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Abstract—This article focuses on the modeling of crisis and threshold development of the population process
during the formation of a new population in a competitive environment. As a population spreads, a deep pop-
ulation crisis may arise as a result an abrupt triggering of biotic countermeasures before resources for a further
increase in population size are exhausted. A bottleneck occurred in the history of many populations, includ-
ing humans at the time of the Neolithic crash in Europe. Invaders with high reproductive potential often exert
deleterious effects on biosystems. The emergence of efficient competition can not only cause classical cyclical
f luctuations, but also lead to a complete extinction of the population after a series of high peaks in its abun-
dance. Two alternative scenarios provide classical examples of induced population crises. One was observed
in Gause’s experiments where an introduction of a predatory ciliate drove another ciliate species to extinc-
tion. The other scenario was observed in a series of experiments where bacteriophages were introduced into
colonies of actively dividing bacteria that had a dynamically adapting antiviral mechanism. In this work,
modifications to the model were proposed to describe the actual scenarios of crisis effects in population
dynamics. Equations with deviating arguments in the time variable allowed a threshold effect of conditions
on reproduction of the invasive species and an aggregated nature of the lagging regulation with two time fac-
tors. The computational scenarios described both completion of the process after a repeated outbreak and
successful elimination of the population crisis via rapid adaptation. Deep crisis phenomena are characteristic
of local population dynamics when organisms interact with viruses that are new to them.

Keywords: invasion scenarios, modeling of extreme population dynamics, biotic counteraction, delayed reg-
ulation with threshold, species extinction, Neolithic crash, biological pest control, immune response,
CRISPR/Cas9
DOI: 10.1134/S0006350921060130

INTRODUCTION

This article continues works to improve the mathe-
matical biological methods to analyze volatile and
rapid transition processes. Recent studies have con-
firmed the majority of ideas about modeling the sce-
narios of virus infection spreading [1]. Many unobvi-
ous factors whose significance was hypothesized in
early pandemics previously [1] have been established
in detailed studies of the new disease or received
experimental support by April 2021. Certain other
questions that arose at the beginning of the pandemics
remain unanswered. As an example, there is still no
reliable explanation for why people of the Far East are,
on average, more resistant to the virus than people of
southern Europe, where the mortality rate is extremely
high. The infection potential is still unclear for patients
who have recovered from COVID, but remain PCR
test-positive for a long period of time. Russian special-
ists have published several interesting studies [2–4] to
contribute to investigating the important dynamic

properties and prospects of the current epidemiologi-
cal situation.

The objective of this work was to mathematically
describe the scenarios of a population crisis, which
may spontaneously arise after a rapid growth phase
even before the available ecological niche is filled by
the species. The variation of the phenomenon is
important to study for solving applied problems, such
as designing methods to biologically control danger-
ous invaders.

THE DYNAMIC CHARACTERISTICS 
OF THE CURRENT PANDEMICS

The principles of divergence in the dynamics of the
COVID-19 epidemiological processes and its inevita-
ble variability were noted in April 2020 on the basis of
analogies. The role of superspreaders in triggering the
COVID epidemic process is a feature of the current
pandemics and has repeatedly been confirmed in var-
ious countries. In the context of modeling, the prob-
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Fig. 1. The dynamics of overall mortality in the United Kingdom from January 2020 to February 2021 (data from a governmental
report, https://www.gov.uk/government/statistics).
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lem is that many patients do not transmit infection to
anybody, while some patients transmit it to many peo-
ple. The superspreader effect has been known for
many years and can be described by the example of the
HIV epidemics that started in 1980. HIV found its way
into the United States as early as the 1950s, but a single
hyperactive spreader was enough to greatly accelerate
the dynamics of the epidemic process in 1979 and
1980. Important findings are that superspreading is
characteristic of coronavirus to a greater extent than of
seasonal influenza and that the peak of the viral load
often does not coincide with the peak of symptoms [5].
As a result, the number of COVID superspreaders is
more important than the population-average basic
reproduction number R0 in a local case at an early
stage. The dynamics of the early stage greatly varied
among regional epidemics in Europe in early 2020
mostly because of the presence of active superspreader
groups, which is hardly possible to foretell when pre-
dicting the scenarios.

The second wave observed in the COVID epidemic
cycle in the United Kingdom in winter 2021 (and pre-
sumably caused by the UK strain) was far greater than
the first one in the number of cases, while the mortal-
ity rate was appreciably lower than in spring 2020
(Fig. 1). The phenomenon is important for predicting
the epidemic character.

The decaying wave dynamics of the epidemics is
qualitatively similar to pulsed sawtooth-like outbreaks
of insect forest pests, whose dynamics has previously
BIOPHYSICS  Vol. 66  No. 6  2021
been described with an complexly customizable equa-
tion with four inclusions of various time lag values [6]:

(1)

Equation (1) generates decaying peak series
wherein a second peak in a series can exceed the first
one depending on N(0). As noted previously, the
oscillatory character of the COVID-19 epidemics is
necessary to distinguish from the scenario where a Λ-
like outbreak repeats and the distinction was con-
firmed in fact in Iran, New York, the United King-
dom, and the Republic of South Africa. The variant
with a prolonged epidemic plateau in place of
two waves was far rarer in local regions. A single rapid
Λ-shaped epidemic outbreak was detected in Sri
Lanka in 2020, being similar to the outbreak of H1N1
influenza in Philadelphia in 1918. The evolution of
COVID proved to be more complex than that of Span-
ish f lu.

A classical pattern of a two-peak oscillating epi-
demic was observed in the Republic of South Africa in
2020 (Fig. 2). The emergence of a new strain did not
change the dynamic mode of oscillations and it can be
predicted that a third peak of disease incidence will
not exceed the first one. All large-scale pandemics end
at some time, even with variable viruses that cause
acute respiratory diseases. The immune response will
not lose its efficiency due to CD4 and CD8 T cells in
the period between peaks, resistance will accumulate

1

1

( 2 )( )exp( ( )) ,
( )

.

N tdN rN t bN t q
dt A N t

− τ= − τ − − τ −
− − τ

τ > τ
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Fig. 2. Oscillating COVID dynamics in South Africa from March 2020 to March 2021 (data from The New York Times).
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Fig. 3. Dynamics with an extreme growth in hospitaliza-
tions due to COVID-19 in Rio Grande do Sul in early
March 2021 (data from a report available at www.setor-
saude.com.br).
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in the population, and the amplitude of oscillations in
disease incidence will stabilize in the Republic of
South Africa. It has been confirmed that T-cell mem-
ory and the effector function of CD8 cells efficiently
work against many coronavirus epitopes [7]. More-
over, cross-reactive T cells have been observed in indi-
viduals without confirmed SARS-CoV-2 infection [7].

Emerging variants of the spike protein of the virus
will certainly not all cause outbreaks of severe COVID
cases. T cells of patients recovered without immuno-
suppression will recognize the epitopes of new strains,
such as South African B.1.351, with a probability
higher than 0.5. It is important to identify the situa-
tions where qualitative changes arise in epidemic
dynamics, and hospitalization statistics are better for
this analysis.

The scenario that has a period of an extreme
growth in daily new cases is far more dangerous and
was observed in Brazil in March 2021. We note that a
decay phase with a decrease in oscillation amplitude,
which had peaks in August and January (as in the
Republic of South Africa), abruptly and
quickly changed to another mode in March, display-
ing a Λ-like outbreak with an exponential growth. The
new outbreak apparently exceeds the initial disease
spreading rate. Figure 3 shows the wave dynamics of
hospitalizations in the southern Brazilian state of Rio
Grande do Sul. Two weeks later, a similar epidemic
outbreak started in Chilean cities after a quiet period
in mid-March 2021. Brazilian strain B.1.1248 will
probably be the most problematic in the so-called era
of war between vaccines and strains [8]. The situation
observed in South America suggests a trigger event
that could abruptly change the character of the virus
epidemic process 1 year after its start; this phenome-
non must concern researchers. It is interesting to find
the portion of reinfections among the cases observed
in March 2021.

The scenario of changes in epidemic dynamics
(Fig. 3) is a bifurcation scenario and additionally dis-
plays signs of an abrupt loss of the established mode.
This qualitative transformation of the pattern observed
in southern Brazil suggests an abrupt increase in the
basic reproduction parameter r. The increase was due
to a mutation and occurred earlier than in early
BIOPHYSICS  Vol. 66  No. 6  2021
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Fig. 4. The dynamics of COVID-19 incidence as pooled over all Mexican states (data from The New York Times web page:
www.nytimes.com/interactive/2020/world/coronavirus-maps.html).
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March, because the process is inertial. There is a lag in
the response of hospitalization statistics. A model of
the scenario that includes a similar disruption of the
established cycle after the Andronov–Hopf bifurca-

tion  and the trajectory

 appearing in place of a new

cycle at  has been obtained with an extended

modification of the delayed logistic equation [9]:

(2)

Cycle disruption in a nondissipative solution of
Eq. (2) describes the moment when the process
undergoes transformation because of an abrupt
increase in r, but not the variants of its end. The sce-
nario with a bifurcation is actually unpredictable and
reflects an independent stochastic event. The H1N1
swine f lu epidemic of 2009 occurred in these regions
with two peaks, in July and November. Thus, an inter-
val shorter than 2 months between a past peak and a
new increase in disease incidence is a sign that the
virus has acquired (accumulated several) dangerous
changes. A typical dynamics with 6-month intervals
between peaks is observed in Iceland: April, October,
and April. Seasonal outbreaks of acute respiratory
infections are not observed in Brazil or India, but are
an important factor in Northern Europe and certainly
Russia.

Pooled case data are poorly suitable for analysis
when originating from countries with large popula-
tions (the United States, Indonesia, India, and Brazil)
and an uneven population density. Plots are actually

( );
* *

N t t r< τ

( )lim ;
*t N t r→∞ τ = +∞

*
r r≥

( ) ( )( )
( ) 1 ( ) ,

.

N tdN rN t N t
dt K

K

− τ= − ϒ − − τ

ϒ <
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combinations of dissimilar groups of local scenarios.
An epidemic dynamics with three increasing waves is
observed in the United States according to pooled
data, but qualitatively different patterns are detectable
in New York and Michigan. The methods to report
statistics have been improved in Mexico, but a plot of
daily new cases in Mexico qualitatively differs in
dynamics from the respective plots of New York, the
Republic of South Africa, and Brazil (Fig. 4). The epi-
demic process developed in Mexico more slowly than
in the adjacent countries, while the population density
is extremely high in its capital.

A comparison of various scenarios confirmed that
lockdown measures fail to stop a rapid increase in dis-
ease incidence when this phase has already started and
a lockdown, which is disastrous for the economy, is
implemented only because there is risk to exhaust hos-
pital bed capacities. This is an example of attempts at
controlling a process on the basis of data that have a
lag in reflecting its dynamics.

THE VARYING CHARACTERISTICS 
OF IMMUNITY ACTIVATION SCENARIOS

Apart from lockdown measures, social norms, and
communication traditions, particular immune
response variants affect the dynamics of regional epi-
demics and have specific features in some local
groups. Sets of cross-reactive B cells formed as a result
of previous contacts with another endemic β-corona-
virus were found in fact in some patients with severe
symptoms [10]. Memory B cells (MBCs) account for a
small, but stable, part of lymphocyte receptor reper-
toires and do not facilitate the neutralizing antibody
response according to [10]. MBC activation failed to
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help counteracting the new virus. Combinations of
four previously known coronaviruses circulated in var-
ious regions, differing in composition. This circum-
stance determined the apparent local characteristics in
the percentage of severe COVID cases and the per-
centage of deaths in spring 2020 as a result of the blind
spot phenomenon or the “original antigenic sin”
effect [11] observed in the immune response. The
properties of the effect are such that the effect will lose
its significance in repeated epidemic waves of 2021,
but is capable of reoccurring in the future because of
mutations that accumulate in viral RNA. Antibody-
dependent enhancement (ADE) occurs, wherein the
virus–antibody complex is not tight enough and the
virus escapes endosomal degradation in leukocytes,
but infects them instead [12]. ADE could be local and
episodic in 2020, but is capable of becoming a com-
mon cyclic regional effect in patients who have recov-
ered from COVID. MBCs that responded previously
to a no longer significant epitope become a hindrance
after a season of acute respiratory infections, produc-
ing suboptimal antibodies when encountering the
slightly changed antigen. As an example, mass vacci-
nation against the dengue virus failed because there
are four different serotypes of the virus; after vaccina-
tion, dengue was more severe in some of the vacci-
nated people than in the control population on average
[13]. ADE arises stochastically in patients infected
with the dengue virus; however, a 10% failure rate after
vaccination is an important problem.

An accumulation of genetic differences and gener-
ation of new SARS-CoV-x strains were apparent as
early as a pandemic was declared by the WHO. Coro-
naviruses possess a mechanism that provides the fidel-
ity of their RNA replication, and such a virus may
remain stable for many years, circulating in a local
population. However, the law of large numbers plays
against humans when the virus spreads through all
continents. Deletions have come to contribute to virus
variation; i.e., some regions are lost from the large
virus genome. Unsurprisingly, the spike protein is
affected by mutations, although there are conserved
regions in this complex transmembrane protein as well
[14]. I decided to get vaccinated with the understand-
ing that there is a nonzero probability that another
strain will circulate in January 2022, and IgG antibod-
ies produced after vaccination may have insufficient
affinity for a new variant of the receptor-binding
domain (RBD) of the mutant spike protein. However,
the larger the portion of virus-resistant people is in the
global population and the quicker its accumulation,
the lower the likelihood is of dangerous events, that is,
new significant mutations acquired by the virus. The
majority of events are not fully determined in the
immune response of the body and the likelihood of
success is still greater. Herd immunity resulting from
mass vaccination can hardly vanish at once with the
advent of new strains, but should decrease linearly as a
result of similar stochastic factors that accompany the
antigen presentation process. Immunodominant pep-
tides of B and T cells will vary and have an complex
distribution pattern in a large group of vaccinated indi-
viduals. Immunity will not lose its efficiency totally
and at once. As was shown in many studies, it is
important to investigate the cell-dependent response
of CD8-positive T killers to a range of antigens that are
regions of conserved structural proteins and nucleop-
roteins of the virus, but there is an inconstant time lag
in the development of this response.

A special role of natural killer (NK) cells in the
immune response followed from the hypothesis of a
lag in a T-cell activation scenario and was high in fact.
A decrease in the effector functions of NK cells was
observed in patients with severe inflammatory compli-
cations [15]. A comparison of new findings from sev-
eral studies makes it possible to understand the reason
that this cell group is important. Each component of
immunity performs a range of specific functions, but
their functions may overlap. NK cells provide anti-
body-dependent cytotoxicity, while alveolar macro-
phages are responsible for complications. IgG anti-
bodies that target the S protein of SARS-CoV-2 and
lack fucose residues in the Fc region (afucosylated
immunoglobulins) have higher affinity for Fc recep-
tors and consequently induce macrophages to release
excess proinflammatory cytokines, which are signal-
ing molecules [16]. Their release increases systemic
inflammation via positive feedback.

The greatest problem is to support the model
hypothesis of a dose dependence in the scenario of an
infection process, where the initial infectious dose
N(0) strongly affects the development rate and quality
of the cell-dependent immune response. The dose,
but not a relative estimate of its virulence, can be used
as a quantitative parameter in a computational model
of a scenario. Direct experiments on humans with
higher doses are impossible for obvious reasons. Cer-
tain data make it possible to believe that there is a
threshold initial infectious dose that is capable of
causing severe COVID by activating the cascade of
inflammatory cytokines, including IL-1β, which trig-
ger both local and systemic inflammations. Experi-
ments with re-infection of rhesus monkeys showed
that antibodies can protect one from SARS-CoV-2
infection in a dose-dependent manner, but only when
the IgG level developed previously exceeds a threshold
titer necessary for protection [17]. Experimental stud-
ies are necessary in order to evaluate the quality of the
total spectrum of immune responses to various coro-
navirus doses, as in experiments described for various
doses of a H3N2 influenza virus [18]. The developers
of the VLA2001 classical vaccine, which contains the
inactivated coronavirus, confirmed a pronounced
dose-dependent immune response to their prepara-
tion. In the context of the complicated manner in
which COVID depends on the initial virus dose, little
attention is paid to using vaccines to improve the
immune complex of mucous membranes, which pro-
BIOPHYSICS  Vol. 66  No. 6  2021
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Fig. 5. The dynamics of human population density in
Northern Europe during the Neolithic crash [19].
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vide the first protective barrier and are important in
individuals with compromised T-cell immunity and,
consequently, increased COVID duration.

Many separate findings, which are disaggregated
and seem unrelated to each other, gradually form an
integral mosaic of immune response variants, which
are interesting to classify, in particular, using mathe-
matical theories.

BIOLOGICAL INVASIONS AND ACTIVATION 
OF ENVIRONMENTAL COUNTERACTION

The problem of the ecological dynamics of transi-
tion processes is as interesting mathematically, but has
received insufficient attention. Spontaneous invasions
have become regular or even inevitable events in the
ecology of biosystems. Extreme forms of processes
occur when imbalance arises in an established biolog-
ical diversity and are of applied significance and inter-
esting to describe mathematically. Simulation is
described below for several alternative invasion sce-
narios that involve active invaders and are accompa-
nied by an abrupt increase in competitive counterac-
tion. Invasion scenarios differ from those of fights
between the immune system and viruses in having a
greater potential for mutual adaptation of the species,
where the invader may win the competition for an eco-
logical niche and become a dominating species. A
virus lacks a stable “niche” and has only a minimal
effect that does not destroy its environment. The body
is incapable of existing for long in a state with a high
viral load, as was reflected in a model scenario of the
infection process exemplified by hepatitis C [1]. It is
clear that infection of all available liver cells means a
fatal outcome of the disease.

Let an invasive species with a high reproduction
parameter (r) intensely spread through a new region.
BIOPHYSICS  Vol. 66  No. 6  2021
At the first step, the dynamics of the process can be
close to exponential with the growth equation N(t) =

N(0)ert – qN(t), q < r < 1. At a certain time point t = T,
the species encounters active counteraction by
autochtonous (or introduced for the purpose) biotic
factors. There are only rare examples of situations
where the invader species reproduces intensely and
completely destroys its environment, as was the case
with reindeer introduced to the Bering Island or
humans on Easter Island. A trigger factor acts as a
mechanism that regulates the species abundance with
a time lag. Several variants are known for the develop-
ment of such events, as well as interesting real exam-
ples.

Human populations outside Africa can be consid-
ered invaders; they had to fight for their “niche.” As
was established in archeology, Homo sapiens popula-
tions that entered Europe and intensely colonized its
northern regions experienced what is known as the
Neolithic crash at approximately 6000 BC [19]. The
long-term crisis lasted approximately 500 years
(Fig. 5) [19]. The causes and consequences of the
long-term demographic decline are a matter of discus-
sion in historical science.

Equilibrium was established and persisted for a
long time after the Neolithic crash, changing to a new
trend of an increase in population size at approxi-
mately 4000 years BC. This is an example of a pro-
longed crisis, by historical standards, but not a very
deep crisis.

Such changes in abundance are known as boom
and bust in ecodynamics. A mathematical scenario
with a single short-term outbreak [20] is only its par-
ticular case. Changes with peaks and crises are rather
typical and important because a bottleneck effect
accompanies them. Genetic changes are associated
with the effect because a small group of individuals
gives origin to the population that develops after pass-
ing through a bottleneck. The number of allelic gene
variants can be reduced to a dramatic extent, and such
critical phenomena can be considered as evolutionary
factors and causes of intraspecific differentiation. Var-
ious species were found to have a period with a small
population size in their history based on genetic
mtDNA studies.

Dramatic f luctuations in population size are nor-
mal and exert no effect on fitness in other invader spe-
cies. As an example, the warty comb jelly Mnemiopsis
leidyi is a dangerous invader and uses cannibalism [21]
to maintain its population when food resources are
exhausted, thus being able to displace competitors
while passing through population size minimums. The
minimal population size L is characteristic of many,
although not all, species.

Neolithic human ancestors exemplify a favorable
scenario with a prolonged minimum of N(t) → L, L >

δ  N and a low reproduction efficiency. Many species

failed to overcome a sudden crisis, including invader
∈
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Fig. 6. The dynamics of two ciliate species with extinction after a second peak in Gause’s experiments [24].
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populations that intensely colonize a new range.
Examples of population crashes were reviewed in [22].
Many of the respective populations had a high repro-
ductive potential, as was the case with the ragweed leaf
beetle Zygogramma suturalis introduced from America
to the Stavropol region [23].

EXPERIMENTAL OBSERVATIONS 
OF TWO CRISIS PHENOMENA

Experiments provided clear evidence for various
scenarios of crisis dynamics. Gause’s classical experi-
ments with two ciliate species (1934) can be inter-
preted both as a situation where delayed counteraction
is abruptly switched on and as a laboratory model that
illustrates the behavior of an aggressive invader in a
new environment. A tube with a Parameciuim cauda-
tum colony that grew logistically (N(t) → K) was sup-
plemented (t = tD) with the aggressive predator Didin-
ium nasutum, which is a natural enemy of the former.
Elimination of the prey population was the final out-
come of the interactions of the two ciliate species in
experiments without refugia, and the predator popula-
tion had a second population size maximum and then
died in the absence of food (Fig. 6) [24]. The second
maximum of Didinium population size was larger than
the first one and coincided with a minimum prey pop-
ulation size.

Several publications described the experiments as
an experimental disproof of Volterra’s model and the
theory of a stable cyclic development of species in a
two-level trophic interaction, but Gause’s interpreta-
tion was somewhat different. Gause [24] noted incom-
plete determination for the laboratory experiments.
That is, certain equations can be used to predict the
course of the struggle for survival when the Parame-
cium and Didinium population sizes are large enough.
However, various stochastic factors become highly
significant when the population sizes are low at critical
time points when one cycle gives way to another. As a
result, it is impossible to determine the course of
development in each particular case, and stochastic
changes come into play again. Gause thus saw a phe-
nomenon that had not been studied at his time and is
known now as a stochastic blurring of the separatrix in
mathematics. A certain disturbance in the initial con-
ditions at N(0) ± ε [25] does not necessarily leads to a
different asymptotic position of the trajectory when
alternative attractors exist. An area with a set of scat-
tered points, rather than the threshold L, forms the
boundaries for domains of attraction. This property is
observed in model (3), where H is the subthreshold
virus load and N(0) < H < K for the given infection:

(3)

The effect of separatrix blurring does not contra-
dict experimental data and observations because an
increase in the initial dose by n + 1 virion does not
necessarily lead to a fatal outcome. Mice have a
chance to survive even when infected with a huge
influenza virus dose, as is known from experiments
[8]. Equation (3) provides an illustrative, but not the
only possible, example of stochastic properties that
exist in a deterministic model. However, computa-
tional experiments with Eq. (3) cannot describe the
spontaneous disruption of f luctuations in an emerging
population cycle.

Decaying oscillations and limt→tKN(t) = K are

observed in the first phase of a bifurcation-free sce-
nario for t ∈ [0, tK], but equilibrium K becomes unsta-

ble. At the time t → tK, N'(t) → 0 and N(t) → K, and

the sign of the right part of Eq. (3) depends on the
value Eh = (H – N(t – h)), which acts as a disturbing

factor depending on the trajectory state at the time
point tK – h and can be positive or negative as deter-

( )( ) ln ( ) ,
( )

, .

dN KrN t H N t h
dt N t

H K h

 = − − − τ 
< > τ
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Fig. 7. The dynamics of an Escherichia coli colony with the
CRISPR/Cas adaptive antivirus system after infection
with a bacteriophage (a virus): (1) bacterial cell count;
(2) virion count [26].
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mined when specifying N(0). Two variants were
obtained in computational scenarios: limt→∞N(t) = +∞
at Eh > 0 and limt→∞N(t) = H at Eh < 0. The dichotomy

of scenarios is determined by the nonmonotonic char-
acter of how the trajectory N(t) → K approaches the
intermediate equilibrium K. Equation (3) shows sim-
ple decaying oscillations at low r values; parameters
are disparate in nonlinear models, and not all of them
change the phase portrait.

Mutual adaptation of the species is not implied in
the scenario with introduction of a predator ciliate.
The predator invader is counteracted mainly by its own
food demands and uncompensated reproductive
activity. The stochastic factors that Gause noted are
associated with the sensitivity of his laboratory
system to disturbances in its initial state at the time
points t = 0 and t = tD. Experiments where the free

prey dynamics is cyclic, rather than logistic, are of par-
ticular interest mathematically. Such experiments can
be performed by adding the ciliate parasite Holospora
undulata to the ciliate species.

The crisis scenario under study is often associated
with the start of an epizootic in the active invasion
phase. There is another laboratory system in which
species quite rapidly adapt to each other. A bacterio-
phage (virus) was added to an Escherichia coli colony

growing according to the logistic law N(0), N(t) → K
with a small overshoot N(t) > K and an unusual
dynamics was observed [26]. The bacteriophage effi-
ciently suppressed the growth of bacteria, but then the
viability of the remaining bacteria increased abruptly.
The system with the virus passed through a minimum
and stabilized (Fig. 7). The artificial system with
E. coli–bacteriophage counteraction provides a labo-
ratory model for real invasion situations. As an exam-
ple, the gypsy moth Lymantria dispar was a harmful
invader in North American forests and the pathogenic

∀
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fungus Entomophaga maimaiga was introduced and
greatly reduced the moth activity, but it took several
years for the fungus to adapt to a new moth [27].

Unfavorable data were obtained in studies of crises
because of E. coli adaptation. There was an intention
to use viruses as antimicrobial agents in medicine in
the 1930s [28]. It took several decades for researchers
to understand the actual cause of the processes that
occur in a tube with E. coli and the virus. The 2020
Nobel Prize was awarded for studies of the
CRISPR/Cas9 mechanism, but in the field of genome
editing rather than bacteriology. Regularly clustered
interspaced short palindromic repeats (CRISPRs)
found in the genomes of many bacteria provide virus
signatures to the intracellular antivirus system that acts
as molecular scissors and utilizes Cas endonuclease to
recognize and cleave alien DNA. As is known to every
user of a personal computer, signatures for antivirus
tools should be updated on a regular basis. Horizontal
gene transfer [29] allows bacteria to rapidly overcome
an acute crisis and to establish a new equilibrium.
Genome editing is now thought to offer unlimited
opportunities from developing resistant potato culti-
vars to solving the problems of oncology [30], but
E. coli CRISPRs ruined the prospects of using bacte-
riophages in medicine.

Thus, the two dynamically similar variants of a bot-
tleneck crisis, which were considered above, are
caused by different biological factors, but follow the
common principle of delayed regulation and adapta-
tion. In Gause’s experiments, evolutionary adaptation
was not implied by the scenarios, which implied only
the generation of spatial heterogeneity. However, evo-
lutionary adaptation is an important factor in the case
of many introductions of insect and fish species [31].
The above crisis scenario underlies the development of
certain adverse processes, and mathematical models
are therefore interesting to obtain and compare for the
two dynamics variants.

SIMULATION OF DELAYED 
COUNTERACTION SCENARIOS

The goal is to develop models that are capable of
phenomenologically describe the extreme situations
that occur after the first phase of active invasion. Inva-
sions made the behavior of biosystems less predictable
[32]. A harmless benthic invader can actually trigger a
sequence of changes in the organic matter f low of a
water body [33]. The history was previously described
in detail for the idea of simulating with regard to both
the time lag in biological systems and hereditary prop-
erties [34], meaning that the regulatory functional of a
process depends on several previous states of the sys-
tem [35]. Four methods are used to obtain a computa-
tional description of the delayed aftereffect. The best
grounded and most common one is based on differen-
tial equations with a divergent argument. Methods that
are employed less often include Volterra’s method
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with integro-differential systems and discrete func-
tional iterations [36] with the recursive computational
element xn + 1 = Ψ(xn, xn – 1) – Q(xn – i). A continuous-

even representation of model time was proposed for
hybrid models with regard for the effect that the step-
wise character of ontogeny and delayed development
at a lower individual growth rate exert on the viability
of individuals [37].

Current achievements in developing modifications
of continuous hereditary models in mathematical
biology were reviewed in [38]. Certain features of
using delayed equations are important to understand
when providing essential biological interpretations to
computational results, often in the form of relaxation
fluctuations [39]. To choose the simulation method, it
is necessary to understand beforehand that complica-
tions introduced in a model reduce the range of its
parameter values in which the trajectory behavior is
interesting and is biologically grounded. Population
models with a large number of bifurcation parameters
often demonstrate the nonlinear phenomena that are
beyond the possibilities of essential ecological inter-
pretation. Such effects with transformations of attrac-
tors, the appearance of “periodicity windows,” and a
doubling of the cycle period are associated with a tran-
sition to chaotic trajectory behavior, which is difficult
to predict.

Delayed equations were developed in mathemati-
cal biology to describe population size f luctuations,
that is, cyclic regimens of various shapes [40]. Popula-
tion cycles are known to form in isolated populations
with high reproductive potential even in constant lab-
oratory conditions [41]. In laboratory experiments,
the f luctuation amplitude may be affected by the food
replenishment rate [42], as was the case with well-
known Nicholson’s experiments with the f ly Lucilia
cuprina [43].

Three delayed equations are most commonly used
in population modeling and are capable of generating
fluctuations, including those that are complex in
shape [44]. These are the Hutchinson, Nicholson, and
Gopalsamy models, which have several modifications
[45]. The most common Andronov–Hopf bifurcation
reflects a mild loss of a stable regimen and describes

the emergence of the stable cycle  well in the

vicinity of a stationary point that loses its stability [46].
Modifications of the Hutchinson model are used to
simulate the harmonic f luctuations established in an
isolated population without effects of external factors
or overshoot, which is a situation where a rapidly
growing invader population quickly exceeds the niche

capacity K: tm < tc, N(0) < K : N(tm) > K, N(tc) < K.

Wright [47] proposed Eq. (4), which is based on
Hutchinson’s ideas and is an extension of the Verhulst
model with the lag τ in the regulation of reproduction:

(4)

( )
*

N t

∃ ∀

( )( )
( ) 1 .

N tdN
rN t

dt K

− τ= −
The decaying f luctuation mode  = K it

can be obtained with Eq. (4) when 1 < rτ < π/2,
N(0) < K. However, Eq. (4) cannot describe a scenario
where f luctuations stop with a decrease in population

size to the minimal stable level  = L, even

by using the independent decrement. At rτ = π/2 + ε,
the focus point loses its stability and a bifurcation
occurs to give birth to a new cycle [48]. Harmonic
fluctuations with a regular damping are rarely
observed in ecological reality. Cycles known for small
rodents of northern regions are a sequence of increas-
ing annual generation sizes with an abrupt maximum
at the end of a period. The population returns to the
minimum level L after a maximum [49].

Sawtooth-like outbreaks of insect pests are individ-
ual series of sporadic Λ-shaped peaks that tend to
decrease in amplitude, with the second peak being
maximal in many cases [50]. A scenario known as saw-
tooth-like oscillations in insect pest dynamics includes
population size outbreaks with different-sized decay-
ing peaks; it differs from other variants of outbreak
development [51]. An external effect is necessary in
the scenario in order to distort equilibrium and to
induce the next transition mode. Figure 8 shows a
series of decaying outbreaks observed for Lymantria
dispar in Bulgarian forests. The regular series of 2020
ended abruptly without repetition over a decade
because of the activity of the entomopathogenic fun-
gus Entomophaga maimaiga, which was a new larval
parasite [52]. The capability of sensing and avoiding
dangerous fungi is acquired with time by some insects,
such as adapted termites, during their coevolution.

A scenario with short outbreaks, which is charac-
teristic of psyllids in southern Australia, is a biocyber-
netic phenomenon with a different regulatory mecha-
nism, a threshold-dependent development of phases
in the process [53]. A threshold population size suffi-
cient to start an outbreak can be achieved from the sto-
chastic oscillatory mode in Psyllidae. The existence of
a threshold is associated with the activity of superpar-
asitic wasps. A psyllid outbreak ends with a transition
to a prolonged aperiodic mode. Threshold effects are
important as a cause of resource collapses in the case
of harvested species [54].

A problem known for the practical applications of
model (4) is that minimums in the vicinity of zero arise
with the increasing amplitude in a nonharmonically
shaped cycle that forms at higher rτ values:

 = 0 + ε. Prolonged deep near-

zero minimums disagree with the population dynam-
ics observed in species that show eruptive phases in the
rapid development of population size outbreaks. The
area of affected forest regions reflects the intensity of a
pest outbreak. Lack of newly dead forests in reports of
the forest service means that the local pest population
occurs in a state of a stably low density, but does not
suggest its extinction.

lim ( )
*t N t→∞

lim ( )
*t N t→∞

lim min ( , )
*t N t r→∞ τ
BIOPHYSICS  Vol. 66  No. 6  2021



SIMULATION OF SCENARIOS OF A DEEP POPULATION CRISIS 983

Fig. 8. Dynamics with a series of decaying outbreaks observed for the gypsy moth Lymantria dispar in Bulgaria, as measured by
affected forest area from 1949 to 2013 [52].
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Thus, the Hutchinson model loses the possibility
of population interpretation of f luctuations with the
increasing rτ > 3π because various stochastic distur-
bances come to play a substantial role in a prolonged
state with a low population size, even when the popu-
lation does not experience the Allee effect.

To eliminate the drawbacks of the cyclic solution of
Eq. (4), Gopalsamy [55] proposed a model where the
actual capacity of the ecological niche is no longer
static:

(5)

Model (5) was modified to irregularly increase the
nonlinearities in the numerator and denominator to
provide that a new peak starts from the position min

 higher than the stable population size thresh-

old L and Ψ(Nk(t – h) normalizes the oscillation decay
rate:

(6)

The niche capacity for environment-damaging
pests is not static in this model. Equations without
explicit fixation of levels, such as the achievable opti-
mal population size C or the limit capacity K of the
ecological niche, provide alternative modifications of
Eqs. (4) and (5). The blowfly equation was proposed
to describe the data (larva and adult counts) from
experiments with a laboratory f ly population at a high
fluctuation amplitude:

(7)

( )
( ) .

( )

K N tdN
rN t

dt K jN t

 − − τ=  + − τ 

( , )
*

N t r

2

3

( )
( ) [ ( )],

( )

.

kC N tdN
rN t N t h

dt K N t

C K

 − − τ= − Ψ − + γ − τ 
<

( )exp( ( )) ( ),
dN

rN t bN t N t
dt

= − τ − − τ − δ
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where δ is the independent mortality index. Model (7)
allows an aperiodic f luctuation mode at higher τ
(Fig. 9). Competition between larvae and adults was
implied in the relevant experiments [56]. The blowfly
equation provides only a phenomenological descrip-
tion of relaxation fluctuations of total population size,
taking advantage of the properties of the Ricker func-
tion.

Models (4) and (7) were generalized to obtain
model (8) for the age structure, but the resulting
model did not find broad application:

(8)

In place of using the Ricker exponential regulation

function f(x) = axe–bx to modify model (7), the non-
unimodal function f(x) can be used in order to formal-
ize intraspecific competition without using fixed pop-
ulation sizes as competition or niche saturation
thresholds. Unimodal variants of f(x) were considered
in [57]. Separate consideration can be given to the
modification that is based on Bazykin’s idea of an
effect of the critically low population size L in the form
of (N – L) and introduces a lag, as in the Hutchinson
model:

(9)

Cyclic changes observed in reality for species abun-
dance can be associated with the presence of repro-
ductively isolated populations. Groups of this kind are
impossible to distinguish in harvesting statistics, as was
noted for the Volga sturgeon [58]. Overall statistics are
misleading when obtained for a structurally complex
population.

2

1

( )1
1 ( ) ( ) ( )e .

bN tN
r d s N t s N t

t K

−τ
− −τ

−τ

 ∂ = − + 
 ∂  

 v

( ) ( )( )
( ) 1 ( ) .

N tdN
rN t N t L

dt K

− τ= − − v
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Fig. 9. Comparison of oscillatory mode dynamics (4) and (7) at the same τ: (1) relaxation cycles in the Hutchinson model;
(2) fluctuations in Nicholson equation (7).
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To model the crisis effects that occur during rapid
invasion, methods used to describe the delayed
dynamics should be extended to include not only the
intraspecific regulation, but also counteraction, which
may also change in a threshold-dependent manner,
for example, at a different initial infectious dose of
influenza virus [15].

REPRESENTATION OF A DELAY 
IN THE REGULATORY FUNCTIONAL

In the simulation methodology under study, the lag
parameter in the dynamics of populations reproducing
in a competitive environment should be understood as
an aggregate characteristic that arises from a superpo-
sition of several biosystemic factors and particular
concomitant processes. The temporal aftereffect as a
component of regulatory functions of the models
developed does not characterize a particular biological
species, but reflects the systemic interactions that
involve its surrounding and are often indirect rather
than direct. Replication- and adaptation-related time
indices were isolated separately for the lags associated
with activation of different immunity components in
model (3) of virus infection at various intensities of the
immune response.

The ontogenetic lag in the development of an
adult is not the only temporal factor and is not equally
significant in all situations. Lags that regulate repro-
ductive activity are of greater importance. The param-
eter τ in model (2) of oscillation disruption is a result
of the interaction that forms between the species and
its particular biotic environment in a particular region.
Contributions to the actual lag used in a population
model can be made by ontogenetic properties, time
periods of developmental stages, the restoration rate of
vital resources, migration duration, etc. The time it
takes for a parasite or a pathogen to develop a response
is important in the case of invasion. The lag is an indi-
vidual-dependent characteristic of all activation reac-
tions in the case of immunity–virus interactions in the
body, and its mean value may vary among local sub-
populations.

As was shown in [59], the reproductive component
rN(t) of a population model is more adequate without
a lag, while the τ value is significant in the spatial com-
ponent. Delayed equations of the N(t – τ) form are
broadly used not only to describe the f luctuation
dynamics of a population [60] or to simulate the
immune response (modern developments of studies by
Marchuk et al. [61]), but also to study the intracellular
processes, such as protein synthesis, nucleic acid rep-
lication, etc. When alternative RNA splicing was sim-
ulated [62], the lag was similarly understood as an
aggregate parameter of two main components, the
total time of pre-mRNA splicing to produce mRNA
and the time of mRNA transport from the cell nucleus
into the cytoplasm. When a strictly controlled process
is to be simulated, it is important that trajectory
behavior remains predictable in computational exper-
iments because the solution may become sensitive to
minor disturbances in the initial conditions (N(0) ± ε)
and the choice of the background function φ0 for the

time range φ0(ζ), –τ ≤ ζ < 0.

Based on the above principles of the role played by
the regulation with an aftereffect, modifications of the
proposed equations will include the internal regula-
tion of reproductive activity with τ (possibly, using
threshold states of species abundance) and, separately,
the functional of delayed external counteraction by the
environment. Let the logarithmic regulatory function
ln(K/N) be used in the model as a basic function for
further special modifications at a stationary niche
BIOPHYSICS  Vol. 66  No. 6  2021



SIMULATION OF SCENARIOS OF A DEEP POPULATION CRISIS 985

Fig. 10. Comparison of model dynamics at the same K =
15000 and N(0) = 15: (1) a single outbreak is obtained
using Eq. (10) at r = 0.0175; (2) a relaxation cycle is
obtained in model (4) at r = 0.07.
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capacity, as in the experiments with ciliates and bacte-
riophages:

(10)

Decaying and cyclic f luctuations can be obtained
in model (10), but another behavior of the equation
solution is interesting from the ecological viewpoint.
This scenario, where balanced equilibrium is achieved
via oscillations in the solution of Eq. (10), differs from
the scenarios describes by known models and is possi-
ble when N(0) is low and τ is sufficiently high (Fig. 10).
The parameters used in a comparative computational
experiment were selected so that coinciding maxi-
mums were obtained for the solutions of Hutchinson
Eq. (4) and basic model (10).

In the case of rapid invasion, an initially small
group of the invader species can quickly, within a lim-
ited short period of time after invasion, increase to a
huge population size (N(tK) @ K) that is one order of

magnitude higher than the final value achieved in
equilibrium with the environment. The rapid growth is
followed by a similarly rapid decrease in population
size and oscillations around the equilibrium state, and
the resulting population size, which slightly oscillates
within a certain range, does not exert pressure on the
environment. The concentration dynamics observed
for the bacteriophage in experiments after its intro-
duction matches this scenario, while a qualitatively
different scenario is demonstrated by antagonistic
bacteria.

An outbreak that follows scenario (10) is possible
for an initial group whose N(0) is substantially lower
than K. There are other experimental examples where
an outbreak ended. When the delicatessen scallop
Chlamys farreri was grown artificially in marine cages,

ln ( ).
( )

dN K
r N t

dt N t

 =  − τ 
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its production increased rapidly (Fig. 11). Virus infec-
tion caused a six-fold decrease in production in 1997
and no measure could restore the production to its
level of 1996 [63]. Parasitic wasps have been repeatedly
introduced as a means to control pests, but all attempts
at establishing their stable populations failed. A
decrease in abundance was recently observed even in
invasive mollusks of the family Dreissenidae, which
occupied North American water bodies and became
an important economic problem in the United States.
Competition arose between the invasive species Dreis-
sena polymorpha and D. rostriformis bugensis and was
so intense that their total biomass density is lower than
the density in a niche occupied by one of the species
[64].

A single outbreak in the abundance of an invasive
species is described by the model. Repeated abun-
dance peaks [65] that arise after the first outbreak are
characteristic of insect forest pests. A transition to
sawtooth-like f luctuations is observed in pests, as
mentioned above. The scenario with short Λ-shaped
outbreaks in aphids and psyllids requires other attrac-
tor modifications [66]. The dynamics of model (10) do
not describe the case where acute virus infection
develops into chronic disease because a high virus load
is maintained for a long period of time in the vicinity
of unstable equilibrium (a developmental threshold)
in this scenario.

A MODEL OF THE GAUSE SCENARIO
WITH DISRUPTION OF FLUCTUATIONS

Pressure exerted by the environment may linearly
depend on the previous state of the invader. Let us
allow for a delayed response of the biotic environment
in the modification of model (10) with a counteraction

factor, but sacrifice the convenient property ,

N(0) > 0, N(t) ≥ 0:

(11)

where δ is the factor of mortality due to parasites or
virus infections. The behavior of model (11) in a com-
putational experiment shows extinction of the popula-
tion only after a repeated outbreak. The second maxi-
mum exceeds the first peak in the solution (Fig. 12),
but the second minimum is outside of the allowable
range of values, and when model computations are
performed at N(t > τ) < –ε the computational experi-
ment is completed by the instrumental algorithm with
a fixation of extinction of the population.

Model (11) phenomenologically reproduces the
dynamics observed in Gause’s experiment with cili-
ates. However, this is an artificial laboratory scenario
observed in vitro, where the death of the invading
predator is determined by rapid exhaustion of food
resources. The time point t0 of extinction N(t0) = 0

depends on N(0) in model (11), and only a single max-

t∀

1ln ( ) ( ),
( )

dN K
r N t N t

dt N t

 = − δ − τ − τ 
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Fig. 11. Production (kilotons) of an artificial marine scallop Chlamys furreri population with a crisis due to an oyster herpes virus
epizootic of 1997 [63].
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Fig. 12. The scenario of population extinction after the
second fluctuation maximum: (1) solution of model (11) at
r = 0.0175, δ = 0.007, N(0) = 103, τ = τ1 = 48, and K =
15000; (2) behavior of Eq. (4) with a similar modification
with δ at r = 0.05.
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imum is observed when the initial condition is N(0) =
100. An extinction scenario is obtained in the solution
of Eq. (11) at higher r values, while lower r values may

lead to regular f luctuations with min (t) > ε. The

Argentine ant Linepithema humile is the best known
undesirable invasive species whose populations were
described many times to become extinct after an out-
break. The aggressive invader formed large colonies in
New Zealand, but then the colonies collapsed sud-
denly, and autochtonous ant species restored their
ranges after being displaced by the invader [67].

SIMULATION OF PASSING A BOTTLENECK

The scenario where invader populations intensely
exhaust their necessary resources, encounter a con-
traction specified linearly with a lag, and eventually
become extinct is important in the context of artificial
control of undesirable invaders. Certain species (e.g.,
parasitic hymenopterans) are now often used to con-
trol other invaders biologically [68], but complete
control is rarely achieved. It is interesting to consider
the South Korean experience of long-term fight
against the American mulberry moth Hyphantria
cunea, which is a quarantine pest [69]. In this sce-
nario, the counteraction exerted by the environment
(or an introduced species) may be determined by the
state of the invader population at its peak size and at
the time point when the population size has already
passed its maximum as a result of independent factors.

External pressure may be more complex in its orga-
nization than the proportional elimination –δN(t – τ).
The response of introduced parasitic wasps is deter-
mined by the swarming of their prey and pathogenic
viruses reproduce faster in dense agglomerations. Epi-
zootics often affect intensely reproducing invaders as

*
N

their population size approaches a certain threshold
J < K, but long before the dangerous invader becomes
capable of exerting its harmful effect on the environ-
ment. The third modification of the model addresses
the most interesting situation, where a delayed coun-
teraction to a rapidly growing population is nonlinear
and depends on a threshold:

(12)

where J is the threshold at which the aggression of the
biotic environment increases and m is the strength of

2

( )
ln ( ) ( ),

( ) ( ( ))

(0) ,

m
N tdN K

r N t qN t
dt N t J N t

N J K

  − τ= − δ − − τ − 
< !
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Fig. 13. The scenario of a crisis in a rapidly growing popu-
lation in model (12) at r = 0.0717, K = 15000, τ = 48, δ =
10, J = 103, q = 0.0042, m = 2, and N(0) = 10.
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the environmental response to the invader density. A
regulatory mechanism that is complicated in terms of
biological cybernetics unexpectedly yields a more
flexible evolutionary scenario. The population size
increases from the initial small value N(0) < J accord-
ing to the common logarithmic law at the first stage of
the process. However, in place of N(t) → K, the popu-
lation size reaches a transition oscillatory mode far
sooner than in model (4) or (7). The growth shows
neither gradual deceleration after a point of inflection
nor a stop at a stage with the overshoot N(tK) > K in

new model (12); however, a crisis starts abruptly at t >
2τ (Fig. 13). In a generalized sense, a model with the
constant delay factors τ and h is a balance of the func-
tions Φ, which describes the regulation of reproduc-
tion efficiency, and Ψ, which describes the counterac-
tion of the biotic environment, with an important role
being played by the ratio of m and d:

When the threshold is approached (N(t) → J), the
mortality rate greatly exceeds the birth rate and the
population passes a bottleneck. As a result of passing
the crisis, the solution trajectory tends to equilibrium
at a level lower than J; the parameter m determines the
crisis severity. Oscillatory dynamics are preserved at
q = 0. The model is applicable to the case of small
invader groups; the crisis becomes critical V-shaped
when the threshold J is approached; the solution of
Eq. (12) shows a form of logarithmic growth at
N(0) > J. A substantial τ value does not lead to a stable
cycle in the model. The threshold J in the model is a
mirror reflection of L included in model (9) as the
lower limit of population size from the model that
Bazykin designed to describe the Allee effect. The fac-

( ) [ ( )] [ ( )].
d mdN

rN t N t N t h
dt

= Φ − τ − Ψ −
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tors responsible for the origin of threshold population
states and barriers in ecodynamics were considered in
[70]. An example where a threshold arises from above
and is due to activity of a superparasite was provided in
[71], which focused on the mechanisms that regulate
reproduction in eucalyptus psyllids. A threshold that
the population passes in a discrete model with a bifur-
cation following the outbreak does not arise in the
pest, but arose in its natural enemies due to attacks by
superparasites [72]. The specific parasitic efficiency of
introduced wasps of the family Trichogrammatidae
was found to increase with the increasing density of
moth eggs [73].

As a result, a dangerous outbreak can occur in an
invasive population with a high reproductive potential
only when the condition N(t) > J is met, but intense
counteraction does not lead to a critical minimum in
population size in this case. The population success-
fully passes the bottleneck because the pressure that
the environment exerts on the population and that
depends on its previous state weakens when the cur-
rent population size becomes substantially lower than
the threshold.

The model with complicated regulation of environ-
mental counteraction provides an example of adapta-
tion dynamics associated with passing through a deep
crisis, as in the situation where a bacteriophage is
introduced in a colony of bacteria that possess the
CRISPR antivirus mechanism. The scenario obtained
in the new model is applicable not only to parasite–
host coevolution. Insect pests similarly adapt to resis-
tant cultivars of genetically modified plants [74]. Bac-
teria and myxomycetes fight a chemical war, which led
to the discovery of penicillin, but early antibiotics lost
their efficacy with time.

Invasive species often distort the balance in a tro-
phic chain [75] to trigger a domino effect and to cause
dramatic f luctuations in other species. The above
equations can be used as components of systems
designed to model direct trophic interactions. The
explicit effect P of an antagonistic species can be intro-
duced in Eq. (12) in place of q:

(13)

To describe the refugium effect with the possibility
for a small relic population to get extinct, a power of
one-third can be used for the effect of the lower
threshold L:

(14)

The dynamics P(t) of a competitive interacting spe-
cies is interesting to describe using f luctuations with
another regulatory mechanism, as will be discussed in
a forthcoming article. Models (12) and (14) explain

2

( )
ln ( ) .

( ) ( ( ))

m
P tdN K

r N t
dt N t J N t

− ξ = − δ − τ − 

3ln ( ) ( )
( )

[ ( )], 0 .

dN K
r N t N t L

dt N t

P t

 = − κ − − τ 
− Ψ − ξ < κ < τ
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numerous examples of unsuccessful purposeful intro-
ductions.

It seems biologically unjustified to further compli-
cate the behavior of the solution trajectory, for exam-
ple, by introducing the Beverton–Holt or Ricker func-

tion for Φ[Nd(t – τ)] and Φ[Nd(t – τ)], as in [76].
Cases where excess nonlinearity is better to avoid in
biosystem models employed in computational analy-
ses were described in [77] because this leads to chaoti-
zation following the Feigelbaum scenario with an

infinite cascade of bifurcations with the period p = 2i,

i → ∞ of the cycle ϕ(x*)n = ϕ(x*)n + p in the iterations
xn + 1 = ϕ(xn). Iteration models may include several

excess effects, such as the disruption of unusual attrac-
tors, the formation of fractal boundaries in attraction
domains, and the appearance of periodicity windows
with chaos–cycle transitions and cycles following the
order of Sharkovskii’s theorem [78], rather than eco-
logical principles. An essential biological interpreta-
tion is necessary for each mathematical effect that
arises in the proposed model. Hybrid models with
event-based time representation are expedient for sit-
uations of a controlled anthropogenic effect or a crisis
due to bioresource exploitation [79] because the con-
trol logic must be formalized.

CONCLUSIONS

Models (10), (11), (12), and (14) were proposed
and used to consider the abrupt changes in population
size in special cases of population processes. Such
changes were sometimes classed with eruptive ecolog-
ical processes or described as boom and bust dynamics
in modern terms [80]. Example ecological situations
that best match the solution behavior were described
for each of the models. Gradient and eruptive pro-
cesses are recognized in biological communities
according to a published classification [81]. Gradient
changes, such as succession, are easy to explain. A case
where the situation changed in favor of one of the spe-
cies in a manner independent of that species can be
reflected by an increase in K with a subsequent mono-
tonic, though rapid, increase in abundance. Eruptive
and nonmonotonic dynamics are actually diverse,
rather than being limited to a cyclic alternation of
growth and decline phases of competing species. Such
cases present a separate problem in methodology of
biosystem modeling.

The study [82] considered 16 situations where a
rapid spreading of an invasive species was followed by
a similarly rapid collapse. A collapse was understood
as a situation where the population size decreases by
90% of its optimum and remains low for at least 3
years. Models (10) and (12) were used to consider the
variants where rapid growth phase alternate with deep
crises, up to risk of sudden extinction in model (14).
Using data from Gause’s experiments and experi-
ments with bacteriophages, delayed equations were
shown to be efficient to use not only for a classical
problem of modeling long-term stable endogenous
fluctuations in population size [83] or decaying saw-
tooth-like outbreaks in moths. With the threshold reg-
ulatory functional Ψ[N(t – h)] included in the models
with N(t – τ), the properties of extreme forms of inva-
sion dynamics and scenarios with rapid adaptation can
be described. Delays in regulation are important to
analyze in various processes [84] that have several dis-
tinct developmental stages and conditions for a transi-
tion between stages.

The previous state-dependent linear external effect
Ψ = –δN(t – τ) can lead to extinction of the popula-
tion in model (11). In modification (12), a rapidly
growing population enters a deep crisis before achiev-
ing the size that is theoretically possible in its ecologi-
cal niche. However, the regulation is more complex in
this scenario and this addition makes it possible to suc-
cessfully pass a bottleneck stage, as E. coli colonies
demonstrated in experiments. The models developed
in this work describe the scenarios where dynamic
modes change without bifurcations; such transitions
in scenarios do not require the parameter values to be
adjusted in the course of a model experiment. To sim-
ulate a process, it is important to understand which
ones of the observed changes can be modeled using
bifurcations of attractors, that is, the formation of
topologically inequivalent phase portraits of the tra-
jectory in response to disturbances of an internal
parameter. Parameters of nonlinear models differ in
effect on the phase portrait topology. Shifting the vec-
tor of equation parameters is the simplest method, but
is not always justified biologically. Internal character-
istics of biosystems evolve in a concerted manner. A
stepwise change in characteristics seems unrealistic in
the majority of cases (with the exception of rapidly
arising mutations in viruses and prokaryotes), and dif-
ferent mathematical tools are consequently developed
in my series of works.

The complex threshold-dependent regulation that
was considered using model (12) and is due to the fact
that the regulator species has a limiting factor is not a
unique phenomenon. It is quite possible to encounter
a real situation where one species disrupts the thresh-
old (or creates a new one) without being involved in
direct interactions. Bacterial pneumonia may develop
because of virus infection when the population of
alveolar macrophages is exhausted [85]. Multilevel
regulatory schemes that act to control reproduction in
species with a high reproductive potential are interest-
ing for biological cybernetics, but it is difficult to pro-
vide direct mathematical descriptions for their com-
ponents. The reproduction rate and the life cycle
duration of a species may be found to belong to differ-
ent or even incomparable time scales. A simplification
to a closed predator–prey system leads to N = 0 based
on Gause’s experiments. Evolutionary adaptation may
create unexpected barriers that prevent the total dom-
inance of an efficient predator or parasite [86]. As an
BIOPHYSICS  Vol. 66  No. 6  2021
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example, the subvirus parasites virophages utilize large

amoeba-infecting viruses for their reproduction and

thus increase the viability of amoeba [87]. Bacteria of

the genus Bdellovibrio are parasites of other bacteria

and may find application in medicine in the future

[88]. One of the most complex systems is known for

tropic molds [89] and includes tens of species, which

compete and chemically suppress each other. Sharp

competition for limited resources acts as a factor of

intense speciation to generate many endemic species

of one family not only in microorganisms, but also in

other organisms, as is the case with 35 fish species of

the family Gobiidae in the Caspian Sea [90]. Many

discoveries of applied significance can be expected

from studies of the evolutionary struggles in the

microbial world. As an example, archaea seem to

acquire a separate antiviral mechanism independent of

the bacteria CRISPR/Cas system [91].

Types of lags should be isolated when developing

systems of equations according to the above principles.

Reproductive lags, regulatory lags as a factor of a

delayed response of the environment, and adaptation-

related lags can be recognized. It takes time for a pop-

ulation (or an organism) to develop adaptive

responses, and this lag may change during an invasion.

The effect exerted by the biotic environment is dynam-

ically adjusted in the most interesting invasion cases.

The population size is not the only parameter that is

affected, as was observed when North Atlantic cod

stocks collapsed because of a systemic, though minor,

error in estimating the total allowable catch of adult

cod [92]. The function regulating reproduction effi-

ciency undergoes transformation and the parameter m

in model (12) may depend on t. There are processes

where the three lag factors compete, e.g., different

mechanisms of the immune response differ in activa-

tion and inhibition times, as is also observed for virus

replication cycles. Dysregulation and especially

hyperactivation of the immune response increase the

pathogenesis of COVID and HIV infection [93].

Cyclic solutions are not important in modeling the

fight between a virus and immunity.

We note that logic-algorithmic methods make it

possible to include even a greater number of event-

driven change factors in models of confrontation

between spatially nonuniform populations [94].

Higher-density fronts often form when an invasive

species spreads through a new area, as is also observed

in common microbial communities [95]. Lag factors

can be included in cellular automaton algorithms [96],

but with special rules [97]. Software implementations

of intellectual cellular automata with a variable cell

density in a grid and a stochastic component in the

algorithm are a promising field of current research and

can be used to predict the spatially nonuniform pro-

cesses that take place in biosystems.
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