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Abstract: Polyamines (PAs) dramatically affect root architecture and development, mainly by un-
known mechanisms; however, accumulating evidence points to hormone signaling and reactive
oxygen species (ROS) as candidate mechanisms. To test this hypothesis, PA levels were modified
by progressively reducing ADC1/2 activity and Put levels, and then changes in root meristematic
zone (MZ) size, ROS, and auxin and cytokinin (CK) signaling were investigated. Decreasing pu-
trescine resulted in an interesting inverted-U-trend in primary root growth and a similar trend in
MZ size, and differential changes in putrescine (Put), spermidine (Spd), and combined spermine
(Spm) plus thermospermine (Tspm) levels. At low Put concentrations, ROS accumulation increased
coincidently with decreasing MZ size, and treatment with ROS scavenger KI partially rescued this
phenotype. Analysis of double AtrbohD/F loss-of-function mutants indicated that NADPH oxidases
were not involved in H2O2 accumulation and that elevated ROS levels were due to changes in PA
back-conversion, terminal catabolism, PA ROS scavenging, or another pathway. Decreasing Put
resulted in a non-linear trend in auxin signaling, whereas CK signaling decreased, re-balancing
auxin and CK signaling. Different levels of Put modulated the expression of PIN1 and PIN2 auxin
transporters, indicating changes to auxin distribution. These data strongly suggest that PAs modulate
MZ size through both hormone signaling and ROS accumulation in Arabidopsis.

Keywords: polyamine; root meristem; hormone signaling; ROS; auxin response; PIN transporter;
cytokinin response

1. Introduction

Polyamines (PAs) are small polycationic compounds found in all living organisms.
Due to their characteristic positive charges, they can interact with negatively charged
molecules such as DNA, RNA, proteins, and phospholipids, and therefore influence their
activity [1]. Putrescine (Put), spermidine (Spd), spermine (Spm), and thermospermine
(Tspm) are the most common polyamines found in plants [2,3]. PAs have been shown
to be implicated in the regulation of several plant physiological processes, including
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flower development, embryogenesis, organogenesis, senescence, and fruit maturation
and development [4], and are also involved in Arabidopsis meristem development [5]
and stress responses [6–8]. Recent studies on plant polyamines have been reviewed [9].
Put is the central diamine substrate compound for the biosynthesis of higher triamine
and tetraamine polyamines. Unlike many other plants, Arabidopsis thaliana has only one
Put biosynthesis pathway, through arginine decarboxylase [10]. In Arabidopsis, arginine
decarboxylase 1 (ADC1) and ADC2 are key rate-limiting enzymes in Put synthesis, which
catalyze L-arginine conversion into Put [10]. It was recently reported that the ADC1 gene is
involved in N-acetylputrescine biosynthesis from Nδ-acetylornithine [11].

Cellular PA homeostasis is controlled by a combination of mechanisms, including
transcriptional and upstream open reading frames (uORFs), translational regulation of PA
biosynthesis genes, conjugation, back-conversion, and terminal catabolism [12–14]. The
intricacies of PA biosynthesis are exhibited by several examples—treatment with D-Arg,
the ADC-specific competitive inhibitor, results in a reduction in Put and increased Spd
and Spm content in Pringlea antiscorbutica [15]; adc2 mutants with low Put content show
no change in Spd and Spm levels [16]; overexpression of ADC in plants generally results
in high Put accumulation but in many cases exhibits relatively small changes in Spd and
Spm [17]; and silencing of ADC genes significantly reduces Put, Spd, and Spm + Tspm in
Arabidopsis ecotype Wassilewskija (Ws) [18]. This indicates that PA levels are under strict
regulation [19] and emphasizes the complexity of the PA metabolic pathway.

Modifications in PA content can differentially affect root growth and development.
For example, treatment with D-Arginine (D-Arg), a specific ADC1/2 competitive inhibitor,
leads to a reduction in Put and a longer primary root length in Pringlea antiscorbutica [15];
perturbation of Put biosynthesis in adc1 and adc2 single T-DNA mutants shows no root
phenotype, whereas the double mutant is lethal [20]; mutation in BUD2 gene, which
encodes S-adenosylmethionine decarboxylase 4 (SAMDC4), a key enzyme required for PA
biosynthesis in A. thaliana, resulted in Put accumulation and altered root architecture [21];
silencing both ADC1 and ADC2 shows a significant reduction in primary root length [18],
and high levels of Put treatment exhibit a similar phenotype in Arabidopsis [22]. Exogenous
application of low levels of Put has no effect on root growth in Arabidopsis [23,24], but
treatment with 1 mM Put increases root length in strawberries [25]. Treatment with an
inhibitor of Tspm biosynthesis increased primary root growth, whereas treatment with
exogenous Tspm inhibited root growth [26]; and inhibition or induction of Arabidopsis
polyamine oxidase 5 (AtPAO5) significantly affected root length and development [27].
Such findings indicate complex regulatory effects of PAs on root development.

The PA back-conversion and terminal catabolism processes are mediated by two classes
of amine oxidases, copper-containing amine oxidases (CuAOs) and FAD-dependent polyamine
oxidases (PAOs). These enzymatic reactions lead to the production of H2O2 [8,28–30], sug-
gesting another mechanism by which PAs can affect root growth and development [28],
in addition to their role as ROS scavengers [31], acting to reduce stress-induced ROS
accumulation in leaves and roots [32,33].

ROS homeostasis plays a vital role in root growth and development. A study of
how changes in ROS accumulation affect root development [34] reported that the balance
between hydrogen peroxide (H2O2) and superoxide (O2

−) affects root growth and meristem
structure by influencing the transition from cell division to cell differentiation. It was also
demonstrated that perturbation of polyamine catabolism ZmPAO1 strongly influences root
development and xylem differentiation in Zea mays, mediated by H2O2 production [35].
Such studies suggest that altering ROS homeostasis is one mechanism by which PAs could
affect root development.

Several studies indicate that PAs also modify hormone response and crosstalk under
specific physiological and developmental processes [36,37]; for example, transcriptome
studies revealed that changes in endogenous PA content altered the expression levels of
genes associated with biosynthesis and signaling of several plant hormones such as auxin,
ethylene, and gibberellins [38]; it is necessary for interactions between Tspm, auxin, and
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cytokinin to be tightly controlled for proper xylem development and plant growth [27]; PAs
and auxin affect root growth and development in two sweet orange cultivars [39]; and sev-
eral studies have further explored the relationships between PAs and auxin response [40].
The above data provide evidence to suggest that the adjustment of the hormone response
is an additional mechanism by which PAs affect root development.

The above studies demonstrate that changes in PA levels can influence plant pheno-
types in multiple species and tissues; however, mechanisms linking PA levels to phenotype
are not well understood. In this work, we focus on the root meristem to identify PA-driven
mechanisms that regulate the meristem phenotype under conditions of Put depletion in
Arabidopsis.

2. Results

Since adc1 and adc2 single T-DNA mutants exhibit no root phenotype (Figure 1A,C)
and the double mutant is lethal, it was decided to adjust PA levels by simultaneously
reducing the activity of ADC1 and ADC2, which are key enzymes in the Put biosynthesis
pathway. Several previous studies [41–46] have used D-Arg treatment to inhibit ADC1/2
and deplete Put levels. We progressively reduced Put biosynthesis, the substrate of Spd,
Spm, and Tspm, by inhibiting ADC1/2 enzyme activity using the competitive inhibitor
D-Arg, which specifically inhibits ADC1/2 activity by blocking binding of the Put substrate
L-Arg. Given the specificity of D-Arg and its mode of action, this method was thought to be
equivalent to using ADC genetic knockdowns, with the additional advantage of allowing
improved flexibility in the control over ADC activity and Put biosynthesis.

ADC2::GUS results confirmed the differential localization of ADC2 expression to the
root (Figure 1D). The results also suggested that ADC2 activity is higher in the root than
that of ADC1, since while D-Arg treatment inhibited root length in WT, adc1, and adc2, D-
Arg inhibition of ADC1 activity in the adc2 mutant resulted in a shorter root than inhibition
of ADC2 did in the adc1 mutant, indicating that the adc2 mutant root phenotype is more
sensitive to D-Arg than adc1 (Figure 1B,C).

2.1. D-Arg Application Promotes or Inhibits Root Growth and Meristem Size in a
Concentration-Dependent Manner

To explore how Put depletion modulates root growth and development, we treated
5-day-old Arabidopsis wild-type Col-0 seedlings for a further 3 days with a range of con-
centrations from 0.01 mM to 1 mM D-Arg, a competitive inhibitor of ADC1/2 activity
(Figure 2A,B). To determine the effect of D-Arg on polyamine content, seedlings were
treated with 0.01, 0.05, 0.1, and 0.6 mM of D-Arg for three days. Whole seedlings were used
for HPLC analysis. Data revealed a significant reduction in Put of approximately 30–35%
upon 0.01, 0.05, and 0.1 mM treatment, and then a significant decrease of approximately
60% upon 0.6 mM treatment. The Spm plus Tspm concentration was unchanged with
0.01 mM D-Arg treatment, and it increased by 78% at 0.05 mM, by 100% at 0.1 mM, and
then only by 35% at 0.6 mM treatment, relative to controls (Figure 2A). Interestingly, Spd
remained stable until a considerable decrease in Put occurred at 0.6 mM D-Arg, when
Spd declined by approximately 50% (Figure 2A). Spd levels appeared to be more tightly
controlled than for Put and Spm + Tspm.

After 3 days of treatment, we observed an inverted-U trend in root growth as D-Arg
concentrations increased (Figure 2B,C). Compared to controls, root growth was unchanged
at 0.01 mM and 0.05 mM treatments, enhanced at 0.1 mM, unchanged at 0.3 mM, and then
root growth gradually decreased at treatment concentrations of 0.6 mM and greater.

During the 3-day D-Arg treatment period, we observed interesting changes in daily
root growth as demonstrated by the new root growth-rate curve (Figure 2C). We noticed
no significant change in root length at concentrations from 0.01 to 0.6 after one day of
treatment, whereas 0.8 and 1 mM showed a significant decrease. However, the root growth
rate increased at days two and three at 0.1 mM and then started to decline at 0.8 and 1 mM.
The root reduction on day three became highly significant, at 0.6 mM and more, compared
to untreated controls.
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Figure 1. adc1 and adc2 single mutants exhibit no root phenotype and the results indicate that ADC2 localizes mainly to the
root and adc2 is more sensitive to D-Arg than adc1. For (A), (B) and (C), 5-day-old seedlings at the same developmental
stage were transferred to new media containing water (Ctrl) or 0.6 mM D-Arg and were treated for 8 days. (A) Untreated
wild-type (WT), adc1, and adc2 root phenotypes are the same. Scale bar = 1 cm. (B) D-Arg treatment inhibits root length of
WT, adc1, and adc2. Scale bar = 1 cm. (C) D-Arg treatment exhibits no difference between WT and adc1 root length; however,
the adc2 root is significantly shorter that of WT and adc1 phenotypes. (D) Histochemical localization of GUS activity in
2-day-old transgenic seedling harboring promoter ADC2::GUS (pAtADC2::GUS). Data shown are averages ± SD (n > 30).
Asterisks denote significant differences (** p < 0.01, *** p < 0.001; Student’s t-test).

Root growth is the result of both cell division in the meristem zone (MZ) and cell
expansion in the elongation zone [47]. We chose to more closely examine the meristem
structure under D-Arg treatments with a series concentration (Figure 2D) and measured
the meristem length and number of cells in the MZ cortical layer. Root cells were analyzed
by means of differential interference contrast (DIC) microscopy and compared to the
untreated control. A medium D-Arg concentration of 0.1 mM enlarged the meristem by
approximately 18%, and MZ size decreased by 20% at 0.6 mM D-Arg and by 25% at 0.8 mM
D-Arg (Figure 2E). The MZ cell number slightly increased, but not significantly, at 0.1 mM
and then decreased significantly at 0.6 and 0.8 mM D-Arg (Figure 2F).
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Figure 2. ADC1/2 inhibition differentially modifies polyamine (PA) content and affects root growth and meristematic zone
(MZ) size in a non-linear concentration-dependent manner. Five-day-old seedlings at the same developmental stage were
transferred to new media containing water (Ctrl) or D-Arg and were treated for 3 days. (A) Differential effect of D-Arg
treatment on polyamine content. Putrescine (Put), spermidine (Spd), and spermine plus thermo-spermine (Spm + Tspm)
levels were measured using HPLC. (B) Whole seedling phenotype shows a non-linear effect of increased D-Arg treatment.
Scale bar = 1 cm. (C) Daily new root growth length varies for different D-Arg concentrations. (D) Root meristem imaging,
using PI staining and confocal microscopy, exhibits the non-linear effects of D-Arg on MZ size. Two white asterisks on each
root indicate the quiescent center (QC) (bottom) and first elongated cell (top). Scale bar = 100 µm. (E) Meristem cell length
normalized to control. (F) Cortical cell number in the meristem zone. Data shown are averages ± SD (n > 30). Asterisks
denote significant differences compared with the control (* p < 0.05, ** p < 0.01; Student’s t-test).

2.2. KI Application Indicates That MZ Size Inhibition at High D-Arg Concentration Is Partially
Due to H2O2 Accumulation

To investigate whether treatment with different D-Arg concentrations alters ROS
accumulation in WT seedlings, we used 3,3′-diaminobenzidine (DAB) (Figure 3A) and
nitrotetrazolium blue (NBT) (Figure 3C) staining to detect the presence of H2O2 and O2

−

respectively in vivo. DAB staining indicated no difference in ROS accumulations at low
and medium D-Arg treatment, but at high D-Arg treatment of 0.6 mM and 0.8 mM, ROS
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increased significantly (Figure 3B). Furthermore, we did not detect significant changes in
NBT staining at any D-Arg concentration (Figure 3D).

Figure 3. D-Arg-induced H2O2 accumulation, root length, and MZ size reduction is partially rescued by ROS scavenging
with 1 mM KI. Five-day-old seedlings at the same developmental stage were transferred to new media containing water
(Ctrl) or D-Arg and treated for 3 days. MZ imaging by differential interference contrast (DIC) microscopy. (A,B) 3,3′-
diaminobenzidine (DAB) staining and relative stain intensity indicate that D-Arg treatment increases H2O2 accumulation
in root meristem. (C,D) Nitrotetrazolium blue (NBT) staining and relative stain intensity indicates that D-Arg treatment
does not change O2

− accumulation in the root meristem. (E–G) Treatment with and without D-Arg and 1 mM KI shows
partial rescue of root meristem and root length by KI. (H,I) DAB staining of root meristem and relative stain intensity, with
or without D-Arg and KI, show successful H2O2 scavenging by KI. All scale bars = 100 µm. Data shown are averages ± SD
(n > 30). Asterisks indicate significant differences compared with the control (* p < 0.05, ** p < 0.01; Student’s t-test).
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To determine whether the reduction in root length and root meristem at higher D-Arg
concentrations was attributable to H2O2 accumulation, we exposed control roots and roots
treated with 0.6 mM and 0.8 mM D-Arg to the ROS scavenger potassium iodide (KI, 1 mM),
as described previously [34]. KI application successfully scavenged H2O2 (Figure 3H,I)
and completely rescued the shorter root phenotype caused by 0.6 mM of D-Arg treatment,
whereas at 0.8 mM D-Arg, root length and meristem size were only partially recovered
(Figure 3E–G), suggesting that at higher D-Arg levels, reduced root length is not completely
ROS-dependent and that other factors are involved.

2.3. H2O2 Accumulation Is Not Caused by NADPH Oxidases

During plant growth and development, ROS are predominantly generated by the
NADPH oxidases RBOHD and RBOHF class III peroxidases [48,49] and polyamine amine
oxidases (PAO) [8]. Some reports show a link between PAs and NADPH oxidases (RBOHD/F)
in tobacco and Arabidopsis [50,51]. To investigate the involvement of NADPH oxidases in
H2O2 accumulation at high D-Arg treatments, we examined the phenotype of seedlings
carrying double atrbohD/F loss-of-function mutants. In this set of experiments, the D-Arg
treatment period was extended from 3 to 6 days and new root growth length was observed
to ensure that NADPH oxidases were not a significant source of ROS accumulation under
conditions of Put depletion. The results showed that, similarly to the WT results, exogenous
high D-Arg application inhibited the new root growth of atrbohD/F (Figure 4A,B).

Figure 4. Effect of D-Arg treatment on WT and AtrbohD/F root growth indicates that H2O2 accumulation is not caused by
NADPH oxidases. Five-day-old seedlings at the same developmental stage were transferred to new media containing water
(Ctrl) or 0.8 mM D-Arg and treated for 6 days. (A) New root growth length of WT and AtrbohD/F. (B) Seedling phenotype.
Scale bar = 1 cm. Data shown are averages ± SD (n > 15).

2.4. Auxin Response Exhibits a Non-Linear Trend as ADC1/2 Activity Decreases

Auxin signaling promotes cell division and is involved in regulating root meristem
size [47]. We analyzed the effects of Put depletion on the auxin response using the reporter
line DR5::GFP. Interestingly, increasing levels of exogenous D-Arg had a non-linear effect on
DR5-dependent GFP fluorescence (Figure 5A). We observed that 0.1 mM D-Arg decreased
DR5 activity by 15%, but in contrast, higher D-Arg at 0.6 and 0.8 mM significantly enhanced
it by 20–25%, respectively (Figure 5B).
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Figure 5. D-Arg treatment has a non-linear effect on auxin response. Five-day-old seedlings at the same developmental
stage were transferred to new media containing water (Ctrl) or D-Arg and treated for 3 days. (A) Confocal images of
DR5::GFP auxin response reporter. (B) DR5::GFP normalized fluorescence indicates a non-linear auxin response trend.
Data are averages ± SD (n > 15). Scale bar = 100 µm. Asterisks denote significant differences compared with the control
(* p < 0.05; Student’s t-test).

2.5. CK Response Gradually Decreases as D-Arg Increases

Cytokinin (CK) signaling promotes cell differentiation and negatively regulates root
meristem size [47]. To investigate whether reduced Put affects CK signaling, we used the
reporter line proARR5::GFP. Arabidopsis response regulator 5 (ARR5) is a type-A negative
regulator of cytokinin response and is strongly induced by CK [52]. Under different levels
of D-Arg treatment, we observed that proARR5::GFP fluorescence gradually decreased
(Figure 6A). The CK response was reduced significantly at 0.1 mM D-Arg by 25% and
at higher D-Arg levels of 0.6 mM and 0.8 mM by 33% to 35% compared to the untreated
control (Figure 6B). ARR5 expression was measured using qRT-PCR at different concentra-
tions of applied D-Arg. At low (0.01 mM) D-Arg, we observed a slight but not significant
reduction in the ARR5 transcript level (Figure 6C). Similarly to the proARR5::GFP results,
medium and high levels of D-Arg, at 0.1 mM and 0.6 mM, significantly downregulated
ARR5 transcription by approximately 50%, indicating that D-Arg treatment and Put de-
pletion progressively reduces the CK response in the Arabidopsis root. Cytokinin activity
is regulated by the balance between biosynthesis and degradation [53,54]. Cytokinin
oxidase/dehydrogenases (CKXs) play a key role in CK degradation [54]. It has been re-
ported that CKX family genes play critical roles in determining root architecture in several
plant species [55–59]. In Arabidopsis, AtCKX1, AtCKX4, and AtCKX7 have been shown
to either localize to the root or their overexpression has been shown to affect root phe-
notype [53,56,60,61]; however, this does not preclude other members of the CKX family
playing a significant role in root development. Our results reveal that ADC1/2 inhibition
significantly induced cytokinin oxidase1 (CKX1) expression levels and slightly induced
CKX7 in the root, whereas CKX4 was unchanged (Figure 6D).
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Figure 6. D-Arg treatment reduces the cytokinin response and increases CKX1 expression in the root meristem. Five-day-old
seedlings at the same developmental stage were transferred to new media containing water (Ctrl) or D-Arg and treated for
3 days. (A,B) Confocal imaging indicates that increasing D-Arg gradually reduces cytokinin response proARR5::GFP and
relative proARR5::GFP fluorescence. Scale bar = 100 µm. (C,D) qPCR data indicate that D-Arg treatment modulates the
relative expression of ARR5 and cytokinin oxidase (CKX) genes. Data shown are averages ± SD (n > 15). Asterisks indicate
significant differences compared with the control (* p < 0.05, ** p < 0.01; Student’s t-test).

2.6. Differential Modulation of PIN1 and PIN2 Protein at Low and High D-Arg Treatment

We explored the level of protein and localization of auxin efflux transporters PIN1
and PIN2 using two reporter lines, proPIN1::PIN1:GFP and proPIN2::PIN2:GFP. The auxin
efflux transporter PIN1 is localized to the vascular tissue membrane of the root meristem
and is involved in auxin transport from the stele to the quiescent center and columella
initials [62]; PIN2 is localized mainly in the outer cell layers and is an essential component
for basipetal auxin transport [63], and both PIN1 and PIN2 are important for correct auxin
distribution [63]. Confocal imaging at low levels of D-Arg revealed significant increases in
PIN1:GFP by 23% (Figure 7A,B) and PIN2:GFP by 35% (Figure 7E,F) compared to untreated
controls. At high D-Arg, the results showed that the level of PIN1:GFP was significantly
increased by 30% compared to the untreated control (Figure 7C,D). In contrast, PIN2:GFP
at the same D-Arg concentration was significantly decreased by 20% (Figure 7G,H). Our
results therefore suggest that Put depletion alters PIN1 and PIN2 levels, cellular auxin
efflux, and auxin distribution.
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Figure 7. D-Arg treatment differentially affects PIN1 and PIN2 auxin efflux carriers. Five-day-old seedlings at the same devel-
opmental stage were transferred to new media containing water (Ctrl) or 0.6 mM D-Arg and treated for 3 days. (A,B) Confocal
imaging of proPIN1::PIN1:GFP reporter line and relative proPIN1::PIN1:GFP fluorescence indicate that low D-Arg treatment
increases PIN1 protein. (C,D) proPIN1::PIN1:GFP reporter line and relative proPIN1::PIN1:GFP fluorescence indicate that high
D-Arg treatment increases PIN1. (E,F) proPIN2::PIN2:GFP reporter line and relative proPIN2::PIN2:GFP fluorescence indicate
that low D-Arg treatment increases PIN2 protein. (G,H) proPIN2::PIN2:GFP reporter line and relative proPIN2::PIN2:GFP
fluorescence indicate that high D-Arg treatment reduces PIN2 protein. All scale bars =100 µm. Data shown are averages ± SD
(n > 15). Asterisks indicate significant differences compared with the control (* p < 0.05, ** p < 0.01; Student’s t-test).

3. Discussion

The goal of our study was to investigate the effect of PAs on root growth and develop-
ment in Arabidopsis and identify possible mechanisms by which PAs affect root phenotype
under conditions of ADC1/2 inhibition. Under normal conditions, ADC1 expression is
localized to the shoot and ADC2 expression to the root [64]. Our ADC2::GUS results
(Figure 1D) confirm that ADC2 expression is localized to the root. Given that neither
adc1 or adc2 single mutants exhibited a root phenotype (Figure 1A), it is reasonable to
assume that Put levels, directly or indirectly, affect the localization and/or level of ADC1/2
expression. This assumption is supported by the literature, which provides evidence of
ADC1/2 regulation by both PAs and hormones [37,65–69]. To identify links between Put
depletion and MZ size, we therefore used D-Arg application to simultaneously inhibit both
ADC1 and ADC2 to ensure a reduction in Put levels, rather than developing specific ADC2
knockdowns. Although ADC1/2 regulation, localization, or redundancy are important
components of this complex biological system, it was not part of this initial study but could
be addressed in future research.

PA levels were modified by using the specific ADC1/2 enzyme inhibitor D-Arg to
perturb PA biosynthesis instead of using PA treatment, since exogenous application, for
example of Spd, could artificially increase Spd levels, affect PA balance, and generate ROS
due to reverse biosynthesis and terminal catabolism [8,28,29]. D-Arg application has been
used to deplete Put in several research papers [41–46]; however, none of these papers
addressed the issue of whether D-Arg application could produce any significant additional
effects by, for instance, regulation of other enzyme activities or by increasing the availability
of the ADC1/2 substrate, L-Arg. This is an outstanding issue for future research, which is
discussed further in the conclusion.
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Inhibition of ADC1/2 reduced Put levels and resulted in unpredictable changes in
the levels of higher PAs. As Put levels decreased, Spd remained stable until high D-Arg
application, when levels dropped significantly, and Spm + Tspm levels initially increased
and then decreased at high D-Arg. These unexpected and differing trends in PA levels
under conditions of progressive ADC1/2 inhibition demonstrate the complexity of the PA
forward and reverse biosynthesis pathways that re-balance PA levels when Put is depleted.
A more detailed examination of how PA levels change under different conditions of enzyme
inhibition, PA treatment, or under stress conditions could prove useful in investigating the
regulation of PA balancing.

Put depletion resulted in non-intuitive phenotype outcomes, with increased MZ size
observed at low levels of D-Arg application and progressively decreasing MZ size at higher
D-Arg. This inverted-U trend in MZ size suggests that more than one mechanism regulates
MZ size: for example, with one mechanism promoting MZ size at low D-Arg concentrations
and another antagonistic mechanism inhibiting MZ size at higher D-Arg levels. At low
D-Arg levels the first mechanism acts to increase MZ size, but as D-Arg treatment increases,
the second mechanism becomes dominant in order to reduce MZ size.

It has been shown that root MZ size is determined by the balance between cell division
and differentiation and that this process is regulated by two mechanisms—auxin and
CK signaling balance [47], and changes in ROS homeostasis [34] that are independent
of auxin and CK signaling. We therefore examined these two candidate mechanisms.
Since auxin promotes cell division, whereas CK promotes differentiation, the auxin-to-CK
signaling balance modulates MZ size [47], rather than individual auxin or CK signaling
trends. Auxin signaling displayed a U-shaped trend as D-Arg increased, whereas cytokinin
progressively decreased. At low D-Arg application, no change in ROS accumulation was
observed, but the auxin:CK ratio shifted in favor of auxin to enlarge the MZ, consistent
with the literature [47]. However, at higher D-Arg levels, we observed increasing ROS
accumulation, which is known to inhibit MZ size [34,70–72]. The results for DAB and NBT
staining (Figure 3D) suggest that high Put depletion led to the accumulation of H2O2 but
not of O2

− and that that H2O2 accumulation is caused by PAO activity, rather than by
NADPH oxidases (Figure 4). The ROS effect was confirmed with phenotype rescue by
ROS scavenging using KI; however, the partial rescue at high D-Arg also suggests that
additional mechanism(s) could be involved in MZ size and root growth regulation.

We concluded that the hormone effect promoted MZ size at low D-Arg but that at
higher D-Arg the antagonistic ROS effect dominated to reduce the MZ. The underlying
mechanisms whereby Put depletion modulates ROS accumulation and auxin and cytokinin
signaling have yet to be unraveled; however, the literature points to several promising
lines of investigation: (1) previous studies report that PAs play two opposing roles in the
regulation of ROS levels as both ROS scavengers under stress [32,33] and as a source of
ROS generated by terminal and back conversion pathways [8,28,29], (2) Spd and Spm have
been shown to regulate CKX [37,38,73] and auxin conjugation [37], and (3) Tspm inhibits
the final steps in the CK biosynthesis pathway [3,74].

The results of our work indicate that Put depletion affects root phenotype through the
antagonistic actions of hormone signaling and ROS accumulation; however, the question
remains as to whether this is due to direct or indirect effects of changing Put levels. As
noted earlier, PA levels are closely linked by forward and reverse biosynthesis pathways.
Furthermore, terminal catabolism of excess PAs and back-conversion to lower-level PAs can
produce bioactive products. These mechanisms constitute an extremely complex process by
which perturbation of a single PA can result in changes in other PAs and in the generation
of bioactive products. This is in part illustrated by our HPLC experiments, which produced
non-intuitive results in regard to the changes in higher PAs when Put was depleted. It is
therefore likely that perturbation of any single PA results in PA re-balancing and effects
phenotype outcomes by multiple direct and indirect pathways. Several studies also indicate
that the overall PA balance seems to be more important than the specific effect of individual
PAs [15,75].
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Previous work [47] showed that changes in relative auxin to CK signaling modulate
MZ size through the regulation of auxin transporters and modified auxin distribution.
In our work, at low D-Arg the proPIN1::PIN1:GFP protein reporter showed an increase
in PIN1 and the proPIN2::PIN2:GFP showed an increase in PIN2, whereas upon high D-
Arg treatment, PIN1 increased and PIN2 decreased (Figure 7), indicating that ADC1/2
inhibition differentially modulates PIN1 and PIN2 protein levels to modify auxin transport
and distribution.

The above data demonstrate that hormone signaling and ROS accumulation are two
mechanisms by which PAs regulate MZ size (Figure 8).

Figure 8. ADC1/2 inhibition differentially changes PA levels and has a non-linear effect on meristem
size by modulating relative auxin/CK signaling and ROS accumulation. Exogenous application
of increasing D-Arg concentrations differentially modified Put, Spd, and Spm + Tspm levels and
resulted in an inverted-U trend in primary root growth. Medium D-Arg at 0.1 mM (red boxes)
promoted root growth, decreased the auxin and CK response, and had no effect on ROS levels (green
boxes). High D-Arg 0.6 mM (blue boxes) reduced root growth, differentially affected auxin and CK
response, and accumulated ROS. PRL, primary root length. Vertical arrows denote a statistically
significant increase↑ or decrease↓, whereas a horizontal line indicates no significant change.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

All experiments were performed using Arabidopsis thaliana ecotype Columbia (Col-
0). Transgenic marker lines are in Col-0 backgrounds as follows: DR5::GFP for auxin-
response; proPIN1::PIN1:GFP and proPIN2::PIN2:GFP for PIN1/2 auxin efflux carrier pro-
teins; proARR5::GFP for cytokinin response; and proADC2::GUS for localization of ADC2
expression. Genetic materials, T-DNA insertion mutant adc1 and adc2 for polyamine
biosynthesis pathway and atrbohD/F for ROS experiments were used.

Seeds were surfaced-sterilized for 2 min in 75% ethanol and then 10 min in 1%
sodium hypochlorite. Seeds were washed five times with sterilized deionized water. For
simultaneous germination, all seeds were stratified for 2–3 days at 4 ◦C before germination.

Seeds were grown on 120 × 120 × 17 mm square plates containing half-strength
Murashige and Skoog (MS) medium 2.2 g L−1 (Duchefa Biochemie) including vitamins,
MES 0.5 g L−1 (Duchefa Biochemie), and 1% (w/v) sucrose and solidified with 1% agar
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(Duchefa Biochemie). PH was adjusted to 5.8 with KOH. Plated were sealed with Microp-
ore tape.

To maintain the root for molecular assay and physical root measurements, seedlings
were grown and placed vertically in the growth incubator at 22 ◦C with light cycles of
16 h light/8 h dark (light intensity: ∼120 µmol/s/m2, and relative humidity of 60%). For
putrescine depletion, 5-day-old seedlings were transferred to MS medium containing 0,
0.01, 0.05, 0.1, 0.3, 0.6, 0.8, and 1 mM of D-Arginine (Sangon Biotech, Shanghai, China) for
a further 3 days. For experiments involving double atrbohD/F loss-of-function mutants, the
D-Arg treatment period was extended from 3 to 6 days and new root growth length was ob-
served to ensure that NADPH oxidases were not a significant source of ROS accumulation
under conditions of Put depletion.

4.2. Root Length, Root Meristem Size, and Cell Length Measurements

To track changes in root growth, five-day-old seedlings with the same root length
were transferred to a fresh medium containing either water as control or D-Arginine. The
position of the root tip was marked on the back of plates at the time of transfer and new
root growth length was measured as root growth extension during the treatment period,
using images taken with a Nikon D300s digital camera (Nikon Corp., Tokyo, Japan).

For root meristem measurements, after 3 days D-Arg treatment seedlings were cleared
with chloral hydrate solution [76]. Root meristem size was determined as the length from
the quiescent center (QC) to where the cell was double the size of the previous cell along
the cortex cell layer [77,78]. Root meristems were analyzed and imaged using an Olympus
BX61 microscope (Olympus, Tokyo, Japan) equipped with differential interference contrast
(DIC) optics, 20x UPlanSApo objective, and a CCD camera (Olympus DP74). For Photo
acquisition, Olympus cellSens software was used.

4.3. Confocal Laser Scanning Microscopy

All confocal root images were taken with a Leica SP8 confocal laser scanning micro-
scope (https://www.leica-microsystems.com) after three days of D-Arg treatment. Ten
micrograms per milliliter of propidium iodide (PI) solution (Sangon Biotech, Shanghai,
China) were used to visualize cell walls. Stained roots were visualized with the excitation
wavelength set at 548 nm for PI and at 488 nm for green fluorescent protein (GFP).

4.4. RNA Extraction, cDNA Synthesis, and qRT-PCR

Whole roots of Col-0 wild type non-treated (Ctrl) and treated with D-Arginine (D-Arg)
were used. Total RNA extraction was performed using TransZol Up reagent (TransGen,
Beijing, China). RNA concentration and quality were determined with a Nanodrop 2000
Spectrophotometer (Thermo Fisher Scientific). cDNA was synthesized from 1 µg of RNA
using a TransScript One-Step gDNA Removal and cDNA Synthesis SuperMix kit (TransGen,
Beijing, China), following the manufacturer’s instructions. cDNA was diluted 1:10 for
quantitative real-time PCR (qPCR).

Quantitative real-time PCR analyses were performed using TransStart Tip Green
qPCR SuperMix (TransGen, Beijing, China) with a Roche LightCycler 480 thermal cycler
instrument, 384-well (Roche). Relative expression values were calculated using the 2-∆∆Ct

method [79], and ACTIN2 was used as a reference gene. Primers are listed in Table S1.
Three biological replicates were performed for each sample and each biological replicate
was represented by three technical replicates.

4.5. Quantification of Free Polyamine

Free PA quantification was performed using high-performance liquid chromatogra-
phy (HPLC). Five-day-old seedlings at the same developmental stage were selected and
transferred to the treatment media containing D-Arg for another 3 days. Zero point three
five grams of fresh weight of seedlings were harvested for analysis. The extraction and

https://www.leica-microsystems.com
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quantification methods were performed as described in [80]. 1,6-hexanediamine was used
as an internal standard.

4.6. Histochemical GUS Staining

Transgenic Arabidopsis containing ADC2 promoter::GUS fusions were stained for
GUS according to the method described in [32].

4.7. Determination of O2
− and H2O2 by NBT and DAB Staining

3,3′-Diaminobenzidine (DAB, 1 mg mL−1) staining (Sigma Aldrich) was used to
detect H2O2 levels in roots, and Nitrotetrazolium blue (NBT, 1 mg mL−1) (Sangon Biotech,
Shanghai, China) was used for O2

− detection. DAB and NBT staining were performed as
described by [32]. At least 30 root meristems for each staining were analyzed and imaged
using an Olympus BX61 microscope (Olympus, Tokyo, Japan) equipped with differential
interference contrast (DIC) optics, 20× UPlanSApo objective, and a CCD camera (Olympus
DP74). For photo acquisition, Olympus cellSens software was used.

4.8. Image Analysis

Root length, meristem size, cell counts, DAB, and NBT images were investigated using
ImageJ (http://www.imagej.nih.gov/ij/). DAB, and NBT stained images were quantified
as described in [32]. Mean relative fluorescence for confocal images was calculated with
ImageJ. In quantifying fluorescence, at least 15 seedlings per line were used.

4.9. Statistical Analysis

All experiments were performed at least three times. For statistical comparisons,
we used Student’s t-test. Data shown are averages ± SD. Asterisks indicate significant
differences compared with the control (*, p < 0.05, **, p < 0.01, ***, p < 0.001).

5. Conclusions

In this study, we investigated the effect of PAs on root development in Arabidopsis with
the goal of identifying mechanisms by which PAs affect root growth. We explored changes
in ROS accumulation and hormone signaling under conditions of ADC1/2 inhibition and
Put depletion, and the results demonstrated that the effects of PAs on root phenotype are
mediated by ROS and hormone signaling. Furthermore, the data generated by this study
indicate that PA regulation of root phenotype is extremely complex, involving (1) intricate
forward and reverse PA biosynthesis, (2) changes in ROS accumulation generated by PA
catabolism and reverse biosynthesis and potentially by PA-mediated H2O2 scavenging,
and (3) the complexities of hormonal crosstalk, resulting in a modified auxin distribution
and CK response and changes to the ratio of auxin to CK signaling. This complexity is
further evidenced by the contrasting changes in PA levels observed as ADC1/2 inhibition
increased; by the non-linear trends in root growth, MZ size, and auxin response; and also
by the differential regulation of PIN1 and PIN2 transporters.

Having identified candidate mechanisms linking PAs to root phenotype, future work
requires more detailed investigations of these pathways under conditions of Put depletion.
As noted earlier, although D-Arg treatment has been used in several studies to reduce Put,
questions remain about the possible side-effects of D-Arg treatment. Therefore, the first
step in future research will be to address this issue by developing ADC1/2 knockdowns
and making comparisons with D-Arg treatment results for gene expression, hormone
signaling, ROS accumulation, and phenotype. It would be ideal to be able to calibrate each
knockdown with a specific D-Arg treatment level and, provided there is no significant
difference between results for the knockdowns and D-Arg application, the two methods
can be combined to deplete Put, utilizing the convenience of D-Arg that also allows fine-
tuning of Put levels, which is difficult to achieve with knockdowns alone. The next step
is to investigate mechanisms by which PAs modulate hormone signaling. The literature
suggests links between PAs and auxin conjugation [37], CK biosynthesis [3,74], and CK

http://www.imagej.nih.gov/ij/
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degradation [37,38], and therefore the initial focus should be on components of these
signaling pathways using genetic material. During this phase, possible ROS effects will be
removed through the application of KI. A similar approach can be adopted for analyzing
links between PAs and ROS.

Our initial results and the literature indicate that PA levels are closely inter-related and
that it is difficult to predict how the perturbation of one PA will affect other PAs, hormone
signaling, ROS accumulation, and phenotype. Therefore, another interesting research
area would be a more detailed examination of PA balancing and downstream effects by
treating WT and adc1 and adc2 single mutants and knockdowns with D-Arg and PAs, and
observing them under stress conditions. Since ADC1/2 enzymes appear to have some
level of redundancy given that single mutants do not exhibit phenotypes, the investigation
of enzyme expression, localization, and redundancy under different conditions could also
be carried out.

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/
article/10.3390/ijms22084094/s1.
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Abbreviations

PAs Polyamines
ADC Arginine decarboxylase
CK Cytokinin
MZ Meristem zone
Put Putrescine
Spd Spermidine
Spm Spermine
Tspm Thermospermine
uORFs Upstream open reading frames
D-Arg D-Arginine
CuAOs Copper-containing amine oxidases
PAOs Polyamine oxidase
RBOH Respiratory burst oxidase homolog
ROS Reactive oxygen species
CKX Cytokinin oxidase
ARR Arabidopsis response regulator
QC Quiescent center
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