem duplication have been

proposed by the mid-1980s, some of them featuring replication bubble intermediates [87–89],
but they understandably lacked mechanistic details (thus, predictive power), because two
important phenomena of the DNA metabolism—the existence and processing of sRFs (in par-
ticular, replication fork regression [RFR]) [103–105] and the nonhomologous end joining
(NHEJ) [106]—were discovered a full decade later. Interestingly, NHEJ, in combination with
sRF processing in general, and RFR, in particular, offer plausible scenarios to convert static rep-
lication bubbles into tandem duplications (Fig 5A, the yellow arrows). In a nutshell, after
regression at both forks of a static replication bubble, the two novel double-strand ends are
joined by NHEJ, while the resulting double-ring intermediate is resolved at the Holliday junc-
tions to produce tandem duplication in half of the resolutions (Fig 5A, left). A simpler scenario,
initiating with sRF nicking instead of RFR, is also possible (Fig 5A, the purple arrows).
Is there any evidence for or against this sRF processing followed by NHEJ among the dupli-

cation/amplification data? The two major predictions of the sRF-NHEJ scheme (Fig 5A) is that
(1) in half of the cases, the double loop intermediate has to be resolved to pop-out an extra-
chromosomal circle and (2) the two resolution options are mutually exclusive, in that, from a
particular static bubble, either the tandem duplication forms or the episomal circle pops out,
but not both. Remarkably, an important "clarification" of the nature of the tandem duplication
from cells of higher eukaryotes (which was completely lost in bacteria due to their unique chro-
mosomal origins of replication) was realization that the amplification can be either intrachro-
mosomal (tandem amplification proper, detected as eventual formation of "homogeneously-
staining regions" [HSRs] in the chromosome, reflecting subsequent amplification) or extra-
chromosomal, in the form of "double-minute" (DM) circles [87,89]. Such extrachromosomal
circular duplications of chromosomal segments are especially common in solid tumors, in
which they amplify various chromosomal regions [107]. Remarkably, even though the same
cell may carry both HSR and DM amplifications of the same DNA region as long as their novel
DNA joints are different, a particular amplification with a specificDNA junction can be either
HSR or DM, but never both in the same cell [87,89]. This observation that the same early
amplification intermediate is resolved to give either HSR (tandem duplication) or DM (circle
pop-out), but never both, matches the predictions of the sRF-NHEJ model (Fig 5A). The
model is directly testable in an appropriate experimental setup.

Inverted Triplications from Unstable Nested Bubbles

An interesting scenario of NHEJ-mediated rearrangements can be envisioned at the unstable
nested bubbles (over-replicons), at which multiple linear DNA fragments are proposed to be
released by rear-ending of replication forks into the static fork at the termination site (Fig 4C,
right) [78,80]. In the simplest case of DRC = 4, two such linear fragments will form between
the termination sites (Fig 5B). In principle, such linear products of replication fork breakage

elevated replication complexity of a chromosomal region through a replication round. C. Static nested

bubbles require a system of alternating replication origins and unidirectional termination sites. If there is only

one pair of termination sites around a single replication origin, the nested bubbles cannot be stable and

disintegrate via replication fork rear-ending (Fig 2C).

doi:10.1371/journal.pgen.1006229.g004
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Fig 5. Models of a static replication bubble conversion into chromosomal rearrangements. A. A

possible conversion of a static replication bubble into a tandem duplication or a popped-out circle by either a

combination of nicks at replication forks and NHEJ (purple arrows) or a combination of replication fork

reversal and NHEJ (yellow arrows). The sister arms of the bubble are marked either blue or orange to

facilitate recognition of their DNA strands. HJ, Holliday junction. Small arrows, nicks. B. A model of how
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are known to occasionally circularize [108]; however, in this case when the two fragments are
released simultaneously, due to their proximity and longitudinal alignment, the open duplex
ends could be fused together by NHEJ (which may be even assisted by homologous pairing in
this case [109]), resulting in formation of an inverted dimer circle (Fig 5B) [109]. Finally,
homologous recombination of this inverted dimer circle with one of the bubble arms generates
inverted triplication (Fig 5B)—a distinct and odd-lookingproduct, but a strong prediction of
the fork rear-ending scenario. This scheme is robust against a scale-up to multiple released lin-
ear fragments: in fact, the whole final amplified product can be "self-assembled" by NHEJ alone
if the remaining forks regress. Remarkably, many amplifications both in bacteria and eukary-
otes are in fact based on inverted duplications (that is, they started as inverted triplications)
[92,99,110] rather than on tandem duplications.
Two ingenious models have been proposed recently to explain formation of inverted tripli-

cations [110,111], but because in both cases the repeated region was found bracketed by short
inverted repeats, both models are based on template switching at these inverted repeats, either
by primer migration from the template [112] or by replication fork locking [94]. In fact, if tem-
plate switching is appropriate (when preexisting inverted repeats are found at the junctions),
then the much earlier model for the formation of arrays of inverted repeats—the sophisticated
idea of spiral amplification—also initiated with replication fork locking [93]. Our model of
(2-D) replification to (1-D) amplification conversion (Fig 5B) is different from these template-
switching-basedmodels in that it has no requirements for short inverted repeats and, in fact,
predicts lengthy spacers between the two inverted regions, derived fully from DNA sequences
contiguous with one of the repeated regions (because of replication fork rear-ending at varied
locations around the blocked forks), which is exactly what is found in many of these inverted
amplifications [92].

Conclusion

The novel metric—chromosomal replication complexity—spans from the typical in vivo CRC~2
in most chromosomes, past the increasedCRC of the onion-skin replication and DNA puffs, to
the highly amplified CRC of the polytene chromosomes. Because in some cases CRCmay vary
within the same chromosome (intrachromosomal differential replication), a more general metric
—DNA replication complexity (DRC)—is also introduced. This metric is applicable more
broadly, from pure (short) DNA molecules detectable in vitro by 2-D gels to the individual (over)
replicons or underreplicated sites within chromosomes. Stable elevated CRC highlights a group
of related phenomena, in which the central role is played by formation and processing of sRF, a
static replication fork. I also propose that static replication bubbles might be behind some cases
of apparent tandem duplications, whereas over-replicons (nested sets of static bubbles) could be
the real structures behind some amplifications (assumed to be tandem iterations) (Fig 4A).
Increased CRC is a factor of genome instability, in all known cases acting not only to induce

chromosomal damage but also to confound its subsequent recombinational repair. Elevated
replication complexity promotes recombinational misrepair of disintegrated replication forks,
as the double-strand end in the replified (locally overreplicated) portion of the chromosome
can be homologously attached not only to the intact sister duplex (correct repair) but also to
one of the several cousins (misrepair) (Fig 1B) [1]. The presence of DNA repeats further con-
fuses recombinational repair, leading to gross chromosomal rearrangements. In addition, sRFs

inverted triplications may form via replication fork rear-ending with subsequent NHEJ and crossing-over.

Purple "packmen," directional ter-sites; yellow stars, double-strand ends; green circles, new DNA junctions

by NHEJ.

doi:10.1371/journal.pgen.1006229.g005
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may be processed (regressed or broken), allowing NHEJ to form tandem duplications or other
local rearrangements based on microhomology (Fig 5A). In fact, it is tempting to speculate that
even the nucleolus-forming chromosomal region with tandem arrays of rDNA in eukaryotic
cells has been converted from the initial DNA puff (over-replicon) by a combination of sRF
processing-NHEJ and homologous crossing-over. DNA puffs at rDNA regions are known
[113–115].
The recognized importance of the elevated CRC factor in the overall chromosomal metabo-

lism poses new questions and opens new experimentation venues. Do bacteria possess a system
to resolve pince-nez (or, more generally, sigma-replicating) chromosomes (Fig 1B)? Such a
capability would be a lifesaver for prokaryotic cells. The bacterial terminus, bracketed by the
inverted termination sites, is a well-known system to ensure that replication is unidirectional
throughmost of the prokaryotic circular chromosome, but do similar developmental stage-spe-
cific systems maintain region-specificover-replicons in the polytene chromosomes of eukary-
otes? The SuUR protein inDrosophila may be a component of one such system [25,46]. There
also has to be a general system that controls spreading along the chromosome of onion-skin
replication initiated from randomly insertedmobile elements.
The mechanisms of genetic instability associated with elevated CRC need to be explored.

The current model of replication fork rear-ending (Fig 2C) [78–81] predicts that the overrepli-
con structure (Fig 2B) will be maintained by recombinational repair. However, the only study
that looked into the extent of replification in DNA repair mutants found the effect of NHEJ
rather than recombinational repair [32]. If confirmed, this will dramatically change the models
of replification.
The possibility that some tandem duplications and higher copy number variations are in

fact static replication bubbles needs to be tested by identifying the associated new junction
sequences. If some of these copy number variations have no new junction sequences, especially
in cases in which they are bracketed by known termination sites, static bubble explanation
should be considered. There are at least two differences between tandem amplification versus
replification phenomena: (1) amplicons have sharp copy number-change borders separating
them from single copy sequences around, whereas over-replicons have gradual borders with
apparent slopes, reflecting gradient of static nested bubbles, and 2) amplifications can have any
number of copies, whereas replifications should always comprise 2n copies.
The model in Figs 4 and 5 generates strong predictions: (1) if a replication origin is brack-

eted by a pair of inward-oriented termination sites (like in the bacterial chromosomal termi-
nus), a static replication bubble may form as a result of occasional unscheduled initiation from
the origin; (2) this origin bracketed by termination sites should be prone to tandem duplication
(and subsequent amplification). Tandem duplications of the terminus region in the recG
mutants in E. coli could be expected (if the terminus duplication is permitted in the bacterial
chromosome), but bacteria generally lack active NHEJ, so these experiments are better suited
for cells of higher eukaryotes.
In summary, the phenomenon of replification offers a fresh look at the chromosomal struc-

ture and dynamics via a newmetric of chromosomal/DNA replication complexity by providing
a systemic view on the various instances of elevated replication complexity within over-repli-
cons and their important consequences for genome instability via formation and processing of
static replication forks.
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100. Ehrlich SD, Bierne H, d’Alençon E, Vilette D, Petranovic M, et al. (1993) Mechanisms of illegitimate

recombination. Gene 135: 161–166. doi: 10.1016/0378-1119(93)90061-7 PMID: 8276254

101. Lovett ST (2004) Encoded errors: mutations and rearrangements mediated by misalignment at repet-

itive DNA sequences. Mol Microbiol 52: 1243–1253. doi: 10.1111/j.1365-2958.2004.04076.x PMID:

15165229

102. Mazin AV, Kuzminov AV, Dianov GL, Salganik RI (1991) Mechanisms of deletion formation in

Escherichia coli plasmids. II. Deletions mediated by short direct repeats. Mol Gen Genet 228: 209–

214. PMID: 1679526

103. Morgan AR, Severini A (1990) Interconversion of replication and recombination structures: implica-

tions for terminal repeats and concatemers. J Theor Biol 144: 195–202. doi: 10.1016/S0022-5193

(05)80318-2 PMID: 2165201

104. Seigneur M, Bidnenko V, Ehrlich SD, Michel B (1998) RuvAB acts at arrested replication forks. Cell

95: 419–430. doi: 10.1016/S0092-8674(00)81772-9 PMID: 9814711

105. Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication

forks owing to checkpoint defects. Science 297: 599–602. doi: 10.1126/science.1074023 PMID:

12142537

106. Critchlow SE, Jackson SP (1998) DNA end-joining: from yeast to man. Trends Biochem Sci 23: 394–

398. doi: 10.1016/S0968-0004(98)01284-5 PMID: 9810228

107. Hahn PJ (1993) Molecular biology of double-minute chromosomes. BioEssays 15: 477–484. doi: 10.

1002/bies.950150707 PMID: 7691058

108. Bierne H, Ehrlich SD, Michel B (1997) Deletions at stalled replication forks occur by two different

pathways. EMBO J 16: 3332–3340. doi: 10.1093/emboj/16.11.3332 PMID: 9214648

109. Kunes S, Botstein D, Fox MS (1990) Synapsis-mediated fusion of free DNA ends forms inverted

dimer plasmids in yeast. Genetics 124: 67–80. PMID: 2407606

110. Brewer BJ, Payen C, Raghuraman MK, Dunham MJ (2011) Origin-dependent inverted-repeat ampli-

fication: a replication-based model for generating palindromic amplicons. PLoS Genet 7: e1002016.

doi: 10.1371/journal.pgen.1002016 PMID: 21437266

111. Kugelberg E, Kofoid E, Andersson DI, Lu Y, Mellor J, et al. (2010) The tandem inversion duplication

in Salmonella enterica: selection drives unstable precursors to final mutation types. Genetics 185:

65–80. doi: 10.1534/genetics.110.114074 PMID: 20215473

112. Schildkraut CL, Richardson CC, Kornberg A (1964) Enzymic synthesis of deoxyribonucleic acid.

XVII. Some unusual physical properties of the product primed by native DNA templates. J Mol Biol 9:

24–45. PMID: 14200388

PLOS Genetics | DOI:10.1371/journal.pgen.1006229 October 6, 2016 19 / 20

http://dx.doi.org/10.1146/annurev.bi.53.070184.002311
http://dx.doi.org/10.1146/annurev.bi.53.070184.002311
http://www.ncbi.nlm.nih.gov/pubmed/6383198
http://dx.doi.org/10.1146/annurev.mi.31.100177.002353
http://www.ncbi.nlm.nih.gov/pubmed/334045
http://www.ncbi.nlm.nih.gov/pubmed/17246266
http://dx.doi.org/10.1016/0167-4781(91)90095-4
http://www.ncbi.nlm.nih.gov/pubmed/1932107
http://www.ncbi.nlm.nih.gov/pubmed/3366118
http://dx.doi.org/10.1128/ecosalplus.7.2.6
http://www.ncbi.nlm.nih.gov/pubmed/26442506
http://dx.doi.org/10.1073/pnas.1415025111
http://www.ncbi.nlm.nih.gov/pubmed/25368150
http://dx.doi.org/10.1093/nar/17.17.7073
http://www.ncbi.nlm.nih.gov/pubmed/2674905
http://dx.doi.org/10.1038/292269a0
http://www.ncbi.nlm.nih.gov/pubmed/7019717
http://dx.doi.org/10.1101/cshperspect.a016592
http://www.ncbi.nlm.nih.gov/pubmed/25646380
http://dx.doi.org/10.1016/0378-1119(93)90061-7
http://www.ncbi.nlm.nih.gov/pubmed/8276254
http://dx.doi.org/10.1111/j.1365-2958.2004.04076.x
http://www.ncbi.nlm.nih.gov/pubmed/15165229
http://www.ncbi.nlm.nih.gov/pubmed/1679526
http://dx.doi.org/10.1016/S0022-5193(05)80318-2
http://dx.doi.org/10.1016/S0022-5193(05)80318-2
http://www.ncbi.nlm.nih.gov/pubmed/2165201
http://dx.doi.org/10.1016/S0092-8674(00)81772-9
http://www.ncbi.nlm.nih.gov/pubmed/9814711
http://dx.doi.org/10.1126/science.1074023
http://www.ncbi.nlm.nih.gov/pubmed/12142537
http://dx.doi.org/10.1016/S0968-0004(98)01284-5
http://www.ncbi.nlm.nih.gov/pubmed/9810228
http://dx.doi.org/10.1002/bies.950150707
http://dx.doi.org/10.1002/bies.950150707
http://www.ncbi.nlm.nih.gov/pubmed/7691058
http://dx.doi.org/10.1093/emboj/16.11.3332
http://www.ncbi.nlm.nih.gov/pubmed/9214648
http://www.ncbi.nlm.nih.gov/pubmed/2407606
http://dx.doi.org/10.1371/journal.pgen.1002016
http://www.ncbi.nlm.nih.gov/pubmed/21437266
http://dx.doi.org/10.1534/genetics.110.114074
http://www.ncbi.nlm.nih.gov/pubmed/20215473
http://www.ncbi.nlm.nih.gov/pubmed/14200388
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