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Abstract

Here we present a method for the simultaneous segmentation of white matter lesions and normal-

appearing neuroanatomical structures from multi-contrast brain MRI scans of multiple sclerosis 

patients. The method integrates a novel model for white matter lesions into a previously validated 

generative model for whole-brain segmentation. By using separate models for the shape of 

anatomical structures and their appearance in MRI, the algorithm can adapt to data acquired with 

different scanners and imaging protocols without retraining. We validate the method using four 

disparate datasets, showing robust performance in white matter lesion segmentation while 

simultaneously segmenting dozens of other brain structures. We further demonstrate that the 

contrast-adaptive method can also be safely applied to MRI scans of healthy controls, and replicate 

previously documented atrophy patterns in deep gray matter structures in MS. The algorithm is 

publicly available as part of the open-source neuroimaging package FreeSurfer.
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1. Introduction

Multiple sclerosis (MS) is the most frequent chronic inflammatory autoimmune disorder of 

the central nervous system, causing progressive damage and disability. The disease affects 

nearly half a million Americans and 2.5 million individuals world-wide (Goldenberg, 2012; 

Rosati, 2001), generating more than $10 billion in annual healthcare spending in the United 

States alone (Adelman et al., 2013).

The ability to diagnose MS and track its progression has been greatly enhanced by magnetic 

resonance imaging (MRI), which can detect characteristic brain lesions in white and gray 

matter (Bakshi et al., 2008; Blystad et al., 2015; García-Lorenzo et al., 2013; Lövblad et al., 

2010). Lesions visualized by MRI are up to an order of magnitude more sensitive in 

detecting disease activity compared to clinical assessment (Filippi et al., 2006). The 

prevalence and dynamics of white matter lesions are thus used clinically to diagnose MS 

(Thompson et al., 2018), define disease stages and to determine the efficacy of a therapeutic 

regimen (Sormani, 2013). MRI is also an unparalleled tool for characterizing brain atrophy, 

which occurs at a faster rate in patients with MS compared to healthy controls (Azevedo et 

al., 2018; Barkhof et al., 2009) and, especially in deep gray matter structures and the 

cerebral cortex, has been shown to correlate with measures of disability (Geurts et al., 2012).

Although manual labeling remains the most accurate way1 of delineating white matter 

lesions in MS (Commowick et al., 2018), this approach is very cumbersome and in itself 

prone to considerable intra- and inter-rater disagreement (Zijdenbos et al., 1998). 

Furthermore, manually labeling various normal-appearing brain structures to assess atrophy 

is simply too time consuming to be practically feasible. Therefore, there is a clear need for 

automated tools that can reliably and efficiently characterize the morphometry of white 

matter lesions, various neuroanatomical structures, and their changes over time directly from 

in vivo MRI. Such tools are of great potential value for diagnosing disease, tracking 

progression, and evaluating treatment. They can also help in obtaining a better 

understanding of underlying disease mechanisms, and to facilitate more efficient testing in 

clinical trials. Ultimately, automated software tools may help clinicians to prospectively 

identify which patients are at highest risk of future disability accrual, leading to better 

counseling of patients and better overall clinical outcomes.

Despite decades of methodological development (cf. García-Lorenzo et al., 2013 or 

Danelakis et al., 2018), currently available computational tools for analyzing MRI scans of 

MS patients remain limited in a number of important ways:

1Although selectively fusing several automatic methods has recently been shown to approach human performance (Carass et al., 
2020).
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• Poor generalizability: Existing tools are often developed and tested on very 

specific imaging protocols, and may not be able to work on data that is acquired 

differently. Especially with the strong surge of supervised learning in recent 

years, where the relationship between image appearance and segmentation labels 

in training scans is directly and statically encoded, the segmentation performance 

of many state-of-the-art algorithms will degrade substantially when applied to 

data from different scanners and acquisition protocols (García-Lorenzo et al., 

2013; Valverde et al., 2019), severely limiting their usefulness in practice.

• Dearth of available software: Despite the very large number of proposed 

methods, most algorithms are only developed and tested inhouse, and very few 

tools are made publicly available (Griffanti et al., 2016; Schmidt et al., 2012; 

Shiee et al., 2010; Valverde et al., 2017). In order to secure that computational 

methods will make a real practical impact, they must be accompanied by 

software implementations that work robustly across a wide array of image 

acquisitions; that are made publicly available; and that are open-sourced, 

rigorously tested and comprehensively documented.

• Limitations in assessing atrophy: There is a lack of dedicated tools for 

characterizing brain atrophy patterns in MS: many existing methods characterize 

only aggregate measures such as global brain or gray matter volume (Smeets et 

al., 2016; Smith et al., 2002) rather than individual brain structures, or require 

that lesions are pre-segmented so that their MRI intensities can be replaced with 

placeholder values to avoid biased atrophy measures (Azevedo et al., 2018; 

Battaglini et al., 2012; Ceccarelli et al., 2012; Chard et al., 2010; Gelineau-Morel 

et al., 2012; Sdika and Pelletier, 2009) (so-called lesion filling).

In order to address these limitations, we describe a new open-source software tool for 

simultaneously segmenting white matter lesions and 41 neuroanatomical structures from 

MRI scans of MS patients. An example segmentation produced by this tool is shown in Fig. 

1. By performing lesion segmentation in the full context of whole-brain modeling, the 

method obviates the need to segment lesions and assess atrophy in two separate processing 

phases, as currently required in lesion filling approaches. The method works robustly across 

a wide range of imaging hardware and protocols by completely decoupling computational 

models of anatomy from models of the imaging process, thereby sidestepping the intrinsic 

generalization difficulties of supervised methods such as convolutional neural networks. Our 

software implementation is freely available as part of the FreeSurfer neuroimaging analysis 

package (Fischl, 2012).

To the best of our knowledge, only two other methods have been developed for joint whole-

brain and white matter lesion segmentation in MS. Shiee et al. (2010) model lesions as an 

extra tissue class in an unsupervised whole-brain segmentation method (Bazin and Pham, 

2008), removing false positive detections of lesions using a combination of topological 

constraints and hand-crafted rules implementing various intensity- and distance-based 

heuristics. However, the method segments only a small set of neuroanatomical structures 

(10), and validation of this aspect was limited to a simulated MRI scan of a single subject. 

McKinley et al. (2019) use a cascade of two convolutional neural networks, with the first 
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one skull-stripping individual image modalities and the second one generating the actual 

segmentation. However, the whole-brain segmentation performance of this method was only 

evaluated on a few structures (7). Furthermore, as a supervised method its applicability on 

data that differs substantially from its training data will necessarily be limited.

A preliminary version of this work was presented in Puonti and Van Leemput (2016). 

Compared to this earlier work, the current article employs more advanced models for the 

shape and appearance of white matter lesions, and includes a more thorough validation of 

the segmentation performance of the proposed method, including an evaluation of the 

whole-brain segmentation component and comparisons with human inter-rater variability.

2. Contrast-adaptive whole-brain segmentation

We build upon a method for whole-brain segmentation called Sequence Adaptive 

Multimodal SEGmentation (SAMSEG) that we previously developed (Puonti et al., 2016), 

and that we propose to extend with the capability to handle white matter lesions. SAMSEG 

robustly segments 41 structures from head MRI scans without any form of preprocessing or 

prior assumptions on the scanning platform or the number and type of pulse sequences used. 

Since we build heavily on this method for the remainder of the paper, we briefly outline its 

main characteristics here.

SAMSEG is based on a generative approach, in which a forward probabilistic model is 

inverted to obtain automated segmentations. Let D = (d1 , …, dI) denote a matrix collecting 

the intensities in a multi-contrast brain MR scan with I voxels, where the vector 

di = (di
1, …, dN

i )T  contains the intensities in voxel i for each of the available N contrasts. 

Furthermore, let l = (l1 , …, lI)T be the corresponding labels, where li ∈ {1 , … K} denotes 

one of the K possible segmentation labels assigned to voxel i. SAMSEG estimates a 

segmentation l from MRI data D by using a generative model, illustrated in black in Fig. 2. 

According to this model, l is sampled from a segmentation prior p(l|θl), after which D is 

obtained by sampling from a likelihood function p(D|l, θd), where θl and θd are model 

parameters with priors p(θl) and p(θd). Segmentation then consists of inferring the unknown 

l from the observed D under this model. In the following, we summarize the segmentation 

prior and the likelihood used in SAMSEG, as well as the way the resulting model is used to 

obtain automated segmentations.

2.1. Segmentation prior

To model the spatial configuration of various neuroanatomical structures, we use a 

deformable probabilistic atlas as detailed in Puonti et al. (2016). In short, the atlas is based 

on a tetrahedral mesh, where the parameters θl are the spatial positions of the mesh’s 

vertices, and p(θl) is a topology-preserving deformation prior that prevents the mesh from 

tearing or folding (Ashburner et al., 2000). The model assumes conditional independence of 

the labels between voxels for a given deformation:

p l θ1 = ∏
i = 1

I
p li θl ,
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and computes the probability of observing label k at voxel i as

p li = k θl = ∑
j = 1

J
αjkψji θl , (1)

where ak
j are label probabilities defined at the J vertices of the mesh, and ψji(θl) denotes a 

spatially compact, piecewise-linear interpolation basis function attached to the jth vertex and 

evaluated at the ith voxel (Van Leemput, 2009).

The topology of the mesh, the mode of the deformation prior p(θl), and the label 

probabilities αk
j can be learned automatically from a set of segmentations provided as 

training data (Van Leemput, 2009). This involves an iterative process that combines a mesh 

simplification operation with a group-wise nonrigid registration step to warp the atlas to 

each of the training subjects, and an Expectation Maximization (EM) algorithm (Dempster 

et al., 1977) to estimate the label probabilities αk
j in the mesh vertices. The result is a sparse 

mesh that encodes high-dimensional atlas deformations through a compact set of vertex 

displacements. As described in Puonti et al. (2016), the atlas used in SAMSEG was derived 

from manual whole-brain segmentations of 20 subjects, representing a mix of healthy 

individuals and subjects with questionable or probable Alzheimer’s disease.

2.2. Likelihood function

For the likelihood function we use a Gaussian model for each of the K different structures. 

We assume that the bias field artifact can be modelled as a multiplicative and spatially 

smooth effect (Wells et al., 1996). For computational reasons, we use log-transformed image 

intensities in D, and model the bias field as a linear combination of spatially smooth basis 

functions that is added to the local voxel intensities (Van Leemput et al., 1999). Letting θd 

collect all bias field parameters and Gaussian means and variances, the likelihood is defined 

as

p(D l, θd) = ∏
i = 1

I
p(di li, θd),

p(di li = k, θd) = N(di μk + Cϕi, Σk),

C =
c1
T

⋮

cN
T

, cn =
cn, 1

⋮
cn, P

, ϕi =
ϕ1

i

⋮

ϕP
i

,
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where P denotes the number of bias field basis functions, ϕp
i  is the basis function p evaluated 

at voxel i, and cn holds the bias field coefficients for MRI contrast n. We use a flat prior for 

the parameters of the likelihood: p(θd) ∝ 1.

2.3. Segmentation

For a given MRI scan D, segmentation proceeds by computing a point estimate of the 

unknown model parameters θ = {θd, θl}:

θ = arg max
θ

p(θ |D),

which effectively fits the model to the data. Details of this procedure are given in Appendix 

A. Once θ is found, the corresponding maximum a posteriori (MAP) segmentation

l = arg max
I

p(l |D, θ)

is obtained by assigning each voxel to the label with the highest probability, i.e., 

l i = arg maxk wi, k, where 0 ≤ wi, k ≤ 1 are probabilistic label assignments

wi, k =
N(di |μk + Cϕi, Σk)p(li = k|θl)

Σk′ = 1
K N(di |μk′ + Cϕi, Σk′)p(li = k′ |θl)

(2)

evaluated at the estimated parameters θ. It is worth emphasizing that, since the class means 

and variances {μk, Σk} are estimated from each target scan individually, the model 

automatically adapts to each scan’s specific intensity characteristics – a property that we 

demonstrated experimentally on several data sets acquired with different imaging protocols, 

scanners and field strengths in Puonti et al. (2016).

Our implementation of this method, written in Python with the exception of C++ parts for 

the computationally demanding optimization of the atlas mesh deformation, is available as 

part of the open-source package FreeSurfer2. It segments MRI brain scans without any form 

of preprocessing such as skull stripping or bias field correction, taking around 10 minutes to 

process one subject on a state-of-the-art computer (measured on a machine with an Intel 12-

core i7-8700K processor). As explained in Puonti et al. (2016), in our implementation we 

make use of the fact that many neuroanatomical structures share the same intensity 

characteristics in MRI to reduce the number of free parameters in the model (e.g., all white 

matter structures share the same Gaussian mean μk and variance Σk, as do most gray matter 

structures). Furthermore, for some structures (e.g., non-brain tissue) we use Gaussian 

mixture models instead of a single Gaussian. In addition to using full covariance matrices 

Σk, our implementation also supports diagonal covariances, which is currently selected as 

the default behavior.

2http://freesurfer.net/.
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3. Modeling lesions

In order to make SAMSEG capable of additionally segmenting white matter lesions, we 

augment its generative model by introducing a binary lesion map z = (z1 , … , zI)T, where zi 

∈ {0, 1} indicates the presence of a lesion in voxel i. The augmented model is depicted in 

Fig. 2, where the blue parts indicate the additional components compared to the original 

SAMSEG method. The complete model consists of a joint (i.e., over both l and z 
simultaneously) segmentation prior p(l, z|h, θl), where h is a new latent variable that helps 

constrain the shape of lesions, as well as a joint likelihood p(D|l, z, θd, θles), where θles are 

new parameters that govern their appearance. In the following, we summarize the 

segmentation prior and the likelihood used in the augmented model, as well as the way the 

resulting model is used to obtain automated segmentations.

3.1. Segmentation prior

We use a joint segmentation prior of the form

p l, z h, θl = p z h, θl p l θl ,

where p(l|θl) is the deformable atlas model defined in Section 2.1, and

p z h, θl = ∏
i = 1

I
p zi h, θl

is a factorized model where the probability that a voxel is part of a lesion is given by:

p zi = 1 h, θl = fi h ρi θl .

Here 0 ≤ fi(h) ≤ 1 aims to enforce shape constraints on lesions, whereas 0 ≤ ρi(θl) ≤ 1 takes 

into account a voxel’s spatial location within its neuroanatomical context. Below we provide 

more details on both these components of the model.

3.1.1. Modeling lesion shapes—In order to model lesion shapes, we use a variational 

autoencoder (Kingma and Welling, 2013; Rezende et al., 2014) according to which lesion 

segmentation maps z are generated in a two-step process: An unobserved, low-dimensional 

code h is first sampled from a spherical Gaussian distribution p h = N h 0, I , and 

subsequently “decoded” into z by sampling from a factorized Bernoulli model:

pω z h = ∏
i = 1

I
fi h zi 1 − fi h 1 − zi .

Here fi(h) are the outputs of a “decoder” convolutional neural network (CNN) with filter 

weights ω, which parameterize the model.
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Given a training data set in the form of N binary segmentation maps D = z(n)
n = 1
N ,, suitable 

network parameters ω can in principle be estimated by maximizing the log-probability 

assigned to the data by the model :

log pω D = ∑
z ∈ D

log pω z , where pω z = ∫h
pω zn h p h dh .

However, because the integral over the latent codes makes this intractable, we use amortized 

variational inference in the form of stochastic gradient variational Bayes (Kingma and 

Welling, 2013; Rezende et al., 2014). In particular, we introduce an approximate posterior

qυ h z = N h μυ z , diag συ2 z ,

where the functions μυ(z) and ρυ(z) are implemented as an “encoder” CNN parameterized 

by υ. The variational parameters υ are then learned jointly with the model parameters ω by 

maximizing a variational lower bound ∑z ∈ Dℒω, υ z ≤ log pω D  using stochastic gradient 

descent, where

ℒω, υ z = − DKL qυ h z p h + Eqυ h z log pω z h . (3)

The first term is the Kullback–Leibler divergence between the approximate posterior and the 

prior, which can be evaluated analytically. The expectation in the last term is approximated 

using Monte Carlo sampling, using a change of variables (known as the “reparameterization 

trick”) to reduce the variance in the computation of the gradient with respect to υ (Kingma 

and Welling, 2013; Rezende et al., 2014).

Our training data set D was derived from manual lesion segmentations in 212 MS subjects, 

obtained from the University Hospital of Basel, Switzerland. The segmentations were all 

affinely registered and resampled to a 1 mm isotropic grid of size 197×233×189. In order to 

reduce the risk of overfitting to the training data, we augmented each segmentation in the 

training data set by applying a rotation of 10 degrees around each axis, obtaining a total of 

1484 segmentations. The architecture for our encoder and decoder networks is detailed in 

Fig. 3. We trained the model for 1000 epochs with mini-batch size of 10 using Adam 

optimizer (Kingma and Ba, 2014) with a learning rate of 1e-4. We approximated the 

expectation in the variational lower bound of Eq. (3) by using a single Monte Carlo sample 

in each step.

3.1.2. Modeling the spatial location of lesions—In order to encode the spatially 

varying frequency of occurrence of lesions across the brain, we model the probability of 

finding a lesion in voxel i, based on its location alone, as

ρi θl = ∑
j = 1

J
βjψji θl ,
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where lesion probabilities 0 ≤ βj ≤ 1 defined in the vertices of the SAM-SEG atlas mesh are 

interpolated at the voxel location. This effectively defines a lesion probability map that 

deforms in conjunction with the SAMSEG atlas to match the neuroanatomy in each image 

being segmented, allowing the model to impose contextual constraints on where lesions are 

expected to be found.

We estimated the parameters βj by running SAMSEG on MRI scans (T1-weighted (T1w) 

and FLAIR) of 54 MS subjects in whom lesions had been manually annotated (data from the 

University Hospital of Basel, Switzerland), and recording the estimated atlas deformations. 

The parameters βj were then computed from the manual lesion segmentations by applying 

the same technique we used to estimate the αjk parameters in the SAMSEG atlas training 

phase (cf. Section 2.1).

3.2. Likelihood function

For the likelihood, which links joint segmentations {l, z} to intensities D, we use the same 

model as SAMSEG in voxels that do not contain lesion (zi = 0), but draw intensities in 

lesions (zi = 1) from a separate Gaussian with parameters θles = {μles, Σles}:

p D l, z, θd, θles = ∏
i = 1

I
p di li, zi, θd, θles ,

where

p di li = k, zi, θd, θles =
N di μles + Cϕi, Σles if zi = 1,

N di μk + Cϕi, Σk otherwise .

In order to constrain the values that the lesion intensity parameters θles can take, we make 

them conditional on the remaining intensity parameters using a normal-inverse-Wishart 

distribution :

p θles θd = N μles μW M, ν−1Σles IW Σles κνΣW M, ν − N − 2 . (4)

Here the subscript “WM” denotes the white matter Gaussian and κ > 1 and ν ≥ 0 are 

hyperparameters in the model.

This choice of model is motivated by the fact that the normal-inverse-Wishart distribution is 

a conjugate prior for the parameters of a Gaussian distribution: Eq. (4) can be interpreted as 

providing ν “pseudo-voxels” with empirical mean μW M and variance κΣW M in scenarios 

where the lesion intensity parameters μles and Σles need to be estimated from data. In the 

absence of any such pseudo-voxels (ν = 0), Eq. (4) reduces to a flat prior on θles and lesions 

are modeled as a completely independent class. Although such models have been used in the 

literature (Guttmann et al., 1999; Kikinis et al., 1999; Shiee et al., 2010; Sudre et al., 2015) 

their robustness may suffer when applied to subjects with no or very few lesions, such as 

controls or patients with early disease, since there is essentially no data to estimate the lesion 
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intensity parameters from. In the other extreme case, the number of pseudo-voxels can be set 

to such a high value (ν → ∞) that the intensity parameters of the lesions are fully 

determined by those of WM. This effectively replaces the Gaussian intensity model for WM 

in SAMSEG by a distribution with longer tails, in the form of a mixture of two Gaussians 

with identical means (μles ≡ μW M) but variances that differ by a constant factor (Σles ≡ 
κΣW M vs. ΣW M). In this scenario, MS lesions are detected as model outliers in a method 

using robust model parameter estimation (Huber, 1981), another technique that has also 

frequently been used in the literature (Aït-Ali et al., 2005; Bricq et al., 2008; García-Lorenzo 

et al., 2011; Liu et al., 2009; Prastawa and Gerig, 2008; Rousseau et al., 2008; Van Leemput 

et al., 2001).

Based on pilot experiments on a variety of datasets (distinct from the ones used in the results 

section), we found that good results are obtained by using an intermediate value of ν = 500 

pseudo-voxels for 1 mm3 isotropic scans, together with a scaling factor κ = 50. In order to 

adapt to different image resolutions, ν is scaled inversely proportionally with the voxel size 

in our implementation. We will visually demonstrate the role of these hyperparameters in 

constraining the lesion intensity parameters in Section 5.1.

3.3. Segmentation

As in the original SAMSEG method, segmentation proceeds by first obtaining point 

estimates θ that fit the model to the data, and then inferring the corresponding segmentation 

posterior:

p l, z D, θ ,

which is now jointly over l and z simultaneously. Unlike in SAMSEG, however, both steps 

are made intractable by the presence of the new variables θles and h in the model. In order to 

side-step this difficulty, we obtain θ through a joint optimization over both θ and θles:

{θ, θles} = arg max
θ, θles

p θ, θles D

in a simplified model in which the constraints on lesion shape have been removed, by 

clamping all decoder network outputs fi(h) to value 1. This simplification is defensible since 

the aim here is merely to find appropriate model parameters, rather than highly accurate 

lesion segmentations. By doing so, the latent code h is effectively removed from the model 

and the optimization simplifies into the one used in the original SAM-SEG method, with 

only minor modifications due to the prior p(θles|θd). Details are provided in Appendix B.

Once parameter estimates θ are available, we compute segmentations using the factorization

p(l, z D, θ) = p(z|D, θ)p(l|, z, D, θ),

first estimating z from p(z D, θ) (Step 1 below), and then plugging this into p(l | , z, D, θ) to 

estimate l (Step 2):
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Step 1: Evaluating p(z D, θ) involves marginalizing over both h and θles, which we 

approximate by drawing S Monte Carlo samples {h s , θles
s }s = 1

S
 from p(h, θles|D, θ):

p(z|D, θ) = ∫h, θles
p(z|D, θ, h, θles)p(h, θles|D, θ)dh, θles

≃ 1
S ∑

s = 1

S
p(z|D, θ, h(s), θles

(s)) .

This allows us to estimate the probability of lesion occurrence in each voxel, which we then 

compare with a user-specified threshold value γ

p(zi = 1 di, θ) ≷ γ

to obtain the final lesion segmentation zi. Details on how we approximate p(zi = 1 di, θ)
using Monte Carlo sampling are provided in Appendix C.

Step 2: Voxels that are not assigned to lesion (zi = 0) in the previous step are finally assigned 

to the neuroanatomical structure with the highest probability p(li = k|zi = 0, di, θ),, which 

simply involves computing l i = arg maxk wi, k with wi, k defined in Eq. (2).

In agreement with other work (Aït-Ali et al., 2005; García-Lorenzo et al., 2011; Jain et al., 

2015; Prastawa and Gerig, 2008; Shiee et al., 2010; Van Leemput et al., 2001), we have 

found that using known prior information regarding the expected intensity profile of MS 

lesions in various MRI contrasts can help reduce the number of false positive detections. 

Therefore, we prevent some voxels from being assigned to lesion (i.e., forcing zi = 0) based 

on their intensities in relation to the estimated intensity parameters μk, Σk k = 1
K :: In our 

current implementation only voxels with an intensity higher than the mean of the gray matter 

Gaussian in FLAIR and/or T2 (if these modalities are present) are considered candidate 

lesions.

Since estimating p(zi = 1 di, θ) involves repeatedly invoking the decoder and encoder 

networks of the lesion shape model, as detailed in Appendix C, we implemented the 

proposed method as an add-on to SAMSEG in Python using the Tensorflow library (Abadi 

et al., 2015). Estimating θ has the same computational complexity as running SAM-SEG 

(i.e., taking approximately 10 minutes on a state-of-the-art machine with an Intel 12-core 

i7-8700K CPU), while the Monte Carlo sampling takes an additional 5 minutes on a 

GeForce GTX 1060 graphics card, bringing the total computation time to around 15 minutes 

per subject.

4. Evaluation datasets and benchmark methods

In this section, we describe four datasets that we will use for the experiments in this paper, 

including two taken from public challenges. We also outline two relevant methods for MS 
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lesion segmentation that the proposed method is compared to in detail, as well as the metrics 

and measures used in our experiments.

4.1. Datasets

In order to test the proposed method and demonstrate its contrast-adaptiveness, we 

conducted experiments on four datasets acquired with different scanner platforms, field 

strengths, acquisition protocols and image resolution:

• MSSeg: This dataset is the publicly available training set of the MS lesion 

segmentation challenge that was held in conjunction with the MICCAI 2016 

conference (Commowick et al., 2018). It consists of 15 MS cases from three 

different scanners, all acquired using a harmonized imaging protocol (Cotton et 

al., 2015). For each patient a 3D T1w sequence, a contrast-enhanced (T1c) 

sequence, an axial dual PD-T2-weighted (T2w) sequence and a 3D fluid 

attenuation inversion recovery (FLAIR) sequence were acquired. Each subject’s 

lesions were delineated by seven different raters on the FLAIR scan and, if 

necessary, corrected using the T2w scan. These delineated images were then 

fused to create a consensus lesion segmentation for each subject. Both raw 

images and pre-processed images (pre-processing steps: denoising, rigid 

registration, brain extraction and bias field correction – see Commowick et al. 

(2018) for details) were made available by the challenge organizers. In our 

experiments we used the pre-processed data, which required only minor 

modifications in our software to remove non-brain tissues from the model. We 

note that the original challenge also included a separate set of 38 test subjects, 

but at the time of writing this data is no longer available.

• Trio: This dataset consists of 40 MS cases acquired on a Siemens Trio 3T 

scanner at the Danish Research Center of Magnetic Resonance (DRCMR). For 

each patient, a 3D T1w sequence, a T2w sequence and a FLAIR sequence were 

acquired. Ground truth lesion segmentations were automatically delineated on 

the FLAIR images using Jim software3, and then checked and, if necessary, 

corrected by and expert rater at DRCMR using the T2w and MPRAGE images.

• Achieva: This dataset consists of 50 MS cases and 25 healthy controls acquired 

on a Philips Achieva 3T scanner at DRCMR. After a visual inspection of the 

images, we decided to remove 2 healthy controls from the dataset as they present 

marked gray matter atrophy and white matter hyperintensities. For each patient, a 

3D T1w sequence, a T2w sequence and a FLAIR sequence were acquired. 

Ground truth lesion segmentations were delineated using the same protocol as 

the one used for the Trio dataset.

• ISBI: This dataset is the publicly available test set of the MS lesion segmentation 

challenge that was held at the 2015 International Symposium on Biomedical 

Imaging (Carass et al., 2017). It consists of 14 longitudinal MS cases, with 4 to 6 

time points each, separated by approximately one year. Images were acquired on 

3http://www.xinapse.com/
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a Philips 3T scanner. For each patient, a 3D T1w sequence, a T2w sequence, a 

PDw sequence and a FLAIR sequence were acquired. Images were first 

preprocessed (inhomogeneity correction, skull stripping, dura stripping, again 

inhomogeneity correction – see Carass et al. (2017) for details), and then 

registered to a 1 mm MNI template. Each subject’s lesions were delineated by 

two different raters on the FLAIR scan, and, if necessary, corrected using the 

other contrasts. As part of the challenge, a training dataset of 5 additional 

longitudinal MS cases is also available, with the same scanner, imaging protocols 

and delineation procedure as the test dataset.

A summary of the datasets, with scanner type, image modalities and voxel resolution details, 

can be found in Table 1. For each subject all the contrasts were co-registered and resampled 

to the FLAIR scan for MSSeg, and to the T1w scan for Trio, Achieva and ISBI. This is the 

only preprocessing step required by the proposed method.

4.2. Benchmark methods for lesion segmentation

In order to evaluate the lesion segmentation component of the proposed method in detail, we 

compared it to two publicly available and widely used algorithms for MS lesion 

segmentation:

• LST-lga4 (Schmidt et al., 2012): This lesion growth algorithm starts by 

segmenting a T1w image into three main tissue classes (CSF, GM and WM) 

using SPM125, and combines the resulting segmentation with co-registered 

FLAIR intensities to calculate a lesion belief map. A pre-chosen initial threshold 

κ is then used to create an initial binary lesion map, which is subsequently grown 

along voxels that appear hyperintense in the FLAIR image. We set κ to its 

recommended default value of 0.3, which was also used in previous studies 

(Mühlau et al., 2013; Rissanen et al., 2014).

• NicMsLesions6 (Valverde et al., 2017, 2019): This deep learning method is 

based on a cascade of two 3D convolutional neural networks, where the first one 

reveals possible candidate lesion voxels, and the second one reduces the number 

of false positive outcomes. Both networks were trained by the authors of the 

method on T1w and FLAIR scans coming from a publicly available training 

dataset of the MS lesion segmentation challenge held in conjunction with the 

MICCAI 2008 conference (Styner et al., 2008) (20 cases) and the MSSeg dataset 

(15 cases). This method was one of the top performers on the test dataset of the 

MICCAI 2016 challenge (Commowick et al., 2018), and one of the few methods 

for which an implementation is publicly available.

We note that both these benchmark methods are specifically targeting T1w-FLAIR input, 

whereas the proposed method is not tuned to any particular combination of input modalities.

4https://www.applied-statistics.de/lst.html
5https://www.fil.ion.ucl.ac.uk/spm/software/spm12
6https://github.com/sergivalverde/nicMsLesions
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Although we only compared our method in detail to these two benchmarks, many more good 

methods for MS lesion segmentation exist. We refer the reader to the MSSeg paper 

(Commowick et al., 2018), the ISBI challenge paper (Carass et al., 2017) and the ISBI 

challenge website7 to compare the reported performance further with other ones.

4.3. Metrics and measures

In order to evaluate the influence of varying the input modalities on the segmentation 

performance of the proposed method, and to assess segmentation accuracy with respect to 

that of other methods and human raters, we used a combination of segmentation volume 

estimates, Pearson correlation coefficients between such estimates and reference values, and 

Dice scores. Volumes were computed by counting the number of voxels assigned to a 

specific structure and converting into mm3 , whereas Dice coefficients were computed as

DiceX, Y = 2 ⋅ X ∩ Y
X + Y ,

where X and Y denote segmentation masks, and | · | counts the number of voxels in a mask.

The proposed method and both benchmark algorithms produce a probabilistic lesion map 

that needs to be thresholded to obtain a final lesion segmentation. This requires an 

appropriate threshold value to be set for this purpose (variable γ in the proposed method). In 

order to ensure an objective comparison between the methods, we used a leave-one-out 

cross-validation strategy in which the threshold for each test image was set to the value that 

maximizes the average Dice overlap with manual segmentations in all the other images of 

the same dataset. For the reported performance of the methods on the ISBI dataset, the 

thresholds were tuned on the 5 training subjects that are part of the challenge instead.

5. Results

In this section, we first illustrate the effect of the various components of our model. We then 

evaluate how the proposed model adapts to different input modalities and acquisition 

platforms. Subsequently we compare the lesion segmentation performance of our model 

against that of the two benchmark methods, relate it to human inter-rater variability, and 

analyze its performance on the ISBI challenge data. Finally, we perform an indirect 

validation of the whole-brain segmentation component of the method.

Throughout the section we use boxplots to show some of the results. In these plots, the 

median is indicated by a horizontal line, plotted inside boxes that extend from the first to the 

third quartile values of the data. The range of the data is indicated by whiskers extending 

from the boxes, with outliers represented by circles.

5.1. Illustration of the method

In order to illustrate the effect of the various components of the method, here we analyze its 

behaviour when segmenting T1w-FLAIR scans of two MS subjects – one with a low and 

7https://smart-stats-tools.org/lesion-challenge
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one with a high lesion load. Fig. 4 shows, in addition to the input data and the final lesion 

probability estimate p(zi = 1 di, θ), also an intermediate lesion probability obtained with the 

simplified model used to estimate θ, i.e., before the FLAIR-based intensity constraints and 

the lesion shape constraints are applied. From these images we can see that the lesion shape 

model and the intensity constraints help remove false positive detections and enforce more 

realistic shapes of lesions, especially for the case with low lesion load.

Fig. 5 analyzes the effect of the prior p(θles|θd) on the lesion intensity parameters θles for the 

two subjects shown in Fig. 4. When the lesion load is high, the prior does not have a strong 

influence, leaving the lesion Gaussian “free” to fit the data. However, when the lesion load is 

low, the lesion Gaussian is constrained to retain a wide variance and a mean close to the 

mean of WM, effectively turning the model into an outlier detection method for WM 

lesions. This behavior is important in cases when few lesions are present in the images, 

ensuring the method works robustly even when only limited data is available to estimate the 

lesion Gaussian parameters.

In order to analyze the effect of the lesion shape prior, we compared the lesion segmentation 

performance of the proposed method with that obtained when the shape prior was 

intentionally removed from the model (i.e., all the decoder network outputs fi(h) clamped to 

value 1). For a fair comparison, the lesion threshold value γ was re-tuned to maximize 

performance for the method without shape prior, in the way described in Section 4.3. Table 2 

summarizes the results across the MSSeg, Trio and Achieva datasets, for different ranges of 

lesion load. In addition to Dice scores, the table also reports results for precision and recall, 

defined as

precision = TP
TP + FP recall = TP

TP + FN ,

where TP, FP and FN count the true positive, false positive and false negative voxels 

compared to the manual segmentation. The results indicate that, although performance is 

unchanged for high lesion loads, for which segmentation is generally easier (Commowick et 

al., 2018), the lesion shape prior clearly improves segmentations in subjects with small and 

medium lesion loads.

In order to demonstrate that the model also works robustly in control subjects (with no 

lesions at all), and can therefore be safely applied in studies comparing MS subjects with 

controls, we further segmented T1w-FLAIR scans of the Achieva dataset, and computed the 

total volume of the lesions in each subject. The results are shown in Fig. 6; the volumes were 

8.95±9.18 ml for MS subjects vs. 0.98±0.77 ml for controls. Although the average lesion 

volume for controls was not exactly zero, a visual inspection revealed that this was due to 

some controls having WM hyperintensities that were segmented by the method as MS 

lesions, which we find acceptable.

5.2. Scanner and contrast adaptive segmentations

In order to demonstrate the ability of our method to adapt to different types and 

combinations of MRI sequences acquired with different scanners, we show the method’s 
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segmentation results along with the manual segmentations for a representative subset of 

combinations for one subject in the MSSeg (consensus as manual segmentation), the Trio 

and the Achieva datasets in Fig. 7. It is not feasible to show all possible combinations. For 

instance, mixing the 5 contrasts in the MSSeg dataset alone already yields 31 possible multi-

contrast combinations. Nonetheless, it is clear that the model is indeed able to adapt to the 

specific contrast properties of its input scans. A visual inspection of its whole-brain 

segmentation component seems to indicate that the method benefits from having access to 

the T1w contrast for best performance. This is especially clear when only the FLAIR 

contrast is provided, as this visually degrades the segmentation of the white-gray boundaries 

in the cortical regions due to the low contrast between white and gray matter in FLAIR.

When comparing the lesion probability maps produced by the method visually with the 

corresponding manual lesion segmentations, it seems that the method benefits from having 

access to the FLAIR contrast for the best lesion segmentation performance. This is 

confirmed by a quantitative analysis shown in Fig. 8, which plots the Dice overlap scores for 

each of the seven input combinations that all our three datasets have in common, namely 

T1w, T2w, FLAIR, T1w-T2w, T1w-FLAIR, T2w-FLAIR, and T1w-T2w-FLAIR. Although 

the inclusion of additional contrasts does not hurt lesion segmentation performance, across 

all three datasets the best results are obtained whenever the FLAIR contrast is included as 

input to the model. This finding is perhaps not surprising, given that the manual delineations 

were all primarily based on the FLAIR image.

Considering both the whole-brain and lesion segmentation performance together, we 

conclude that the combination T1w-FLAIR is well-suited for obtaining good results with the 

proposed method, although it will also accept other and/or additional contrasts beyond T1w 

and FLAIR.

5.3. Lesion segmentation

In order to compare the lesion segmentation performance of our model against that of the 

two benchmark methods, and relate it to human inter-rater variability, we here present a 

number of results based on the T1w-FLAIR input combination (which is the combination 

required by the benchmark methods). We also analyze the lesion segmentation performance 

of our method on the public ISBI challenge.

5.3.1. Comparison with benchmark lesion segmentation methods—Fig. 9 

shows automatic segmentations of two randomly selected subjects from the MSSeg, the Trio 

and the Achieva datasets, both for our method and for the two benchmark methods LST-lga 

and NicMSLesions, along with the corresponding manual segmentations (consensus manual 

segmentations for MSSeg). Visually, all three methods perform similarly on the Achieva MS 

data, but some of the results for NicMSLesions appear to be inferior to those obtained with 

the other two methods on MSSeg and Trio data. This qualitative observation is confirmed by 

the quantitative analysis shown in Fig. 10, where the three methods’ Dice overlap scores are 

compared on each dataset: similar performances are obtained for all methods on the Achieva 

data, but NicMSLesions trails the other two methods on MSSeg and Trio data. Especially for 

MSSeg data this is a surprising result, since NicMSLesions was trained on this specific 
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dataset, i.e., the subjects used for testing were part of the training data of this method, 

potentially biasing the results in favor of NicMSLesions. Based on Dice scores, the proposed 

method outperforms LST-lga on MSSeg data, although there are no statistically significant 

differences between the two methods on the other datasets.

5.3.2. Results on the ISBI data—We also evaluated the performance of the proposed 

method on the ISBI challenge data, obtaining a mean Dice score of 0.58 when T1w-FLAIR 

input is used. This score is comparable to the ones we obtained on the other three datasets 

analyzed in this paper (cf. Fig. 10) – MSSeg: 0.65, Trio: 0.58 and Achieva: 0.54. A few 

example segmentation results on the ISBI data are available in the Supplementary Material, 

Fig. 4.

The ISBI challenge website8 ranks submissions according to an overall lesion segmentation 

performance score that takes into account Dice overlap, volume correlation, surface distance, 

and a few other metrics (see Carass et al., 2017 for details). A score of 100 indicates perfect 

correspondence, while 90 is meant to correspond to human inter-rater performance (Carass 

et al., 2017; Styner et al., 2008). We obtained a score of 87.87, which places us around half-

way in the ranking of the original challenge (Carass et al., 2017), although we note that the 

website currently lists methods with a much higher score.

In order to relate the performance of our method to the one obtained with the two 

benchmark methods, we also attempted to run LST-lga and NicMSLesions on this dataset. 

However, the preprocessing applied to the ISBI challenge data proved problematic for LST-

lga, and we were not able to get any results with this method. Results for NicMSLesions in 

terms of Dice overlap are shown in Fig. 11, together with those obtained with the proposed 

method. It is clear that NicMSLesions suffers strongly from the domain shift between its 

training data and the ISBI data, a fact that was already reported in Valverde et al. (2019). For 

completeness, Fig. 11 also includes results for NicMSLesions when its network was updated 

on the ISBI training data as described in Valverde et al. (2019): different subsets of network 

parameters were retrained on the baseline scan of each of the five ISBI training subjects, and 

the combination that performed best on all 21 training images was retained. From the figure 

it can be seen that this partially retrained network has comparable performance to the 

proposed model, although the latter attains this performance without any retraining.

5.3.3. Inter-rater variability—To evaluate the proposed method’s lesion segmentation 

performance in the context of human inter-rater variability, we took advantage of the 

availability of lesion segmentations by seven different raters in the MSSeg dataset. Table 3 

shows the lesion segmentation performance in terms of average Dice overlap between each 

pair of the seven raters, and between each rater and the proposed method. On average, our 

method achieves a Dice overlap score of 0.57, which is slightly below the mean human 

raters’ range of [0.59, 0.69]. We note that this result is in line with those obtained in the 

MSSeg challenge (Commowick et al., 2018).

8https://smart-stats-tools.org/lesion-challenge
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5.4. Whole-brain segmentation

Since no ground truth segmentations are available for a direct evaluation of the whole-brain 

segmentation component of our method, we performed an indirect validation, evaluating its 

potential for replacing lesion filling approaches that rely on manually annotated lesions, as 

well as its ability to replicate known atrophy patterns in MS. The results concentrate on the 

following 25 main neuroanatomical regions, segmented from T1w-FLAIR scans: left and 

right cerebral white matter, cerebellum white matter, cerebral cortex, cerebellum cortex, 

lateral ventricle, hippocampus, thalamus, putamen, pallidum, caudate, amygdala, nucleus 

accumbens and brain stem. To avoid cluttering, the quantitative results for left and right 

structures are averaged. We note that lesion segmentations are not merged into any of these 

brain structures (i.e., leaving “holes” in white matter), so that the results reflect performance 

only for the normal-appearing parts of structures.

5.4.1. Comparison with lesion filling—It is well-known that white matter lesions can 

severely interfere with the quantification of normal-appearing structures when standard brain 

MRI segmentation techniques are used (Battaglini et al., 2012; Ceccarelli et al., 2012; Chard 

et al., 2010; Gelineau-Morel et al., 2012; Nakamura and Fisher, 2009; Vrenken et al., 2013). 

A common strategy is therefore to use a lesion-filling (Chard et al., 2010; Sdika and 

Pelletier, 2009) procedure, in which lesions are first manually segmented, their original 

voxel intensities are replaced with normal-appearing white matter intensities, and standard 

tools are then used to segment the resulting, preprocessed images. Using such a procedure 

with SAMSEG would yield whole-brain segmentations that can serve as “silver standard” 

benchmarks against which the results of the proposed method (which works directly on the 

original scans) can be compared. In practice, however, we have noticed that replacing lesion 

intensities, which is typically done in T1w only, did not work well in FLAIR in our 

experiments. Therefore, rather than explicitly replacing intensities, we obtained silver 

standard segmentations by simply masking out lesions during the SAMSEG processing, 

effectively ignoring lesion voxels during the model fitting.

We wished to interpret segmentation vs. silver standard discrepancies within the context of 

the human inter-rater variability associated with manually segmenting lesions. Therefore, we 

performed experiments on the MSSeg dataset, repeatedly re-computing the silver standard 

using each of the seven raters’ manual lesion annotations in turn. The results are shown in 

Tables 4 and 5 for Pearson correlation coefficients between estimated volumes and Dice 

segmentation overlap scores, respectively. Each line in these tables corresponds to one 

structure, showing the average consistency between the silver standard of each rater 

compared to that of the six other raters, as well as the average consistency between the 

proposed method’s segmentation and the silver standards of all raters. The results indicate 

that, in terms of Pearson correlation coefficient, the performance of our method falls within 

the range of inter-rater variability, albeit narrowly (average value 0.988 vs. inter-rater range 

[0.988, 0.992]). In terms of Dice scores, however, the method slightly underperforms 

compared to the inter-rater variability (average value 0.971 vs. inter-rater range [0.978, 

0.980]).
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5.4.2. Detecting atrophy patterns in MS—In a final analysis, we assessed whether 

previously reported volume reductions in specific brain structures in MS can automatically 

be detected with the proposed method. Towards this end, we segmented the 23 controls and 

the 50 MS subjects of the Achieva dataset, and compared the volumes of various structures 

between the two groups. Volumes were normalized for age, gender and total intracranial 

volume by regressing them out with a general linear model. The intracranial volume used for 

the normalization was computed by summing the volumes of all the structures, as segmented 

by the method, within the intracranial vault. The results are shown in Fig. 12. Although not 

all volumes showed significant difference between groups, well established differences were 

replicated. In particular, we demonstrated decreased volumes of cerebral white matter, 

cerebral cortex, thalamus and caudate (Azevedo et al., 2018; Chard et al., 2002; Houtchens 

et al., 2007) as well as an increased volume of the lateral ventricles (Zivadinov et al., 2016).

6. Discussion and conclusion

In this paper, we have proposed a method for the simultaneous segmentation of white matter 

lesions and normal-appearing neuroanatomical structures from multi-contrast brain MRI 

scans of MS patients. The method integrates a novel model for white matter lesions into a 

previously validated generative model for whole-brain segmentation. By using separate 

models for the shape of anatomical structures and their appearance in MRI, the algorithm is 

able to adapt to data acquired with different scanners and imaging protocols without needing 

to be retrained. We validated the method using four disparate datasets, showing robust 

performance in white matter lesion segmentation while simultaneously segmenting dozens 

of other brain structures. We further demonstrated that it can also be safely applied to MRI 

scans of healthy controls, and replicate previously documented atrophy patterns in deep gray 

matter structures in MS. The proposed algorithm is publicly available as part of the open-

source neuroimaging package FreeSurfer.

By performing both whole-brain and white matter lesion segmentation at the same time, the 

method we propose aims to supplant the two-stage “lesion filling” procedure that is 

commonly used in morphometric studies in MS, in which lesions segmented in a first step 

are used to avoid biasing a subsequent analysis of normal-appearing structures with software 

tools developed for healthy brain scans. In order to evaluate whether our method is 

successful in this regard, we compared its whole-brain segmentation performance against the 

results obtained when lesions are segmented a priori by seven different human raters instead 

of automatically by the method itself. Our results show that the volumes of various 

neuroanatomical structures obtained when lesions are segmented automatically fall within 

the range of inter-rater variability, indicating that the proposed method may be used instead 

of lesion filling with manual lesion segmentations in large volumetric studies of brain 

atrophy in MS. When detailed spatial overlap is analyzed, however, we found that the 

automatic segmentation does not fully reach the performance obtained with human lesion 

annotation as measured by Dice overlap.

Like many other methods for MS lesion segmentation, the method proposed here produces a 

spatial map indicating in each voxel its probability of belonging to a lesion, which can then 

be thresholded to obtain a final lesion segmentation. Although in our experience good results 
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can be obtained by using the same threshold value across datasets (e.g., γ = 0.5), changing 

this value allows one to adjust the trade-off between false positive and false negative lesion 

detections. Since some MRI sequences and scanners will depict lesions with a higher 

contrast than others, and because there is often considerable disagreement between human 

experts regarding the exact extent of lesions (Zijdenbos et al., 1998), in our implementation 

we therefore expose this threshold value as an optional, tunable parameter to the end-user. 

Suitable threshold values can be found by visually inspecting the lesion segmentations of a 

few cases or, in large-scale studies, using cross-validation as we did in our experiments.

By providing the ability to robustly and efficiently segment multicontrasts scans of MS 

patients across a wide range of imaging equipment and protocols, the software tool 

presented here may help facilitate large cohort studies aiming to elucidate the morphological 

and temporal dynamics underlying disease progression and accumulation of disability in 

MS. Furthermore, in current clinical practice, high-resolution multicontrast images, which 

can be used to increase the accuracy of lesion segmentation, represent a significantly 

increased burden for the neuroradiologist to read, and are hence frequently not acquired. The 

emergence of robust, multi-contrast segmentation tools such as ours may help break the link 

between the resolution and number of contrasts of the acquired data and the human time 

needed to evaluate it, thus potentially increasing the accuracy of the resulting measures.

The ability of the proposed method to automatically tailor its appearance models for specific 

datasets makes it very flexible, allowing it to seamlessly take advantage of novel, potentially 

more sensitive and specific MRI acquisitions as they are developed. Although not 

extensively tested, the proposed method should make it possible to, with minimal 

adjustments, segment data acquired with advanced research sequences such as MP2RAGE 

(Marques et al., 2010), DIR (Redpath and Smith, 1994), FLAIR2 (Wiggermann et al., 2016) 

or T2* (Anderson et al., 2001), both at conventional and at ultra-high magnetic field 

strengths. We are currently pursuing several extensions of the proposed method, including 

the ability to go on and create cortical surfaces and parcellations in FreeSurfer, as well as a 

dedicated version for longitudinal data (Cerri et al., 2020).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Parameter optimization in SAMSEG

We here describe how we perform the optimization of p(θ|D) with respect to θ and in the 

original SAMSEG model. We follow a coordinate ascent approach, in which a limited-
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memory BFGS optimization of θl is interleaved with a generalized EM (GEM) optimization 

of the remaining parameters θd. The GEM algorithm was derived in (Van Leemput et al., 

1999) based on (Wells et al., 1996), and is repeated here for the sake of completeness. It 

iteratively constructs a tight lower bound to the objective function by computing the soft 

label assignments ωi,k based on the current estimate of θd (Eq. (2)), and subsequently 

improves the lower bound (and therefore the objective function) using the following set of 

analytical update equations for these parameters :

μk mk and Σk Vk , ∀k

c1
⋮

cN

ATS1, 1A ⋯ ATS1, NA
⋮ ⋱ ⋮

ATSN, 1A ⋯ ATSN, NA

−1 AT ∑n = 1
N S1, nr1, n

⋮

AT ∑n = 1
N SN, nrN, n

,

where

mk =
∑i = 1

I ωi, k di − Cϕi
Nk

with Nk = ∑i = 1
I ωi, k,

Vk =
∑i = 1

I ωi, k di − Cϕi − mk di − Cϕi − mk
T

Nk
,

A =
ϕ1

1 ⋯ ϕp1

⋮ ⋱ ⋮

ϕ1
I ⋯ ϕP

I
, Sm, n = diag si

m, n , rm, n =
r1
m, n

⋮

rI
m, n

and

si
m, n = ∑k = 1

K si, k
m, n, si, k

m, n = ωi, k ∑k
−1

m, n, ri
m, n = din −

∑l = 1
K si, k

m, n μk n
∑l = 1

K si, k
m, n .

Appendix B. Parameter optimization

Here we describe how we perform the optimization of p(θ, θles|D) with respect to θ and θles 

in the augmented model of Sec. 3 with the decoder outputs fi(h) all clamped to value 1. In 

that case, the model can be reformulated in the same form as the original SAMSEG model, 

so that the same optimization strategy can be used. In particular, lesions can be considered to 

form an extra class (with index K + 1) in a SAMSEG model with K + 1 labels, provided that 

the mesh vertex label probabilities
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αjk =
βj if k = K + 1 lesion ,

αjk βj − 1 otherwise .

are used instead of the original αjk’s in the atlas interpolation model of Eq. (1).

The optimization described in Appendix A does require one modification because of the 

prior p(θles|θd) binding the means and variances of the WM and lesion classes together. The 

following altered update equations for these parameters guarantee that the EM lower bound, 

and therefore the objective function, is improved in each iteration of the GEM algorithm:

μW M NW MI +
vNW M

v + NW M
ΣW MΣles

−1 −1

NW MmW M +
vNW M

v + NW M
ΣW MΣles

−1mles ,

ΣW M
NW MVW M + ΣlesΣW M

−1 Ψles
NW M + Nles + N + 2 ,

μles
Nlesmles + vμW M

Nles + v ,

Σles
Ψles + vκΣW M

Nles + v ,

where Ψles =
Nlesv

Nles + v mles − μW M mles − μW M
T + NlesVles .

Appendix C. Estimating lesion probabilities

We here describe how we we approximate p(zi = 1 di, θ) using Monte Carlo sampling. We 

use a Markov chain Monte Carlo (MCMC) approach to sample triplets {θles
(s), z(s), h(s)} from 

the distribution p(θles, z, h |D, θ): Starting from an initial lesion segmentation z(0) obtained 

from the parameter estimation procedure described in Appendix B, we use a blocked Gibbs 

sampler in which each variable is updated conditioned on the other ones:

Σles
s + 1) ∼ p( Σles |D, θ, z(s ) =

IW Σles ψles
(s) + vκΣW , M, Nles

s + v − N − 2
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μles
s + 1 ∼ p(μles|D, θ, z s , Σles

s + 1 ) =

N μles
Nles

s mles
s + vμW M

Nles
s + v

,
Σles

s + 1

Nles
s + v

h s + 1 ∼ p(h|z(s ) ≃ N h μυ(z s ), diag(συ2(z s)))

z s + 1 p(z|D, θ, h s + 1 , θles
s + 1 ) = ∏

i = 1

I
p(zi|di, θ, h s + 1 , θles

s + 1 ),

where we use the encoder variational approximation obtained during the training of the 

lesion shape model (see Sec. 3.1.2) to sample from h in the next-to-last step, and

p(zi = 1 di, θ, h, θles) =
N di μles + Cϕi, Σles fi h ρi(θl)

∑li = 1
K ∑zi′ = 0

1 p(di li, zi′, θl, θles)p(zi′|θl, h)p(li|θl)

in the last step. In these equations, the variables Nles
s , mles

s , Vles
s  and Ψles

s  are as defined 

before, but using voxel assignments wi, les = zi
s . Once S samples are obtained, we 

approximate p(zi = 1 di, θ) as

p(zi = 1 di, θ) ≃ 1
S ∑

s = 1

S
p(zi = 1 di, θ, h s , θles

s ) .

In our implementation, we use S = 50 samples, obtained after discarding the first 50 sweeps 

of the sampler (so-called “burn-in” phase). The algorithm repeatedly invokes the decoder 

and encoder networks of the lesion shape model described in Sec. 3.1.2. Since this shape 

model was trained in a specific isotropic space, the algorithm requires transitioning between 

this training space and subject space using an affine transformation. This is accomplished by 

resampling the input and output of the encoder and decoder, respectively, using linear 

interpolation.
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Fig. 1. 
Segmentation of white matter lesions and 41 different brain structures from the proposed 

method on T1w-FLAIR input. From left to right: sagittal, coronal, axial view. From top to 

bottom: T1w, FLAIR, automatic segmentation.
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Fig. 2. 
Graphical model of the proposed method. In black the existing contrast-adaptive whole-

brain segmentation method SAMSEG (without lesion modeling), in blue the proposed 

additional components to also model white matter lesions. Shading indicates observed 

variables. The plate indicates I repetitions of the included variables, where I is the number of 

voxels.
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Fig. 3. 
Lesion shape model architecture consisting of two symmetrical convolutional neural 

networks: (a) decoder network and (b) encoder network. The decoder network generates 

lesion segmentations from a low-dimensional code. Its architecture has ReLU activation 

functions (f(x) = max(0, x)) and batch normalization (Ioffe and Szegedy, 2015) between 

each deconvolution layer, with the last layer having a sigmoid activation function, ensuring 0 

≤ fi (h) ≤ 1. The encoder network encodes lesion segmentations into a latent code. The main 

differences compared to the decoder network are the use of convolutional layers instead of 

deconvolutional layers and, to encode the mean and variance parameters, the last layer has 

been split in two, with no activation function for the mean and a softplus activation function 

(f(x) = ln(1 + ex)) for the variance.

Cerri et al. Page 30

Neuroimage. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Illustration of how intensity constraints and the lesion shape model help reduce false positive 

lesion detections in the method. Top row: a subject with a low lesion load; Bottom row: a 

subject with a high lesion load. From left to right: T1w and FLAIR input; intermediate 

lesion probability obtained with the simplified model used to estimate θ; mask of candidate 

voxels based on intensity alone (intensity higher than the mean gray matter intensity in 

FLAIR); and final lesion probability estimate p(zi = 1 di, θ) produced by the method.
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Fig. 5. 
Illustration of the effect of the prior p(θles|θd) on the lesion intensity parameters, both in the 

case of a lesion load that is low (left, corresponding to the subject in the top row of Fig. 4) 

and high (right, corresponding to the subject in the bottom row of Fig. 4). The illustration is 

from the Monte Carlo sampling phase of the method: In each case, the value of the 

parameters of the lesion Gaussian is taken as the average over the Monte Carlo samples 

θles
(s)

s = 1
S

, and the points represent the resulting lesion posterior estimate p(zi = 1 di, θ) in 

each voxel.
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Fig. 6. 
Difference between healthy controls (HC) and MS subjects in lesion volume, as detected by 

the proposed method on the Achieva dataset (23 HC subjects, 50 MS subjects, T1w-FLAIR 

input). Lines indicate means across subjects.
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Fig. 7. 
Contrast-adaptiveness of the proposed method to different combinations of input modalities. 

Segmentations are shown for one subject of the MSSeg (top row), the Trio (middle row) and 

the Achieva MS (bottom row) dataset. For each subject the top row shows slices of the data 

and the manual lesion annotation; the middle row shows the lesion probability map and Dice 

score computed by the proposed method for specific input combinations; and the bottom 

row shows the corresponding complete segmentations produced by the method. Enlarged 

figures for each subject are available in the Supplementary Material Figs. 1–3.
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Fig. 8. 
Lesion segmentation performance of the proposed method in terms of Dice overlap with 

manual raters on three different datasets when different input contrasts are used (T1w, T2w, 

FLAIR, T1w-T2w, T1w-FLAIR, T2w-FLAIR, T1w-T2w-FLAIR). From left to right: Dice 

scores on MSSeg, Trio and Achieva MS data.

Cerri et al. Page 35

Neuroimage. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Visual comparison of lesion probability maps on three different datasets for the proposed 

method and two state-of-the-art lesion segmentation methods (LST-lga and NicMsLesions) 

on T1w-FLAIR input. (Top) Two subjects from the MSSeg dataset; (Middle) Two subjects 

from the Trio dataset; (Bottom) Two subjects from the Achieva dataset. For each subject the 

top row shows slices of the data and the manual annotation while the bottom row shows the 

lesion probability maps for our model, LST-lga and NicMsLesions.
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Fig. 10. 
Lesion segmentation performance in terms of Dice overlap with manual raters for the 

proposed method and two benchmark methods (LST-lga and NicMsLesions) on T1w-FLAIR 

input. Statistically significant differences between two methods, computed with a two-tailed 

paired t-test, are indicated by asterisks (“***” for p-value < 0.001, “**” for p-value < 0.01 

and “*” for p-value < 0.05). From left to right: results on the MSSeg, the Trio and the 

Achieva dataset.
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Fig. 11. 
Lesion segmentation performance in terms of Dice overlap with manual raters on the ISBI 

dataset for the proposed method, NicMsLesions, and NicMsLesions with partial retraining 

(see text for details). Statistically significant differences between two methods, computed 

with a two-tailed paired t-test, are indicated by asterisks (“***” indicates p-value < 0.001).
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Fig. 12. 
Differences between healthy controls (HC) and MS subjects in normalized volume estimates 

of various neuroanatomical structures, as detected by the proposed method on the Achieva 

dataset (23 HC subjects, 50 MS subjects, T1w-FLAIR input). Statistically significant 

differences between the two groups, computed with a Welch’s t-test, are indicated by 

asterisks (“**” for p-value < 0.01 and “*” for p-value < 0.05).

Cerri et al. Page 39

Neuroimage. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cerri et al. Page 40

Table 1

Summary of the datasets used in our experiments.

Dataset Scanner Modality Voxel resolution [mm] Subjects

MSSeg

Philips Ingenia 3T

3D FLAIR 0.74×0.74×0.7

5

3D T1w 0.74×0.74×0.85

3D T1c 0.74×0.74×0.85

2D T2w 0.45×0.45×3

2D PD 0.45×0.45×3

Siemens Aera 1.5T

3D FLAIR 1.03×1.03×1.25

5

3D T1w 1.08×1.08×0.9

3D T1c 1.08×1.08×0.9

2D T2w 0.72×0.72×4 (Gap: 1.2)

2D PD 0.72×0.72×4 (Gap: 1.2)

Siemens Verio 3T

3D FLAIR 0.5×0.5×1.1

5

3D T1w 1×1×1

3D T1c 1×1×1

2D T2w 0.69×0.69×3

2D PD 0.69×0.69×3

Trio Siemens Trio 3T

2D FLAIR 0.7×0.7×4

403D T1w 1×1×1

2D T2w 0.7×0.7×4

Achieve Philips Achieva 3T

3D FLAIR 1×1×1

733D T1w 0.85×0.85×0.85

3D T2w 0.85×0.85×0.85

ISBI Philips 3T

2D FLAIR 0.82×0.82×2.2

14
3D T1w 0.82×0.82×1.17

2D T2w 0.82×0.82×2.2

2D PDw 0.82×0.82×2.2
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Table 3

Comparison of lesion segmentation performance in terms of average Dice score between each pair of the seven 

raters of the MSSeg dataset, and between each rater and the proposed method (T1w-FLAIR input).

R1 R2 R3 R4 R5 R6 R7 Ours

R1 – 0.68 0.59 0.70 0.75 0.59 0.59 0.54

R2 0.68 – 0.59 0.71 0.72 0.60 0.57 0.56

R3 0.59 0.59 – 0.57 0.59 0.60 0.63 0.60

R4 0.70 0.71 0.57 – 0.90 0.57 0.54 0.53

R5 0.75 0.72 0.59 0.90 – 0.59 0.57 0.55

R6 0.59 0.60 0.60 0.57 0.59 – 0.61 0.57

R7 0.59 0.57 0.63 0.54 0.57 0.61 – 0.60

Avg 0.65 0.64 0.60 0.66 0.69 0.60 0.59 0.57
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