
F1000Research

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

, Miller School of Medicine,Thomas Malek

University of Miami USA

, National Institute of ArthritisJohn O'Shea

and Musculoskeletal and Skin Diseases
(NIAMS), National Institutes of Health USA,

, NIAMS, NationalAlejandro Villarino

Institutes of Health USA

, Blood Center of WisconsinDemin Wang

USA

, Indiana University School ofMark Kaplan

Medicine USA, Wells Center for Pediatric
Research USA

Discuss this article

 (0)Comments

4

3

2

1

REVIEW

 STAT5 and CD4  T Cell Immunity [version 1; referees: 4
approved]
David L. Owen, Michael A. Farrar
Center for Immunology, Masonic Cancer Center, and Department of Laboratory Medicine and Pathology, University of Minnesota,
Minneapolis, MN, 55455, USA

Abstract
STAT5 plays a critical role in the development and function of many cell types.
Here, we review the role of STAT5 in the development of T lymphocytes in the
thymus and its subsequent role in the differentiation of distinct CD4  helper and
regulatory T-cell subsets.
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Introduction
The transcription factor STAT5 is expressed in all lymphocytes and 
plays a key role in multiple aspects of lymphocyte development 
and function. STAT5 is a modular transcription factor that con-
sists of an N-terminal domain that allows for homotypic interac-
tions and tetramerization1, a DNA binding domain, an SH2 domain 
involved in recruitment to phosphorylated receptors and ultimately 
homodimerization, and a C-terminal transactivation domain2. 
STAT5 was initially identified as a transcription factor activated by 
prolactin in mammary gland epithelial cells3,4. Subsequent studies 
identified STAT5 binding activity in T cells5, and it was later estab-
lished that STAT5 was expressed in multiple cell types and activated 
by a number of cytokines, including the common gamma chain 
(γc)-dependent cytokines interleukin 2 (IL2), IL4, IL7, IL13, and 
IL156 as well as a number of γc-independent cytokines, including 
thymic stromal lymphopoietin (TSLP), granulocyte-macrophage 
colony-stimulating factor (GM-CSF), and IL277–11. Molecular char-
acterization of the Stat5 gene demonstrated that Stat5 was encoded 
by two closely linked genes that encoded STAT5a and STAT5b12–14. 
These two genes are likely the result of gene duplication and are 
highly homologous. Initial studies showed that STAT5a and STAT5b 
bound to a similar DNA core motif, although there were subtle dif-
ferences in their DNA binding preferences15. Subsequent chromatin 
immunoprecipitation followed by massively parallel DNA sequenc-
ing (chromatin immunoprecipitation sequencing [ChIP-Seq]) stud-
ies suggest that there may be differences in the subsets of genes 
bound by STAT5A and STAT5B16,17. However, these two transcrip-
tion factors appear to be functionally redundant if expressed at 
similar levels18. Substantial work has focused on the role of STAT5 
in both lymphocyte development and function. These studies have 
clearly established a critical role for STAT5 in early T-cell develop-
ment and pointed to critical functions for STAT5 in distinct T-cell 
subsets. Here, we will briefly review the role of STAT5 in T-cell 
development and then focus on advances in our understanding of 
the role that STAT5 plays in the differentiation of distinct T-cell 
subsets.

STAT5 in T-cell development
The observation that STAT5 is activated by multiple cytokines in 
T cells suggested that it might play a critical role in the develop-
ment or function (or both) of these cells. Disruption of Stat5a or 
Stat5b genes alone resulted in relatively modest phenotypes; for 
example, Stat5a-/- mice had defects in mammary gland development 
and lactation while Stat5b-/- mice had defects in response to growth 
hormone in male mice and natural killer cell proliferation19,20. To 
determine whether combined deletion of Stat5a and Stat5b might 
result in more profound immunodeficiencies, subsequent studies 
deleted the first coding exons of both Stat5a and Stat5b. This inter-
vention resulted in the production of truncated forms of STAT5a 
and STAT5b that acted as functional hypomorphs. These mice too 
had surprisingly mild defects in lymphocyte development, although 
T cells were grossly dysfunctional, as they could no longer prolifer-
ate in response to IL221,22. Subsequent studies using mice express-
ing a constitutively active form of STAT5b suggested that STAT5 
might play a more critical role in lymphocytes than suggested by 
the studies of STAT5 hypomorphs. These mice exhibited significant 
expansion of progenitor B cells, CD8+ memory T cells, and CD25+ 
regulatory T (Treg) cells23. Finally, complete deletion of Stat5a 

and Stat5b using Cre-LoxP approaches demonstrated that STAT5a 
and STAT5b are absolutely required for lymphocyte development, 
as Stat5a/b-/- mice had profound blocks in lymphocyte develop-
ment, which mimicked that observed in Il7r-/- mice24,25. These 
studies definitively demonstrated that the STAT5 hypomorph mice 
retained significant STAT5 function. Studies with STAT5 knockout 
mice demonstrated that STAT5 plays a critical role in the devel-
opment of γδ T cells, as it regulates T-cell receptor (TCR) γ gene  
rearrangement26,27. Likewise, STAT5 is required for expansion of 
double-negative thymocytes25. Finally, IL7R/STAT5 signaling plays 
an important role in CD8 versus CD4 lineage choice, and increased 
STAT5 signaling promotes CD8 T-cell differentiation28. The mecha-
nism by which STAT5 regulates early B- and T-cell development is 
still somewhat unclear, but there is clearly a key role for STAT5 in 
driving the expression of the pro-survival gene Mcl129. In addition, 
STAT5 promotes CD8 differentiation by upregulating the transcrip-
tion factor Runx328. Additional work is required to obtain a more 
complete understanding of the molecular mechanisms by which 
STAT5 entrains lymphocyte development.

STAT5 promotes development of specific T-cell 
subsets
The availability of both STAT5 gain-of-function and complete  
loss-of-function mice allowed for a more refined examination of 
the role of STAT5 in various T-cell subsets. STAT5 was found to 
play an important role in the development of T helper type 1 (TH1), 
TH2, TH9, T helper type GM-CSF (TH

GM
), and Treg cell subsets.

T helper type 1
TH1 polarization is driven by IL12 signaling and T-bet expression 
leading to production of TH1 cytokines, such as interferon gamma 
(IFNγ). Naïve T cells, however, do not express the IL12 receptor β2 
subunit (IL12Rβ2) and thus are unable to respond to IL12. Early 
studies observed that T cells deficient in JAK3, the kinase required 
for STAT5 activation downstream of γc-containing receptors, failed 
to produce IFNγ under TH1 polarizing conditions30. Furthermore, 
this study observed that IL2 blockade inhibited TH1 differentia-
tion. Subsequent studies revealed that IL2 signaling, via STAT5 
activation, potentiates the TH1 fate by inducing IL12Rβ2 and  
T-bet expression, thereby allowing the cell to respond to IL12 and 
polarize toward the TH1 fate31.

T helper type 2
Similar paradigms have been observed with respect to TH2 polari-
zation, which requires IL4 signaling and GATA3 expression. 
Early studies hinted at a role for STAT5 in TH2 development as 
T-cell production of IL4 was diminished without IL232,33. Subse-
quent studies demonstrated that STAT5 binds to the Il4 locus and 
drives IL4 production independently of GATA3; however, GATA3 
expression is still critical for the adoption of the TH2 fate34–37. It 
was later revealed that STAT5 mediates TCR-induced IL4 receptor 
alpha (IL4Rα) expression and this role was critical for TH2 induc-
tion38. This latter study suggested that STAT5 was induced by IL2 
in differentiating TH2 cells. Additional studies have shown that 
TSLP-dependent activation of STAT5 can also contribute to pro-
liferation, survival, and function of TH2 cells39. In a more recent 
study, another unique role of STAT5 was observed in TH2 polariza-
tion. This study indicated that STAT5 activation drove expression of 
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NLRP3, a component of the inflammasome, in T cells. Moreover, 
this expression of NLRP3 was required for efficient TH2 polari-
zation, an effect that was due to the ability of NLRP3 to form a 
complex with IRF4, which in turn induced the expression of TH2 
cytokines such as IL4, IL5, and IL1340. Unlike STAT5 deficiency, 
however, NLRP3 deficiency did not reduce IL4Rα expression. 
These studies have illustrated that STAT5 plays a unique role in 
TH2 development and function.

T helper type 9
TH9 T cells, a subset closely related to the TH2 lineage, differ-
entiate in the presence of transforming growth factor beta (TGFβ) 
and IL4 and are defined by prominent IL9 production. Initially, it 
was observed that the presence of IL4 inhibits TGFβ-driven induc-
tion of FOXP3 via a STAT6/GATA3-dependent mechanism41,42. 
This initial study found that instead of generating suppressive 
induced Treg cells, the combination of TGFβ and IL4 formed effec-
tor cells that produced IL9 and IL10, and thus resembled TH9 T 
cells. Thus, much like in TH2 cell differentiation, STAT5 plays a 
key role in TH9 development and function. The idea that STAT5 
plays an important role in TH9 development is supported by the 
fact that TSLP/STAT5 induces IL9 production, which was required 
for allergic airway inflammation induced by TSLP43. Consist-
ent with this idea, two recent studies demonstrated that activated 
STAT5 binds to the Il9 promoter and facilitates Il9 transcription 
by driving an activated chromatin configuration characterized by 
reduced H3K9 histone methylation44,45. This effect was reversed by 
IL21-driven induction of BCL6, which also interacts at adjacent 
locations in the Il9 promoter. Subsequent studies demonstrated that 
IL6-mediated activation of STAT3 opposes STAT5-driven differen-
tiation of TH9 cells; however, this effect was mediated by inhibi-
tion of STAT5 activation through diminished IL2 production and 
not via induction of BCL646. Thus, STAT5 activation and pathways 
that intersect with STAT5 signaling play important roles in TH9 
differentiation.

Whereas the precise mechanisms by which STAT5 contributes to 
specific T helper subset differentiation are unique, the general mode 
by which STAT5 acts is very similar. Namely, STAT5 functions to 
prime T cells such that they are competent to respond to the cytokine 
milieu and differentiate into a particular T helper subset. This sug-
gests a model whereby appropriately activated T cells, receiving 
TCR and co-stimulation, upregulate IL2 production and via auto-
crine signaling activate STAT5. Activated STAT5 then induces the 
expression of polarizing cytokine receptor genes, such as IL12Rβ2 
and IL4Rα, allowing these cells to integrate the local cytokines into 
an appropriate differentiation decision. A similar mechanism may 
hold for Treg cell differentiation, as STAT5 can upregulate CD25 
expression47, which is required for efficient Treg cell differentia-
tion. Furthermore, STAT5 acts in all of these T-cell subsets to drive 
the expression of T helper subset cytokines. Thus, STAT5 activation 
plays a crucial role in the differentiation and function of TH1, TH2, 
and TH9 subsets.

T helper type GM-CSF
Recently, another unique T helper subset which produces GM-CSF 
and IL3 was observed: the TH

GM
 subset. A 2014 study observed 

that TH
GM

 cells were critical mediators of disease progression in 
a murine model of autoimmune neuroinflammation: experimental 

autoimmune encephalomyelitis48. This article observed that IL7-
driven, not IL2-driven, STAT5 activation is required for the forma-
tion of these GM-CSF-producing pathogenic T cells. The authors 
also provide evidence that TH1 and TH17 differentiation cues are 
inhibitory to the development of TH

GM
, similar to findings in a 

human study which observed that IL17 antagonistically regulated 
GM-CSF-producing T cells that also trafficked to the central nervous 
system of patients with multiple sclerosis49. Furthermore, the study 
by Sheng et al. showed that the TH

GM
 cells are a unique T helper 

subset, as their expression profile is distinct from those of both TH1 
and TH17 cells48. Interestingly, another study observed that IL2Rα 
polymorphisms associated with multiple sclerosis potentiated  
IL2-mediated GM-CSF production in TH cells; however, the pro-
duction of IFNγ and IL17 was unaffected50. Thus, STAT5 activation 
has an important role in the development of TH

GM
 cells and may 

contribute to their pathogenicity in neuroinflammation.

Regulatory T cells
STAT5 plays a central role in the development and function of  
Treg cells. Early studies identified CD25, the high-affinity IL2Rα 
chain, as an accurate marker for suppressor T cells51. Subsequent 
studies observed that mice deficient in CD122, the IL2Rβ chain, 
developed autoimmune disease because they were devoid of func-
tional Treg cells52. Similar results were observed in mice lacking 
CD25, the IL2Rα chain53,54, and in human patients with loss- 
of-function mutations in STAT5b55. These observations suggested 
that STAT5 activation, downstream of IL2 receptor signaling, was 
important for Treg cell development or function or both.

STAT5 in the development of regulatory T cells
Successive studies on the differentiation of thymus-derived Treg 
(tTreg) cells built on the observation that Il2rb-/- mice failed to 
develop Treg cells. Initial studies demonstrated that STAT5 was the 
critical downstream effector in IL2Rβ signaling that drove tTreg 
cell development and that this was due in part to direct target-
ing of STAT5 to the Foxp3 promoter56–58. Follow-up studies pro-
posed a two-step model for tTreg cell development. In step one, 
high-affinity TCR stimulation drove the expression of CD25 and 
the development of a CD25+FOXP3- Treg progenitor cell. In the 
second step, Treg progenitor cells competed for a limiting amount 
of thymic IL2; progenitor cells that competed effectively for IL2 
and activated STAT5 then converted into mature Treg cells59,60. 
Consistent with this model, constitutive STAT5 activation was suf-
ficient to drive a subset of conventional thymocytes into the Treg 
cell lineage60. A more recent study observed that the degree of TCR 
stimulation a thymocyte received correlated with the expression of 
the TNFRSF members GITR, OX40, and TNFR261. Upregulation 
of these TNFRSF members facilitated tTreg cell development by 
sensitizing thymocytes to IL2 stimulation. Those thymocytes with 
the highest expression of GITR, OX40, and TNFR2 responded to 
much lower doses of IL2 by activating STAT5 and thus initiating 
the final step in Treg cell differentiation. Other recent studies have 
continued to point to the modulation of STAT5 as a critical factor in 
tTreg cell differentiation. For example, TRAF3 activation dampens 
tTreg cell development via inhibition of STAT5 activation62. It is 
not yet clear what regulates TRAF3 in Treg progenitor cells, but 
one possibility is that GITR/OX40/TNFR2 are involved in direct 
degradation of TRAF3 and thereby promote increased IL2 sensitiv-
ity. Likewise, thymocytes deficient in IFNAR fail to readily develop 
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into tTreg cells. This effect was due to IFNα/IFNβ enhancement 
of STAT5 activation, either directly or indirectly63. Thus, multiple 
pathways all impinge on STAT5 in developing Treg cells to regulate 
the number of Treg cells generated in the thymus.

A distinct type of tTreg progenitor cell population was also recently 
proposed. These progenitor cells express low levels of FOXP3 but 
no detectable CD25 (CD4+CD25-FOXP3lo). However, differentia-
tion of this population into mature tTreg cells was still dependent 
on IL2/STAT5 activation64. A subsequent study suggested that 
the formation of CD25-FOXP3lo tTreg progenitor cells was more 
dependent on IL15 than the parallel CD25+FOXP3- tTreg progeni-
tor subset65. Future studies will need to extend these observations 
and determine whether there are distinct roles for IL2 and IL15 
in tTreg progenitor cell formation and determine whether these  
effects are also dependent on STAT5 activation.

In addition to tTreg cells, there is another well-accepted class of 
Treg cells that differentiate from naïve CD4+ T cells outside the 
thymus (peripheral Treg, or pTreg, cells). Multiple studies have 
established that this class of Treg cells is important for maintaining 
complete tolerance, particularly at mucosal sites interacting with 
commensal microbes66,67. Conversion of naïve T cells to pTreg cells 
is driven by TGFβ ligation; however, this conversion is also depend-
ent on STAT5 activation via IL2 signaling68. IL2/STAT5-dependent 
signals are required not only for the conversion of naïve T cells 
into pTreg cells in vitro but also to generate these cells in vivo69. 
Further studies indicated that without IL2 the stability of TGFβ-
induced Treg cells was greatly diminished70. A more recent study 
has provided some mechanistic details on the convergence of TGFβ 
and STAT5 in controlling pTreg cell differentiation. Specifically,  
hydrogen sulfide is required to activate TET1 and TET2 demethy-
lases and maintain Treg cell homeostasis71. Furthermore, these 
authors observed that activated SMAD3, downstream of TGFβ  
signaling, and STAT5, downstream of the IL2 receptor,  
targeted TET1 and TET2 to the Foxp3 locus and initiated a 
hypomethylated state, which facilitated stable expression of Foxp3 
in Treg cells.

STAT5 in regulatory T-cell function
In addition to its role in the differentiation of both tTreg and pTreg 
cells, a critical role for STAT5 has been observed in Treg cell main-
tenance and function. For example, Blazar and colleagues demon-
strated that in the context of graft-versus-host disease, Treg cells 
expressing a constitutively active Stat5b transgene provide better 
protection than wild-type Treg cells72. One proposed mechanism by 
which STAT5 enhances Treg cell functionality is via binding sites 
within the Foxp3 gene locus, functioning to stabilize expression 
of Foxp3 and thus the suppressor phenotype. More recent studies 
have provided support for such a function. Specifically, the Cns2 
enhancer region, which binds several transcription factors, includ-
ing STAT5, was shown to be required for the maintenance of Foxp3 
expression73. This study further demonstrated that STAT5 binding 
to Cns2 enhanced the stability of Treg cells within inflammatory 
contexts. A subsequent study provided additional evidence that 
STAT5 plays a central role in maintaining Treg cell homeostasis. 
First, using histocytometric analysis of whole lymph nodes, the 
authors observed that Treg cells which contain activated STAT5 
are clustered around IL2-producing effector cells that are being  

stimulated by self-antigen74. Taking this observation further, the 
authors demonstrated that Treg cells are unable to properly restrain 
IL2-deficient effector cells and that the IL2-deficient effector  
T cells had longer interaction times with dendritic cells. This study 
also provided data that this suppressive function was dependent on 
TCR signaling in the Treg cells, a conclusion that was supported 
by a study by Rudensky and colleagues75. To further understand 
the role of STAT5 activation in mature Treg cells, another study 
used Foxp3-Cre to drive deletion of the IL2Rβ chain in mature 
Treg cells. Those experiments largely recapitulated the severe 
autoimmunity observed in Il2rb-/- mice76,77. To understand whether 
this effect was due to an inability to activate STAT5 or another  
pathway downstream of the IL2 receptor, the authors generated mice 
in which a Stat5b-CA transgene was integrated into the ROSA26 
locus preceded by a loxP flanked Stop cassette. Importantly, the 
Rosa26-Stat5b-CA transgene was able to rescue the autoimmune 
symptoms observed in Foxp3-Cre x Il2rbFL/FL mice. Similar to the 
report by Blazar and colleagues72, this latter study also observed 
that Treg cells expressing STAT5b-CA were more potent suppres-
sor cells76. Interestingly, RNA-Seq studies comparing wild-type and 
STAT5b-CA-expressing Treg cells revealed that the STAT5b-CA 
gene signature was unique and not simply an enhancement of the 
baseline Treg gene profile. Thus, STAT5 plays a multifunctional 
role in Treg cell biology. Initially, STAT5 acts as a central effec-
tor in initiating the differentiation of Treg cells but, in mature Treg 
cells, drives their suppressive capabilities and maintains FOXP3 
expression. Thus, STAT5 acts as a bridge between effector and sup-
pressor responses, via integration with TCR signaling, to prevent 
effector responses toward self-antigens while permitting responses 
to non-self-antigens.

STAT5 inhibits the development of other T helper 
subsets
Although STAT5 is required for the development and function of 
some T helper subsets, it also plays an important role in blocking 
the development of other T helper subsets, most notably TH17 
and T follicular helper (T

FH
) cells. TH17 cells can be generated 

by stimulation with cytokines that activate STAT3, consistent 
with a role for STAT3 in TH17 generation78–80. Subsequent stud-
ies demonstrated that the inflammation observed in IL2-deficient 
mice stemmed from not only a lack of Treg cells but also the fact 
that IL2 and STAT5 signaling was no longer able to counter the 
development of inflammatory TH17 cells81. ChIP-Seq studies of 
STAT3 and STAT5 in CD4+ T cells showed that these two tran-
scription factors bound to identical sites within the Il17 gene locus 
and exerted opposite effects on gene transcription82. Other stud-
ies demonstrated that IL2/STAT5 signaling can also affect TH17 
development by downregulating expression of the IL6R, which is 
required to activate STAT383. Although the molecular mechanisms 
by which STAT5 repressed Il17 transcription have not been com-
pletely defined, it appeared that at least three mechanisms could 
exist. First, STAT5 directly competed with STAT3 for DNA binding 
and thereby prevented STAT3 from directly inducing Il17 transcrip-
tion. Second, STAT5 binding also correlated with binding of the  
co-repressor NCOR2 and thus might actively repress gene  
transcription by altering histone methylation or acetylation82. Third, 
STAT5 repressed expression of the IL6R, leading to reduced activa-
tion of STAT383. Further studies are needed to clarify the mecha-
nisms by which STAT5 represses or prevents gene transcription.
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Figure 1. Model outlining how STAT5 activation (pSTAT5) contributes to the differentiation of naïve CD4 T cells into various T helper 
(TH) subsets. In TH1 development, STAT5 drives interleukin 12 receptor beta 2 subunit (IL12Rβ2) expression. For TH2, STAT5 drives 
upregulation of IL4Rα. For TH9, STAT5 activation is required for IL9 production. In T helper type granulocyte-macrophage colony-stimulating 
factor (THGM), STAT5 is critical for granulocyte-macrophage colony-stimulating factor (GM-CSF) production. STAT5 opposes the activation of 
STAT3, which is required for TH17 differentiation. STAT5 downregulates Bcl6 expression to inhibit T follicular helper (TFH) cell differentiation, 
and in regulatory T cells STAT5 turns on Foxp3 as well as CD25.

Figure 2. Model outlining the roles STAT5 plays in T regulatory biology in both the thymus and the periphery. STAT5 activation (pSTAT5) 
is required to complete the differentiation of thymic regulatory T (tTreg) cells and initiate the differentiation of peripherally induced regulatory 
T (pTreg) cells. STAT5 is also critical for the maintenance of Foxp3 expression, via binding the Cns2 regulatory region in Foxp3, and the 
suppressor phenotype of regulatory T cells.
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In addition to suppressing TH17 differentiation, STAT5 inhib-
its the development of T

FH
 cells. T

FH
 cells require STAT3- 

inducing cytokines, such as IL21 and IL6, for their differentiation84. 
In contrast, the STAT5-inducing cytokine IL2 was initially shown 
to inhibit T

FH
 cell development85–87. Moreover, these studies demon-

strated that the effect of IL2 required STAT5 activation18,86,87. This 
effect appears to involve negative regulation of Bcl6, a key tran-
scription factor required for T

FH
 cell differentiation18,88–90. STAT5 

binds to the Bcl6 gene promoter and potently blocks Bcl6 tran-
scription18,91. The mechanism by which STAT5 prevents Bcl6 gene 
transcription remains unclear, although it is possible that this once 
again involves competition between STAT5 and STAT3 for com-
mon binding sites in the Bcl6 gene. More recent studies have found 
that IL7 also plays an important role in T

FH
 cell differentiation. 

These studies demonstrated that TH1 cells which lack IL2R expres-
sion eventually upregulate both the IL6R and the IL7R. This results 
in a bi-potent state, in which cells that are stimulated with IL7 acti-
vate STAT5, block T

FH
 cell differentiation, and preferentially give 

rise to central memory T cells. In contrast, preferential exposure 
to IL6 induces Bcl6 transcription via a STAT3-dependent process 
and promotes T

FH
 cell differentiation92. A subsequent study demon-

strated that this also involves additional feedback loops, as BCL6 
has been shown to bind to many STAT5 binding sites (including 
in the Il7r gene) in T

FH
 cells and inhibit the expression of these 

STAT5-dependent genes93.

Future directions
It is now clear that STAT5 plays important roles in both T-cell 
development and shaping the CD4+ T-cell immune response. 
However, major gaps remain in our knowledge. First, substantial 
evidence now supports the idea that STAT5 competes for binding 
sites with opposing effectors (for example, STAT3 and BCL6), but 
the molecular mechanisms by which STAT5 alters the epigenome to 
enhance or repress transcription remain unclear. Second, we know 
that STAT5 can interact with co-activators or co-repressors94–96, 
but we do not know whether these known interactors are critical 

for STAT5 function. Moreover, very little is known about what  
determines whether STAT5 induces or represses transcription at  
specific gene loci. One study suggested that this may be due to 
STAT5 binding as a dimer versus a tetramer97. In contrast, other 
reports, using STAT5 mutant mice in which STAT5 cannot form 
tetramers, primarily reported defects in STAT5-dependent gene 
activation and not repression98. Thus, key future questions will be 
to resolve the molecular mechanisms by which STAT5 alters chro-
matin structure and promotes or represses gene transcription and 
to establish what determinants result in STAT5 promotion versus 
repression of gene transcription.
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