ORIGINAL ARTICLE

Haplotype analysis suggest that the *MLH1* c.2059C > T mutation is a Swedish founder mutation

Jenny von Salomé¹ · Tao Liu² · Markku Keihäs² · Moni Morak^{3,4} · Elke Holinski-Feder^{3,4} · Ian R. Berry⁵ · Jukka S. Moilanen^{6,7} · Stéphanie Baert-Desurmont⁸ · Annika Lindblom¹ · Kristina Lagerstedt-Robinson¹

Published online: 29 December 2017 © The Author(s) 2017. This article is an open access publication

Abstract

Lynch syndrome (LS) predisposes to a spectrum of cancers and increases the lifetime risk of developing colorectal- or endometrial cancer to over 50%. Lynch syndrome is dominantly inherited and is caused by defects in DNA mismatch-repair genes *MLH1*, *MSH2*, *MSH6* or *PMS2*, with the vast majority detected in *MLH1* and *MSH2*. Recurrent LS-associated variants observed in apparently unrelated individuals, have either arisen de novo in different families due to mutation hotspots, or are inherited from a founder (a common ancestor) that lived several generations back. There are variants that recur in some populations while also acting as founders in other ethnic groups. Testing for founder mutations can facilitate molecular diagnosis of Lynch Syndrome more efficiently and more cost effective than screening for all possible mutations. Here we report a study of the missense mutation *MLH1* c.2059C > T (p.Arg687Trp), a potential founder mutation identified in eight Swedish families shared a haplotype of between 0.9 and 2.8 Mb. While *MLH1* c.2059C > T exists worldwide, the Swedish haplotype was not found among mutation carriers from Germany or France, which indicates a common founder in the Swedish population. The geographic distribution of *MLH1* c.2059C > T in Sweden suggests a single, ancient mutational event in the northern part of Sweden.

Keywords Lynch syndrome · MLH1 · Missense mutation · Founder mutation · Haplotype

- Kristina Lagerstedt-Robinson kristina.lagerstedt@ki.se
- ¹ Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
- ² Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- ³ Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany
- ⁴ MGZ Medizinisch Genetisches Zentrum, Munich, Germany
- ⁵ Leeds Genetics Laboratory, St James's University Hospital, Leeds, UK
- ⁶ PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- ⁷ Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
- ⁸ Department of Genetics, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Inserm U1079, IRIB, University of Rouen, Normandy University, Rouen, France

Introduction

Lynch syndrome (LS) is the most common hereditary colorectal cancer syndrome worldwide, representing 2-4% of the total colorectal cancer burden [1, 2]. Among individuals with a cancer diagnosis at young age the proportion is much higher. Patients have an increased risk for tumors primarily in the proximal colon and the lining of the endometrium, but also in sites such as the stomach, ovaries, small bowel, kidney, urinary tract and brain [3].

LS has an autosomal dominant pattern of inheritance and is caused by germline mutations in any of the DNA mismatch-repair genes *MLH1*, *MSH2*, *MSH6*, *PMS2* and *EPCAM* [4]. Because of incomplete penetrance and variable age of cancer development not all mutation carriers develop cancer. Still, there is up to 70% lifetime risk to come down with early onset colorectal- or endometrial cancer, with the characteristic accelerated development from adenoma to carcinoma [3]. To date just above 3000 sequence variants have been reported for *MLH1*, *MSH2*, *MSH6* and *PMS2* (http:// insight-group.org/variants/database, accessed August 25th, 2016). The vast majority are described in *MLH1* and *MSH2*, accounting for approximately 76% of all mutations detected in Swedish Lynch families [5]. Families with a mutation within *MLH1* or *MSH2* commonly fulfil the Amsterdam I criteria [6] and have a mean age of CRC onset of between 43 and 46 years [7].

Most mutations in the MMR genes are family specific; still some mutations are observed in several different geographic or ethnic populations. Some of them recur in unrelated families because of sequence characteristics that make DNA prone to mutation [8]. Other mutations, so called founder mutations, arose at different occasions in single individuals and fanned out by succeeding generations and therefore show a high frequency in specific ethnic groups. Founder mutations are common in mendelian disorders and have been described in genetically isolated populations as well as in populations with a migratory history [9]. To date, at least 55 LS-associated founder mutations have been identified [8]. Examples are the *MLH1* exon 16 deletion and the MLH1 substitution c.454-1G>A, two mutations that together account for up to 50% of LS in the eastern part of Finland [10]. Other examples are the MSH2 c.1906G>C mutation, that accounts for about 20% of all cases of LS in Ashkenazi Jews [11], and the American founder in MLH1 c.589-2A>G [12].

For several LS-associated founder mutations, a common origin has been verified on the basis of shared haplotypes. Moreover, the regional distribution of a mutation can suggest the origin of the mutation. In Sweden three MMR founder mutations have previously been reported; two substitutions in MSH2 [13] and one frameshift mutation in PMS2 [14]. In this study, we have analyzed the disease associated haplotype of the MLH1 missense mutation c.2059C>T, detected in ten families of Swedish origin [5]. This mutation was first reported in Poland by Jakubowska in 2001 [15] and classified as pathogenic in 2013 [16], and has been detected in geographically diverse populations such as Japan, Australia, Germany, Spain and Italy. Our aim was to determine whether the Swedish LS families shared disease associated haplotype, and if so, investigate if this haplotype was present also in other families, from other countries, carrying the same mutation.

Materials and methods

Patients

Families from Stockholm County, Sweden, with suspected LS were referred to the Department of Clinical Genetics at the Karolinska University Hospital in Stockholm. After genetic counseling, suspected mutation carriers voluntarily took part in genetic screening of the MMR genes, performed as described [17]. Ten families were found to carry the MLH1 c.2059C>T variant in Sweden [5]. Eight of those were identified at the Karolinska University Hospital in Stockholm between 1994 and 2015, and were consequently enrolled in this study (clinical data presented in Table 1). In addition, two mutation carriers (brothers) from Finland were included, as well as three families from Germany and one family from France. The Finnish family has Swedish ancestry, originating from an area close to the Swedish border in the northern part of Finland. Medical histories and pedigrees were collected from the Swedish families by direct interviews of probands or other family members. Tumor diagnoses were confirmed by pathology reports or hospital records, and age at cancer diagnoses were recorded for the individuals affected. Clinical information regarding the French and German families was available to some extent, while such information was missing for the Finnish family.

Patients and TaqMan analysis in prevalence study

The case cohort in the prevalence study was composed of 2982 consecutive CRC patients which were enrolled in a national study. Patients underwent surgery in Stockholm or Uppsala between 2004 and 2009. They were interviewed by the same person about their family history of colorectal cancer and other malignancies. Cancer in first- and seconddegree relatives and cousins was recorded, as well as tumour location, sex and age of the index-patients based on the medical records. All tumours were evaluated directly after surgery by a local pathologist. The control cohort was composed of 1610 anonymous blood donors from the same geographic region as the CRC patients, including 448 spouses to the CRC patients who did not have cancer and no family history of cancer. Screening of the c.2059C>T mutation in the colon cancer cases and control group were performed using TaqMan SNP Genotyping Assay (Applied Biosystems, Foster City, CA) according to the manufacturer's instructions.

Haplotype analysis

Haplotype analysis was initially performed in one selected family (Family 1552) with more than three known mutation carriers spanning over more than two generations, in order to determine the shared haplotype carrying the disease associated allele. In this family, three individuals were genotyped. In four Swedish families two individuals were genotyped to verify the disease haplotype (families 1894, 765, 1197 and 2143). In the remaining three Swedish families (19, 1517 and F0009520) only the index case was available for genotyping. Two individuals (brothers) from a Finnish family carrying the *MLH1* c.2059C>T mutation (family 9) were genotyped. Regarding the French family (family 10) and the

Table 1	Clinical features o	of the Swedish familie	es carrying the MLH1	c.2059C>T (p	Arg687Trp) mutation

Family	Generations in pedigree	Number of individuals in pedigree	Number of known car- riers	Number of diagnosis in carriers	Number of carriers with diagnosis	Ages at diagnosis in carriers	Cancer in non-carrier/not tested patients (age present if known)
1552	5	18	4	2 CRC 1 EC	2 1	31–52 53	1 CRC at 40 ^d
1894	4	30	5	2 CRC	2	63- ^b	3 CRC ^d
19	4	80	4	4 CRC 1 PC	4 1 ^a	45–69 80	4 CRC ^d 1 SC ^c 1 liver ca ^d 1 brain ca ^d 1 oesophagus ca ^d 1 kidney ca ^c
765	5	40	5*	3 CRC	3	38- ^b	
1197	5	56	13	10 CRC 1 EC 2 SC	9 ^a 1 ^a 1	41–80 78 71, 80	1 CRC ^c 2 CRC ^d
1517	4	11	2	1 CRC 1 OV CA	1 1	48 53	1 CRC at 80 years ^c
2143	4	20	2	1 CRC	1	60	1 liver and lung ca ^c 1 CA UNS at 49 years ^d
F0009520	2	2	2	2 CRC	2	57, 67	
10	3	15	1	1 CRC	1	49	1 CRC at 58 ^d
11	n/a	n/a	1	1 CRC	1	36	n/a
12	n/a	n/a	1	1 CRC	1	37	n/a
13	n/a	n/a	1	1 CRC	1	37	n/a

CRC colorectal cancer, EC endometrial cancer, PC pancreas cancer, OV CA ovarian cancer, SC skin cancer, CA UNS unspecified tumor location, ca cancer

^aPatient with two tumor diagnosis

^bUnknown age

^cVerified non-carrier

^dNot tested

*One individual with both PMS2 and MLH1 mutation

three German families (family 11–13) with this mutation, only the index case was available for genotyping.

Genomic DNA from the mutation carriers were initially analyzed using 19 polymorphic microsatellite markers surrounding the MLH1 gene, located on chromosome 3p22.2 (D3S1263, D3S2338, D3S1266, D3S3518, D3S1619, D3S1612, D3D3512, D3S1277, D3S3718, D3S2411, D3S1561, D3S1611, D3S2417, D3S3623, D3S1298, D3S3939, D3S1260, D3S3521 and D3S1289). The markers were selected using the UCSC database (http://genome. ucsc.edu/), human assembly GRCh37. Markers were viewed using full view of STS (sequence-tagged site) markers in track "Mapping and sequencing". Polymorphic markers, primarily markers in the deCode database were highlighted under STS markers track settings. Markers in the investigated region (11.5–54.5 Mb according to human assembly GRCh37) were selected. These markers span a genomic region of 43.0 Mb with the MLH1 c.2059C>T (p.Arg687Trp) mutation (37.09 Mb) situated between the markers D3S1611

(37.07 Mb) and D3S2417 (37.43 Mb). When a common haplotype was found in the Swedish families, only the shared genomic region was further analyzed in the Finnish, French and three German families. Primers were pooled and amplified using Type-it Microsatellite PCR Kit according to the manufacturer's instructions (QIAGEN, Hilden, Germany). PCR-products were analyzed using 3500xL Genetic Analyzer and GeneMapper v5 according to the manufacturer's protocol (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA).

The local Ethics Committee at Karolinska Institutet has approved this study, which followed the tenets of the Declaration of Helsinki.

Results

Clinical data

Eight families carrying the MLH1 c.2059C>T mutation were identified at the Karolinska University Hospital in Stockholm. All families are, to ours and to the families understanding, unrelated. Genetic counseling was sought due to suspicion of inherited cancer and the number of family members in each pedigree varied considerably, as well as the number of genetically tested individuals. The clinical data is summarized in Table 1. There were 29 colorectal cancers in 28 patients and two endometrial cancers in two patients. In addition, there was one patient with ovarian cancer. The first CRC was diagnosed at a median age of 58.5 years (mean 55.5 years, range 31-80 years) and the first EC was diagnosed at a median age of 65.5 years (mean 65.5 years, range 53-78 years). One woman with CRC also developed EC, in which the CRC preceded the EC by 18 years. Two men with CRC also had other malignancies, including prostate cancer in one patient and malignant melanoma in the other.

Prevalence of MLH1 c.2059C>T

Among 1610 normal controls, none were carriers of the mutation. Within the cohort of CRC cases, only one individual was a carrier of the mutation (1/2983) and this family (Family 2143) was included in our study. The index patient was first diagnosed with CRC cancer when she was 60 and had turned 72 by the time of this study. Her sister passed away at an age of 69 suffering from lung and liver cancer (Table 1). Only the index patient and one of her two daughters were genetically tested and proven to be mutation carriers.

Outcome of haplotype analysis

In order to determine the haplotype that carried the mutated allele, haplotype analysis was initially performed in a family with more than three known carriers, spanning over more than two generations. Figure 1 displays the shared haplotype and the relation between the analyzed individuals. Based on data from one individual each from seven unrelated Swedish families (Families 1552, 1894, 19, 765, 1197, 1517, 2143), we found a shared haplotype of about 0.9-2.8 Mb (minimum and maximum distance respectively) within the markers D3S1277 and D3S2417 surrounding MLH1 (human assembly GRCh37, haplotype depicted in Table 2). We then proceeded to analyze this common haplotype in the Finnish (Family 9), the French (Family 10), and the three German

244 266 224 244 259 265 253 263 261 252 252 252 223 219 215 217 198 198 199 203 181 181 179 181 266 266 262 266 278 267 267 274				\searrow		\searrow		
366 298 295 88 161 163 99 159 159 22 209 205 22 128 128 77 294 296 88 156 156 11 223 236 661 244 224 311 259 259 323 223 225 198 197 197 199 181 179 199 181 179 260 266 266 278 267 298 295 295 199 161 163 163 163 159 166 155 167 209 217 n/a n/a 128 138 128 138 128 138 128 134 294 296 296 296 209 217	3	195	201	(\backslash)		-1		
8 161 163 .9 159 159 .2 209 205 .2 128 128 .7 294 296 .8 156 156 .61 224 225 .98 197 197 .99 181 179 .60 266 266 .621 278 267 .89 219 217 .99 181 179 .60 266 266 .61 163 163 .621 278 267 .89 219 217 .666 155 163 .666 155 163 .666 155 163 .666 155 164 .666 155 165 .666 158 154 .666 252 252 .666 254 244 .666 255 253 .666 155	8	104	106	\sim				
9 159 159 159 2 209 205	66	298	295	_		_		
2 209 205 .2 128 128 .77 294 296 .8 156 156 .11 223 236 .661 244 224 .611 259 259 .177 261 258 .223 225 223 .98 197 197 .99 181 179 .600 266 266 .21 278 267 .89 219 217 .161 163 163 .159 166 155 .209 217 n/a .219 217 .161 163 163 .159 166 155 .209 217 n/a .223 223 223 .224 296 296 .292 265 253 .201 252 252 .223 219 215 .224 266 </th <th>.8</th> <th>161</th> <th>163</th> <th></th> <th></th> <th></th> <th></th> <th></th>	.8	161	163					
128 128 128 77 294 296 8 156 156 11 223 236 661 244 224 117 261 258 223 225 223 223 225 223 223 225 223 298 197 195 195 205 298 197 197 104 104 104 104 121 278 267 298 295 295 295 129 217 161 163 163 163 159 166 155 167 209 217 n/a n/a 158 158 154 156 156 158 154 156 223 223 223 223 223 244 266 224 244 259 265 253 266 261 252 252 25	.9	159	159					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.2	209	205	\perp		\perp	_	-
88 156 156 11 223 236 161 244 224 11 259 259 147 261 258 123 223 225 198 197 197 199 181 179 195 195 205 121 278 266 266 104 104 104 121 278 267 298 295 295 295 189 219 217 161 163 163 163 159 166 155 167 209 217 n/a n/a 189 219 217 161 163 163 163 159 166 155 167 209 217 n/a n/a 128 138 128 138 128 134 294 296 296 305 156 158 154 156 158 154 156 223 223 223<	.2	128	128			()		
11 223 236 361 244 224 311 259 259 323 223 225 323 223 225 328 197 197 329 181 179 195 195 295 3260 266 266 104 104 104 104 321 278 267 298 295 295 295 329 219 217 161 163 163 163 329 219 217 161 163 163 163 329 219 217 161 163 163 163 329 219 217 166 155 167 329 219 217 7 161 163 163 163 320 217 166 155 167 128 138 128 134 294 296 296 296 295 295 295 252	7	294	296	C		C		
iiii 244 224 iiii 259 259 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	.8	156	156					
311 259 259 417 261 258 223 223 225 98 197 197 939 181 179 195 195 195 203 260 266 266 104 104 104 104 278 267 298 295 295 295 289 219 217 161 163 163 163 159 166 155 157 159 166 155 156 209 217 n/a n/a 1/a 1/a 1/a 128 138 128 138 128 134 134 294 296 296 296 305 156 158 154 156 156 158 154 156 158 154 156 259 265 253 263 261 252 252 252 261 252 252 252 252 252 252 25			236					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
323 223 225 198 197 197 339 181 179 195 195 195 201 360 266 266 104 104 104 104 321 278 267 298 295 295 298 289 219 217 161 163 163 163 159 166 155 167 209 217 n/a n/a 128 138 128 138 128 134 128 138 128 134 209 217 n/a n/a 1/a 1/a 1/a 1/a 128 138 128 138 128 134 134 134 294 296 296 296 305 156 158 154 156 223 223 223 223 223 223 223 224 261 252 252 252 252 252 252 252 1								
197 197 193 181 179 195 195 195 201 160 266 266 104 104 104 104 521 278 267 298 295 295 298 289 219 217 161 163 163 163 159 166 155 167 158 128 138 128 134 294 296 296 296 305 156 155 156 128 138 128 154 156 158 154 156 294 296 296 296 296 296 295 253 265 259 265 253 265 253 265 253 265 261 252 252 252 252 252 252 252 198 198 199 203 181 181 179 183 266 266 266 262 266 262								
181 179 195 195 195 201 260 266 266 104 104 104 104 211 278 267 298 295 295 295 289 219 217 161 163 163 163 159 166 155 156 156 156 156 294 296 296 296 305 157 158 154 156 158 158 154 156 158 154 156 263 253 263 261 252 253 265 2								
106 266 266 104 104 104 104 121 278 267 298 295 295 295 289 219 217 161 163 163 163 159 166 155 167 209 217 n/a n/a 128 138 128 138 128 133 128 134 128 134 128 209 217 n/a n/a n/a 1/a 1					405	1.05	405	204
278 267 298 295 295 295 289 219 217 161 163 163 163 159 166 155 167 209 217 n/a n/a 128 138 128 138 128 134 294 296 296 305 156 158 154 156 158 154 156 223 223 223 223 223 232 244 259 265 252 252 252 252 252 252 223 219 215 217 198 198 199 203 181 181 179 183 266 266 262 266 278 267 267 267 274 267 274								
219 217 161 163 163 163 159 166 155 167 209 217 n/a n/a 128 138 128 134 294 296 296 305 156 158 154 156 223 223 223 223 244 266 224 244 259 265 253 265 261 252 252 252 219 215 217 198 198 199 203 181 181 179 181 266 266 262 266 278 267 267 274 266 262 266								
159 166 155 167 209 217 n/a n/a 128 138 128 134 294 296 296 305 156 158 154 156 223 223 223 233 244 266 224 244 259 265 253 265 223 219 215 217 198 198 199 205 181 181 179 183 266 266 262 265 273 219 215 217 198 198 199 203 181 181 179 181 266 266 262 266 278 267 267 274								
209 217 n/a n/a 128 138 128 134 294 296 296 305 156 158 154 156 223 223 223 233 244 266 224 244 259 265 253 263 261 252 252 252 198 198 199 203 181 181 179 181 266 266 262 266 278 267 267 274	89	219	217					
128 138 128 134 294 296 296 305 156 158 154 156 223 223 223 233 244 266 224 244 259 265 253 265 223 219 215 215 198 198 199 205 181 181 179 183 266 266 262 266 278 267 267 274								
294 296 296 305 156 158 154 156 223 223 223 233 244 266 224 244 259 265 253 265 223 219 215 217 198 198 199 203 181 181 179 181 266 266 262 266 267 267 267 274							-	
156 158 154 156 223 223 223 233 244 266 224 244 259 265 253 263 261 252 252 252 223 219 215 217 198 198 199 203 181 181 179 181 266 266 262 266 278 267 267 274								
223 223 233 244 266 224 244 259 265 253 263 261 252 252 252 223 219 215 217 198 198 199 203 181 181 179 181 266 266 262 266 278 267 267 274								
244 266 224 244 259 265 253 263 261 252 252 252 223 219 215 217 198 198 199 203 181 181 179 181 266 266 262 266 278 267 267 274								233
259 265 253 265 261 252 252 252 223 219 215 217 198 198 199 203 181 181 179 181 266 266 262 266 278 267 267 274								244
261 252 252 252 223 219 215 217 198 198 199 203 181 181 179 181 266 266 262 266 278 267 267 274								263
198 198 199 203 181 181 179 181 266 266 262 266 278 267 267 274								252
181 181 179 181 266 266 262 266 278 267 267 274					223	219	215	217
266 266 262 266 278 267 267 274					198	198	199	203
278 267 267 274					181	181	179	181
					266	266	262	266
219 211 203 219					278	267	267	274
					219	211	203	219

Fig. 1 Analyzed markers on chromosome 3p22 in family 1552. The disease associated haplotype is marked with a box and in bold letters. Individual with a black dot indicates this is a verified mutation carrier, while a non filled dot indicates a verified non-mutation carrier

families (Families 11-13) as well as one additional Swedish family (Family F0009520) and discovered that the Finnish family and the additional Swedish family shared a haplotype with the Swedish families, while the German and French families shared alleles at some locations but did not share the Swedish haplotype (Table 2).

Discussion

1. D3S126 2. D3S233

3. D3S126 4. D3S351

5. D3S161 6. D3S161

7. D3S351

8 D3S127

9. D3S371 10.D3S241

11. D3S15

12. D3S16

13. D3S24 14. D3S36

15. D3S12

16. D3S39

17. D3S12

18. D3S35

19. D3S12

LS is an autosomal dominantly inherited cancer syndrome with high penetrance, characterized by primarily early onset colorectal and endometrial cancer. The syndrome is caused by inherited mutations in any of the five MMR genes MLH1, MSH2, MSH6, EPCAM or PMS2. A number of pathogenic founder mutations have been described in those genes, which are shared by apparently unrelated families that inherited them from a common ancestor. In this study, we have identified a shared haplotype of 0.9-2.9 Mb in eight Swedish families and one Finnish family with Swedish

Table 2 Markers analyzed in eight Swedish families (1552, 1894, 19, 765, 1197, 1517, 2143 and F0009520), one Finnish family (9), one French family (10) and three German families (11–13) MLH1; c.2059C>T (37.09 Mb)

	-											_									_		Τ						
Marker/Family	D3S 1263	D3S 2338	_	D3S 1266	D3S 3518	-	D3S 1619		D3S 1612	D3S 3512	2 D3S 1277		D3S 3718	D3S 2411	-	D3S 1561 1	D3S 1611		D3S 2417	D3S 3623		D3S 1298			D3S 3939		D3S 1260		D3S 1260
1552	195 195	104 10	104 295	298	161 1	163 15	159 167	7 209	9 217	128 138	265	263 1	156 158	222	222 243	226 2	258 264	4 259	250	222 2	218 1	197 197	7 181		181	266	266 266	266	266 266 266
1894	193 209	104 9.	94 295	302	161 1	161 15	159 159	9 209	9 217	128 134	265	271 1	156 156	222	222 243	241	258 264	4 261	253	222 2	216 1	197 197	7 181	181		266	266 266	266 266 266	266 266
19	193 209	100 94	4 297	302	161 1	159 10	161 165	5 209	9 217	128 134	271	271 <mark>1</mark>	156 150	222	222 243	239	258 258	8 261	261	222	224 1	197 195	5 181	181		266	266 262	266 262 266	266 262
765	n/a	n/a		n/a	161 1	163 15	159 165	5 209	9 209	128 126	265	263 1	156 150	222	222 243	224	258 258	8 261	261	222 2	222 1	197 195	5 181	1 179		266 20	268		268 266
1197	193 197	98 9	98 295	298	161 1	163 15	159 159	9 209	90 209	128 128	265	267 1	156 156	222	222 243	224	258 258	8 261	259	222	224 1	197 208	8 183	8 175		266 2:	255	255 277	255
1517	193 205	102 10	108 295	304	161 13	155 15	159 159	9 209	9 209	128 128	265	267 1	156 156	222	222 243	237	258 252	2 261	253	222	218 1	197 197	7 181	1 175		266 21	255	255 266	255
2143	197 207	102 92	295	295	161 1	159 15	159 159	9 209	9 209	128 126	265	263 1	156 156	222	222 243	223	258 258	3 261	261	222	220 1	197 192	2 181	1 175	266		255	255 266	255
F0009520										128 134	4 265	271 1	156 150	222	222 243	223	258 252	2 261	259	222	220 1	197 203	3 181	1 179	266		269		269 266
6										128 136	265	275 1	156 156	222	226 243	223	258 258	8 261	259	222	224 1	197 197	7 181	1 175	266		264		264 266
10										128 124	265	269 1	150 158	222 22	222 229	223	258 258	8 259	259	224	224 1	197 199	9 179	179	266		264		264 266
Ξ										128 138	265	275 1	150 150	222	222 241	223	252 261	1 253	256	216 2	216 1	199 211	1 185	5 177	266	5	262 268	262 268 279	268
12										134 138	263	271 1	156 150	222 22	222 241	223	252 261	1 253	253	216 2	218 1	199 209	9 181	181	266	ñ	262 270	262 270 274	270
13										128 128	265	263 1	156 150	222	222 243	225	266 266	6 253	259	222	224 1	199 192	2 181	181	266		266		266 279

ancestry using 19 microsatellite polymorphic markers surrounding the Lynch syndrome associated mutation *MLH1* c.2059C>T, (p.Arg687Trp). At marker DS31277, family 19 carried the disease allele 271 instead of the common 265 allele (Table 2). Family 1552 shows a recombination event between marker D3S1611 and D3S2417. Since the downstream as well as upstream alleles of these families were consistent with the founder alleles in the common haplotype, this might indicate mutation events rather than a recombination event and thus would implicate that the shared haplotype is larger than 2.9 Mb. Nonetheless, the alleles shared by the Swedish and Finnish family are at a genomic segment of a minimum of 0.9–2.8 Mb.

The earliest verified case in seven of the Swedish families was in the nineteenth century and occurred in individuals from a geographical area in the middle-north of Sweden, except for one family which had ancestors from the very north part of Sweden, as did the Finnish family. Noteworthy, there are two additional Swedish families previously identified with this mutation [5] living in the northern part of Sweden. However, samples from these families were not available for haplotype analysis at the time of this study.

In family number 19, 1197 and 2143, the *MLH1* c.2059C>T mutation does not perfectly segregate with cancer diagnosis (Table 1). Mutations causing Lynch syndrome are indeed characterized by heterogeneity both in penetrance and phenotype, however in these families this segregation pattern is probably due to random events of sporadic cancer, and in some cases due to young age in known mutation carriers. Importantly, the contribution of MMR mutations to Lynch syndrome associated cancer is a function of each patient's genetic and environmental background, influencing mutation penetrance. Therefore, a more limited genetic variability would be beneficial in the study of cancer risks. This can be offered in members of founder populations such as *MLH1* c.2059C>T, and might aid in more personalized cancer-risk counseling for those patients.

The MLH1 c.2059C>T mutation occurs independently both in Europe [18–20], Asia [21] and Australia [22, 23], suggesting that globally this is a recurring mutation, while in Sweden it seems to represent a founder mutation which arose in a common ancestor that existed several generations back. Genetic mutations situated in mutational hotspots might actually be prevalent in several populations, but can still display a founder effect in specific populations. This is exemplified by two deletions in MSH2 detected in Portuguese families that shared disease associated haplotype. On the contrary, in families from Germany, Scotland, England and Argentina carrying the same mutation the haplotype was different [24, 25]. The authors explained this recurrence by a short repeated sequence motif upstream the mutation that created a mutational hotspot in MSH2. A similar case is a splice site mutation in MSH2 that was spread by a founder in Newfoundland, but later turned out to occur in several other populations [26]. This mutation is common and arises repeatedly de novo due to sequence features affecting replication, a mononucleotide tract of adenines, with Newfoundland carriers sharing haplotype as opposed to carriers in Hong Kong, Japan, Italy or England [27].

The genome aggregation database (gnomAD, http://gnomad.broadinstitute.org/) [28] reports a carrier frequency of approximately 1/67,000 in the European population (including the Finnish population) for *MLH1* c.2059C>T. In gnomAD the variant has also been found three times in the south Asian population as well as once in the African population, giving a total average carrier frequency of 1/25,000 combining analyzed populations in this database.

In an isolated, growing population the effect of genetic drift/chance is more pronounced than in a relatively heterogeneous population such as the Swedish. Still, there are examples of founder mutations that occur rarely in such populations apart from *MLH1* c.2059C>T, e.g. the mutation c.589-2A>G that affect splicing in *MLH1*. This mutation was detected in ten American and three Italian families, with the American and Italian families having different haplotypes [12].

In conclusion, we show that MLH1 c.2059C>T mutation is a Swedish founder mutation with a probable origin in a single founder individual in the north of Sweden, whose descendants have migrated southwards in Sweden as well as across the border to Finland. As common genetic variation (e.g. single nucleotide polymorphisms) might also influence disease risks in MMR mutation carriers, information regarding shared haplotypes among founder mutations carriers is useful for more precise risk estimation in the near future. Phenotypic variation in LS among families carrying the same founder mutations has been reported [29], still we emphasize the importance of clinical characterization of founder mutations and additional epidemiologic studies on LS cohorts carrying founder mutations when striving towards mutation-specific counseling and a possibility to improve clinical care.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

 Sehgal R, Sheahan K, O'Connell PR, Hanly AM, Martin ST, Winter DC (2014) Lynch syndrome: an updated review. Genes 5:497–507

537

- Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR (2009) Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet 76:1–18
- Vasen HF, Blanco I, Aktan-Collan K, Gopie JP, Alonso A, Aretz S, Bernstein I, Bertario L, Burn J, Capella G et al (2013) Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut 62:812–823
- 4. Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M, Lee TY, Bodmer D, Hoenselaar E, Hendriks-Cornelissen SJ et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3' exons of TACSTD1. Nat Genet 41:112–117
- Lagerstedt-Robinson K, Rohlin A, Aravidis C, Melin B, Nordling M, Stenmark-Askmalm M, Lindblom A, Nilbert M (2016) Mismatch repair gene mutation spectrum in the Swedish Lynch syndrome population. Oncol Rep 36(5):2823–2835
- Vasen HF, Watson P, Mecklin JP, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116:1453–1456
- Lynch HT, Snyder CL, Shaw TG, Heinen CD, Hitchins MP (2015) Milestones of Lynch syndrome: 1895–2015. Nat Rev Cancer 15:181–194
- Ponti G, Castellsague E, Ruini C, Percesepe A, Tomasi A (2015) Mismatch repair genes founder mutations and cancer susceptibility in Lynch syndrome. Clin Genet 87:507–516
- 9. Zeegers MP, van Poppel F, Vlietinck R, Spruijt L, Ostrer H (2004) Founder mutations among the Dutch. Eur J Hum Genet 12:591–600
- Nystrom-Lahti M, Kristo P, Nicolaides NC, Chang SY, Aaltonen LA, Moisio AL, Jarvinen HJ, Mecklin JP, Kinzler KW, Vogelstein B et al (1995) Founding mutations and Alu-mediated recombination in hereditary colon cancer. Nat Med 1:1203–1206
- 11. Foulkes WD, Thiffault I, Gruber SB, Horwitz M, Hamel N, Lee C, Shia J, Markowitz A, Figer A, Friedman E et al (2002) The founder mutation MSH2*1906G–>C is an important cause of hereditary nonpolyposis colorectal cancer in the Ashkenazi Jew-ish population. Am J Hum Genet 71:1395–1412
- 12. Tomsic J, Liyanarachchi S, Hampel H, Morak M, Thomas BC, Raymond VM, Chittenden A, Schackert HK, Gruber SB, Syngal S et al (2012) An American founder mutation in MLH1. Int J Cancer 130:2088–2095
- Cederquist K, Emanuelsson M, Wiklund F, Golovleva I, Palmqvist R, Gronberg H (2005) Two Swedish founder MSH6 mutations, one nonsense and one missense, conferring high cumulative risk of Lynch syndrome. Clin Genet 68:533–541
- Clendenning M, Senter L, Hampel H, Robinson KL, Sun S, Buchanan D, Walsh MD, Nilbert M, Green J, Potter J et al (2008) A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome. J Med Genet 45:340–345
- Jakubowska A, Gorski B, Kurzawski G, Debniak T, Hadaczek P, Cybulski C, Kladny J, Oszurek O, Scott RJ, Lubinski J (2001) Optimization of experimental conditions for RNA-based sequencing of MLH1 and MSH2 genes. Hum Mutat 17:52–60
- Thompson BA, Spurdle AB, Plazzer JP, Greenblatt MS, Akagi K, Al-Mulla F, Bapat B, Bernstein I, Capella G, den Dunnen JT

et al (2014) Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet 46:107–115

- Lagerstedt Robinson K, Liu T, Vandrovcova J, Halvarsson B, Clendenning M, Frebourg T, Papadopoulos N, Kinzler KW, Vogelstein B, Peltomaki P et al (2007) Lynch syndrome (hereditary nonpolyposis colorectal cancer) diagnostics. J Natl Cancer Inst 99:291–299
- Nilbert M, Wikman FP, Hansen TV, Krarup HB, Orntoft TF, Nielsen FC, Sunde L, Gerdes AM, Cruger D, Timshel S et al (2009) Major contribution from recurrent alterations and MSH6 mutations in the Danish Lynch syndrome population. Fam Cancer 8:75–83
- Hardt K, Heick SB, Betz B, Goecke T, Yazdanparast H, Kuppers R, Servan K, Steinke V, Rahner N, Morak M et al (2011) Missense variants in hMLH1 identified in patients from the German HNPCC consortium and functional studies. Fam Cancer 10:273–284
- Kurzawski G, Suchy J, Lener M, Klujszo-Grabowska E, Kladny J, Safranow K, Jakubowska K, Jakubowska A, Huzarski T, Byrski T et al (2006) Germline MSH2 and MLH1 mutational spectrum including large rearrangements in HNPCC families from Poland (update study). Clin Genet 69:40–47
- Furukawa T, Konishi F, Shitoh K, Kojima M, Nagai H, Tsukamoto T (2002) Evaluation of screening strategy for detecting hereditary nonpolyposis colorectal carcinoma. Cancer 94:911–920
- 22. Schofield L, Grieu F, Goldblatt J, Amanuel B, Iacopetta B (2012) A state-wide population-based program for detection of lynch syndrome based upon immunohistochemical and molecular testing of colorectal tumours. Fam Cancer 11:1–6
- 23. Arnold S, Buchanan DD, Barker M, Jaskowski L, Walsh MD, Birney G, Woods MO, Hopper JL, Jenkins MA, Brown MA et al (2009) Classifying MLH1 and MSH2 variants using bioinformatic prediction, splicing assays, segregation, and tumor characteristics. Hum Mutat 30:757–770
- Pinheiro M, Pinto C, Peixoto A, Veiga I, Mesquita B, Henrique R, Lopes P, Sousa O, Fragoso M, Dias LM et al (2013) The MSH2 c.388_389del mutation shows a founder effect in Portuguese Lynch syndrome families. Clin Genet 84:244–250
- 25. Pinheiro M, Pinto C, Peixoto A, Veiga I, Mesquita B, Henrique R, Baptista M, Fragoso M, Sousa O, Pereira H et al (2011) A novel exonic rearrangement affecting MLH1 and the contiguous LRRFIP2 is a founder mutation in Portuguese Lynch syndrome families. Genet Med 13:895–902
- Desai DC, Lockman JC, Chadwick RB, Gao X, Percesepe A, Evans DG, Miyaki M, Yuen ST, Radice P, Maher ER et al (2000) Recurrent germline mutation in MSH2 arises frequently de novo. J Med Genet 37:646–652
- Froggatt NJ, Joyce JA, Davies R, Gareth D, Evans R, Ponder BA, Barton DE, Maher ER (1995) A frequent hMSH2 mutation in hereditary non-polyposis colon cancer syndrome. Lancet 345:727
- Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291
- Peltomaki P, Gao X, Mecklin JP (2001) Genotype and phenotype in hereditary nonpolyposis colon cancer: a study of families with different vs. shared predisposing mutations. Fam Cancer 1:9–15