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Abstract
Immunotherapy has revolutionized cancer treatment, however, not all tumor types 
and patients are completely responsive to this approach. Establishing predictive pre-
clinical models would allow for more accurate and practical immunotherapeutic drug 
development. Mouse models are extensively used as in vivo system for biomedical 
research. However, due to the significant differences between rodents and human, 
it is impossible to translate most of the findings from mouse models to human. 
Pharmacological development and advancing personalized medicine using patient-
derived xenografts relies on producing mouse models in which murine cells and 
genes are substituted with their human equivalent. Humanized mice (HM) provide 
a suitable platform to evaluate xenograft growth in the context of a human immune 
system. In this review, we discussed recent advances in the generation and applica-
tion of HM models. We also reviewed new insights into the basic mechanisms, pre-
clinical evaluation of onco-immunotherapies, current limitations in the application 
of these models as well as available improvement strategies. Finally, we pointed out 
some issues for future studies.
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1  | INTRODUC TION

Cancer immunotherapy utilizes host immune system to eradicate 
tumor cells. Systematic pre-clinical cancer immunotherapy is de-
pendent on selecting, or preferably, developing appropriate animal 
models. Among various animal models, humanized mice (HM) have 
been extensively utilized for in vivo studies of human cancer immu-
nology and immunotherapy. Different models are eligible for evalu-
ating new anti-cancer therapies namely patient-derived xenografts 
(PDXs), humanized PDX and genetically engineered mice.1

The pre-requisite of a successful immunotherapy is a functional 
immune system of the patient since these methods recruit the host 
immune cells to combat growing tumors. This limits our ability to test 
the efficacy of these approaches in conventional experimental mod-
els. Early murine studies have evaluated the efficacy of anti-CTLA4 
immunotherapy targeting the CTLA-4 receptor of a mouse model 
of fibrosarcoma and ovarian cancer.2,3 Favorable results of this in-
vestigation promoted the production of human antibodies which 
was further tested in cynomolgous monkey as the only identified 
species with cross-reactivity.4 Nevertheless, testing human specific 
antibodies in cynomolgous monkeys had its pitfalls: complete cross-
reactivity could not be obtained and predictive data for human clini-
cal usage was not provided. Therefore, deploying HM models would 
facilitate the evaluations on the interaction between immune system 
and tumors and, also, would yield more clinically reliable results.5,6 
HM are the best mouse model for cancer immunotherapy studies 

and are consisted of three elements: (a) immunodeficient host mice, 
(b) human immune cells and (c) human tumor cells. In current review, 
we explain recent advances in the “humanization” of mouse mod-
els which improve their application in the study of immunology and 
immunotherapy. Moreover, we discuss limitations of using these 
models and strategies that can remove these limitations. Finally, we 
explain how these improvements shape the future of employing HM 
models in cancer studies.

2  | AN OVERVIE W ON 
IMMUNODEFICIENT MICE

The main challenge in the engraftment of human cancer cells in 
immune-competent rodents is the xenogenic immune rejection. 
Table  1 shows the evolution of different immunodeficient mice, 
although modifications are needed. The major improvement in de-
ploying scid mouse model was backcrossing of the scid mutation to 
non-obese diabetic (NOD/Lt) strain background which associated 
with lower NK cell and myeloid function and, as a result, enhanced 
human engraftment of immune cells.7 Moreover, backcrossing with 
NOD mice introduced a receptor that is highly homologous to a 
human equivalent called signal regulatory protein alpha (Sirpα). 
Murine macrophages (MQ) express Sirpα which is able to bind to 
counterpart CD47, a “don't eat me” signal protein, on human immune 
cells and subsequently inhibit phagocytosis.8 Another remarkable 

TA B L E  1   Immunodeficient mouse strains for human immune system engraftment

Mouse model Strain/Characteristics Life span T B NK DC MQ Com. References

Nude Spontaneous mutation of Foxn1 causing 
lack of thymic tissue

>18 mo − + + + + + 117

scid CB17-Prkdcscid−/−

Defect in DNA protein kinase, no 
functional rearrangement of antigen-
specific receptors

<12 mo − − + + + + 118

NOD-scid NOD.CB17-Prkdc scid−/−

Expression of the scid mutation on the 
NOD strain background

<10 mo − − FI FI FI − 119–121

NSG NOD. Cg-Prkdcscid IL2rgtm1Wjl/SzJ
NOD-scid combined with IL2rg−/−

>18 mo − − − FI FI − 11,122

NOG NOD cg-PrkdcscidIl2rgtm1Sug

Similar to NSG, with truncated IL2rg 
(enables binding but not signaling of 
cytokines)

>18 mo − − − FI FI − 39,123

NRG NOD. Cg- Rag1tm1Mom IL2rgtm1Wjl

NOD, RAG1−/− and IL2rg−/− combined
ND − − − FI FI − 12,15,20

BRG BALB/c Rag2null IL-2Rgcnull

interbreeding of NOG and BALB/c-Rag2null
ND − − − FI FI − 14,124

BRGS BALB/c Rag2null IL-2Rgcnull NOD.sirpa
BRG mice with integration of the NOD/Lt 

Sirpa polymorphism

ND − − − FI FI − 125,126

Note: Abbreviations: Com., complement; DC, dentritic cell; FI, function impaired; Foxn1, forkhead box protein; IL2Rgc, interleukin-2 receptor γ-
chain; MQ, macrophage; ND, not determine; NK, natural killer; NOD, non-obese diabetic; NSG, NOD-scid combination; Prkdc, protein kinase DNA 
activated, catalytic polypeptide; Rag, recombination activating gene; scid, severe combined immunodeficiency; SIRPa, signal regulatory protein a.



2594  |     JIN et al.

milestone was the introduction of a mouse strain knocked-out in 
the interleukin (IL)-2 receptor common gamma chain (IL2Rγ) gene9 
that not only this mice would have functionally impaired adaptive 
immune system but, more importantly, disabled NK cell develop-
ment.10 The combination with NOD-scid (NSG)11 mice and RAG 
(NRG)12 mice revolutionized human cell engraftment. Similar to NSG, 
NOG mice have NOD-scid background with truncated IL2γc gene 
which enables binding but not signaling of cytokines.13 Another im-
provement of human engraftment was achieved by interbreeding of 
NOG and BALB/c-Rag2null which generated BRG mice. In addition, 
integration of NOD/Lt Sirpα polymorphism into BRG mice further 
refined human cell reconstitution.14 Successful engraftment of 
human hematopoietic immune cells is achieved in NSG and NOG 
and provided a suitable animal models for initial immunologic stud-
ies of immunotherapy.15 According to preliminary studies immune 
reconstitution is not yet optimal. In this review, we aimed to study 
novel approaches that improve hematopoietic reconstitution in the 
host mice for studies.

3  | PATIENT- DERIVED XENOGR AF TS AND 
CELL- DERIVED XENOGR AF TS

Immunodeficient mice grafted with human cancer cells could be 
classified as PDXs and cell-derived xenografts (CDXs) based on 
the type of samples or human cells used in transplantation.16 CDXs 
are particularly useful in high through put screening assays and 
genetic modifications. Although CDXs come with some limitations 
like the selective proliferation of clonal cells.17 In comparison with 
CDXs, PDX mouse models maintain more characteristics of their 
parental malignancy and thereby are stronger tools for investigat-
ing the effects of targeted therapy or chemotherapy.18 In order to 
produce PDXs, fresh human tumor tissues are implemented into 
an immunodeficient mice in which the chance of rejection is lower. 
The size of tumor tissues is no larger than 2 mm3 and are imple-
mented into the mice subcutaneously or orthotopically meaning 
at the same site of the tissue-of-origin. Normally the immunodefi-
cient mice used for the generation of PDXs have combined T/B/NK 
cell deficiency and/or macrophage tolerance for human cells like 
NOD/SCID and NSG/NOG mice.16 In addition, PDXs is especially 
beneficial for in vivo screening of targeted therapies using single-
mouse schedule.19 Following such an approach not only decreases 
the number of mice and costs of evaluation but also allows for 
identifying the best treatment in a panel of PDXs and validating 
the efficacy of tested therapies in the selected target-specific tu-
mors. Thereby, these mouse models perfectly represent the origi-
nal patient tumor which would serve as a more reliable platform 
to predict therapeutic outcomes. As an example, Dr Sidransky 
conducted a research on 237 patients with different tumor types 
using PDX mice and validated that these models are able to faith-
fully conserve the genetic profile of primary tumor.20 While such 
pre-clinical studies have yet to be developed for immunotherapies, 

investigating chemo-/radio- and targeted therapies in HM are of 
particular interest.

3.1 | Limitations of PDX and CDX models

One of the major drawbacks of both PDX and CDX mouse models 
for human oncogenesis is that the process of oncologic transforma-
tion from normal cells into malignant cells is missing. More impor-
tantly, generation of a PDX model is time consuming and can take as 
long as 6 (or more) months. Adding to this, certain tumor types are 
difficult to establish as PDX models such as prostate cancer which 
might be due to innumerable unknown factors in the development 
of prostate tumor. And as for tumors with genetic heterogenicity, 
if the genetic heterogeneity is not all represented in the dissected 
tumor that is passaged these tumors cannot always be recapitulated 
in serial passages.

4  | HUMANIZ ATION FOR XENOGR AF T

By far, several types of HM have been employed in cancer research. 
Basically, mice are considered humanized after being engineered to 
express certain human proteins that are relevant to tumor growth.21 
Needless to say, the ultimate goal of humanization is to develop 
mice that are fully competent to human immune system and are 
able to mount proper anti-cancer immune responses. Thereby, al-
lowing for more accurate interpretations of therapeutic interven-
tions. This objective requires implementing malignant and immune 
cells, ideally from the same donor, into an environment customized 
as fully compatible between graft and the host; which ensures that 
neither rejection of human cells by mouse immune cells nor human 
immune cell toxicity on the host would occur. Upon successful im-
plementation, human leukocyte precursors are ultimately engrafted 
and receive full trophic support within the host. As mentioned ear-
lier, only immunodeficient mice are suitable for this purpose. Three 
widely used mouse strains are (a) NSG mice which are characterized 
by complement deficiency (preventing lysis of human cells by mouse 
complement) and loss-of-function mutation of Sirpα (decreasing the 
phagocytosis of human CD47+ cells by mouse macrophages, (b) scid 
phenotype lacking of T lymphocytes and B lymphocytes as a result 
of mutations in the Prkdc (protein kinase, DNA activated, catalytic 
polypeptide) gene and (c) strains with mutation in IL-2 receptor 
common γ chain (IL2rg) featuring profound NK cell deficiency11,19 
(Table 1).

There are three types of HM developed by two sources of human 
immune cells: PBMC and human CD34+. (a) Hu-PBL (peripheral 
blood lymphocytes), (b) Hu-CD34+ (also called Hu-SCR) and (c) BLT 
mice (bone marrow–liver–thymus) (Figure 1). Each of these HM has 
their own advantages and limitations. In the following, the process 
of generating these HM is discussed. Table 2 compares the different 
features of HM models.
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4.1 | Hu-PBL model

Immunodeficient mice reconstituted with PBMCs and tumors, are 
called Hu-PBL models which are the simplest version of humanization. 
Generation of Hu-PBL models starts by isolating PBMCs using Ficoll-
Hypaque gradient centrifugation by which mainly neutrophils are re-
moved. Beside the mature human leukocytes in PBMC inoculum, a few 
HSCs exist which are unable to colonize the murine host because of 
the lack of a proper microenvironment.22 Moreover, human B lympho-
cytes and myeloid cells are observed at low levels which may be due to 
the lack of the human cytokines required for their survival.23,24 PBMCs 
could be transplanted into adult mice intravenously, intraperitoneally, 
or intrasplenically. The major limitation of this model is that it leads to 
graft-versus-host disease (GVHD).13,23,25 The onset of GVHD is directly 
associated with the degree of human T cell, in particular CD4+ T cell, 
engraftment as well as prior sublethal irradiation.23,26–28 Therefore, 
therapeutic-relevant outcomes evaluation is limited to the weeks after 
PBMC injection and before the onset of GVHD.13,23 Generating these 
mouse models have allowed for the identification and characterization 
of ICIs antibodies.28,29 Furthermore, these “immune-avatar” mice can 
be utilized to investigate the immune-mediated effects of antibodies 
targeting cancer cell antigens and allow for the infiltration of patient-
derived tumors by lymphocytes.30

4.2 | Hu-CD34+ model

Injection of CD34+ HSCs isolated from bone marrow (BM), cord 
blood or fetal liver of the patient allows for generation of various 
types of human immune cells in the murine host and triggers tol-
erance against mouse tissues. These cells can be injected intrave-
nously, intraperitoneally, intrafemorally and also intracardially and 
intrahepatically into neonatal or adult immunodeficient mice11,13,31 
(Figure  1). Several factors determine the success of engraftment 
such as HSCs source, route of injection, strain, age and sex of the 
recipient. For instance, in newborn or mice up to 4  weeks of age 
T cell development occurs faster compared with adult mice.32 In 
a study, Brehm et al15 evaluated engraftment outcome of differ-
ent mouse strains and routs of injection in adult or neonatal mice 
and showed that transplantation into newborn NOD-scid IL2Rγ- 
and NOD-Rag1- IL2Rγ-mice resulted in higher levels of human im-
mune cell engraftment compared with BALB/c- Rag1- IL2Rγ- mice. 

Generation of Hu-CD34+ mice starts with irradiation of mice that 
are 5-12  weeks of age in order to help HSCs engraftment. Then, 
human CD34+ cells are transplanted into irradiated mice. Around 
10-12 weeks of age, engraftment of the human HSCs in the murine 
host can be confirmed by assessing for differentiated human CD45+ 
cells (leukocyte common antigen) in the Peripheral blood of the mice 
using flow cytometry.33 If the mice have more than 25% human 
CD45+ cells in their peripheral blood then the engraftment of human 
immune system is considered successful. Now the HM could be in-
serted with specific PDXs and an immunotherapeutic agent could be 
subsequently applied for testing. Alternative methods to irradiations 
are busulfan 34 and antibody-mediated deletion of mouse progenitor 
cells.35 In the same context some mouse strains like the NOD, B6. 
SCID Il2rγ−/−KitW41/W41 (NBSGW) mice support the transplantation of 
HSCs without irradiation.36,37

Although in the Hu-CD34+ models all human hematopoietic lin-
eages are represented, but not all are functionally fully developed.13 
For instance, the majority of the human B cells are immature CD5+ 
B cells, mainly because at the transition phase the process of B cell 
differentiation is blocked and eventually results in the accumulation 
of B cell precursors in the spleen.38,39 Similarly, the differentiation of 
the myelomonocytic lineage is impaired and monocytes are phenotyp-
ically immature.40 In addition, CD4+ T lymphocytes display memory 
phenotypes, and both T and NK cells have functional impairment.39,41 
Mouse thymus supports human T cell development; however, the 
question of major histocompatibility complex (MHC) restriction is yet 
to be elucidated. According to Halkias et al42 human thymocytes show 
similar behavior in mouse and human thymic environments. Also, they 
can interact with both HSCs and mouse tissue in HIS mice thymus. 
Adding to this, Watanabe et al demonstrated that the mouse thymic 
environment, and not the mouse I-A MHC molecule, is crucial for the 
development of human T cells, suggesting that the human CD4+ T 
repertoire is restricted by human MHC class II molecules and murine 
MHC. However, these animals have very poor human thymopoiesis. 
Mentioned limitations may restrict the value of the Hu-CD34+ model 
in studies of human immunology and immunotherapy.43

4.3 | BLT model

In the BLT model, implemented human fetal liver and thymus cre-
ate a human thymic microenvironment that promotes human T 

F I G U R E  1   The major steps in the production of humanized mice. A, Demonstrates the humanization process of immunodeficient mice. 
Hu-PBL: intravenous (iv) or intraperitoneal (ip) injection of peripheral blood mononuclear cells to an adult immunodeficient mouse. Hu- 
CD34+: IV, IP or intra-femoral (if) injection of human CD34+ HSCs derived from umbilical cord blood, bone marrow, fetal liver or peripheral 
blood HSCs into irradiated neonatal or adult immunodeficient mice. BLT: engraftment of human fetal thymus and liver fragments under the 
renal capsule of the kidney in irradiated adult immunodeficient mice and IV injection of human CD34+ HSCs from the autologous fetal liver. 
B, Engraftment of human immune system to mouse models is monitored by flow cytometry to determining the percentage of differentiated 
human cells in the peripheral blood of the mice. Then Cell line-derived xenografts or patient-derived xenografts can be implanted into 
immunodeficient mice (First tumor engraft). C, Upon characterization and expansion of the first tumor-xenograft mice, the immunotherapy 
of interest may be conducted. Findings are then translated and applied to the adapted therapy of the patient. BLT, bone marrow–liver–
thymus; B.M, bone marrow; Hu-PBL, peripheral blood lymphocytes; PBMC, peripheral blood mononuclear cell
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cell development and selection.44 In order to achieve this purpose, 
pieces of human fetal thymus and liver are transplanted under the 
kidney capsule. Then, autologous CD 34+ cells that are isolated from 
the liver are injected which allow HLA restriction.45 By doing so, 
human thymopoiesis takes place in engrafted human thymic tissues. 
More importantly, evidences have shown that BLT models are able 
to generate potent human immune responses since these animals 
have the potential to reject allogenic and xenogeneic grafts, trig-
ger HLA-restricted antigen-specific human T cell reaction, and pro-
duce antigen-specific human IgM and IgG antibodies with subclass 
switching upon immunization or xenograft implantation.46–48 The 
advantage of this approach would be exclusive positive selection of 
human T cells in thymus, but on the other hand, high-affinity T cells 
against mouse MHCs are not eliminated. As a consequence, the in-
cidence of GVHD in these models is higher than other CD34+HSC 
engrafted models. However, there are some studies indicative of 

decreased GVHD in BLT models. As an example, mouse dendritic 
cells (DCs) can migrate into human thymic grafts in BLT models and 
take part in educating thymic human T progenitor cell and reduce 
the incidence of GVHD. In addition, pipetting of human thymic 
grafts before transplantation and cryopreservation can remove ex-
isting human T cell progenitor cells which would further alleviate 
GVHD.49–51 Implementation of mesenchymal stem or progenitor 
cells could further improve the BLT models since they are capable of 
creating BM environment.52

Preferably, HM should be generated with the immune system 
from which PDXs will be produced. Even so, current mouse models 
are providing a platform for further development of fully person-
alized and humanized mouse models that can be used for cancer 
immunology and immunotherapy research. There are several strate-
gies that support the improvement of HM production which will be 
discussed in the following.

F I G U R E  2   Schema showing the areas that require development and optimization in HM model. The pink ring represents immunological 
limitations in HM and the green ring provides the possible improvement strategies. CAR, chimeric antigen receptor; DC, dendritic cell; MSCs, 
mesenchymal stem cells; HSCs, hematopoietic stem cells; MHC, major histocompatibility complex; NK, natural killer; GVHD: graft-versus-
host disease
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5  | IMPROVING HUMANIZED MICE BY 
OVERCOMING CURRENT LIMITATIONS

Improving current HM models to better represent the human im-
mune system would permit assessment of new biological therapies. 
Developing humanized have progressed during years; however, 
some aspects need to be improved like incidence of GVHD, incom-
plete engraftment of immune cells, lack of human cytokines and 
growth factors. On the other, HSCs derived from cancer patients 
are not optimal for repopulating mice. Some areas that require more 
development for better recapitulating human immune responses are 
as follow: (a) Innate immune cell development and function, (b) B cell 
maturation and antibody responses, (c) secondary lymphoid organ 
development, (d) New robust renewable sources of human cells and 
tissues for grafts, (e) Development of robust human HLA-restricted 
T cell responses, (f) Increase engraftment rate of HSCs, (g) Reduce 
GVHD, (h) Infrastructure for increasing community access of HM 
model. Figure 2 summarizes some of the limitations ahead of these 
improvements as well as some of their related solutions. In the fol-
lowing, we will discuss about some of the improvement strategies 
for refinement of HM.

5.1 | The role of cytokines and growth factors in 
upgrading HM

Cytokines signaling in the environment of engrafted HSCs and dif-
ferentiating immune cells directly affects the orderly maturation 
and thereby trafficking into the tumors on the organism.53 Several 
studies focusing on improving the cytokine environment within HM 
is ongoing. It has been revealed that integrating a population of 
mesenchymal stem cells (MSCs) into the HSCs destined for engraft-
ment may also modify the eventual reconstitution of the myeloid 
cell lineage within the HM. According to Chen, Huang, and Womer, 
co-culturing of HM BM cells with MSCs, which have shown the evi-
dence of immunoregulatory function and have the potential to pro-
duce cytokines and growth factors, improves the viability of newly 
differentiating DCs.54 Preliminary studies by Shultz et al11 by NSG 
model revealed that administration of IL-7 increased the production 
of T cells in HM. Chen et al55 have shown that administration of IL-5 
and Flt-3/Flk-2 cytokines, that are encoded on plasmids expressed 
in hepatocytes, enhanced the levels of NK cells, while granulocyte-
macrophage colony-stimulating factor (G-MCSF) and IL-4 elevated 
DCs and macrophage colony-stimulating factor (M-CSF) was able 
to increase the number of macrophages and monocytes detectable 
within the HM.

Despite the positive effects of addition of these cytokines on 
immune cell differentiation and expansion, non-physiological con-
centration of them within HM would misdirect cell development 
and trafficking. Different genetic backgrounds of HM have been 
genetically engineered to express IL-3, M-CSF, G-MSCF, Thpo or 
Sirpα. In order to improve the expression of these critical cytokines, 
Rongvaux et al56 produced strains of Rag 2(−/−)-Il2γnull mice called 

MITRG characterized by targeted knock-ins of the human genes 
encoding IL-3, M-CSF, GM-CSF and Thpo. After the engraftment 
of human CD34+, these MITRGs produced T and B cells, as well as 
functional NK and myeloid cells, that had the capacity to infiltrate 
cell-line derived melanoma tumors and change their growth through 
a vascular endothelial growth factor (VEGF)-dependent mechanism. 
Wunderlich et al57 developed another transgenic humanized strain. 
They produced the NSG-SGM3 (NSGS) mouse, which expresses 
human SCF, GM-CSF, and IL-3, to facilitate the study of acute my-
eloid leukemia via increased production of mature myeloid cells. 
Another strain, NOG–IL-2 Tg mouse, was developed by Katano et al, 
through inserting a human IL-2 transgene into a NOG background. 
The HM generated from this strain produced a diverse set of NK 
cells with the ability to target both introduced leukemia and lym-
phoma cells.58

In the same context, in the NOD background, NSG SGM3 en-
gineered HM were developed by some modifications on NSG mice 
to express human SCF (c-kit ligand), GMCSF and IL-3 genes which 
were encoded by cDNA constructs that randomly integrate and are 
driven by a CMV promoter.59 In addition, NOG-EXL were developed 
by engineering NOG mice to ubiquitously express human GMCSF 
and IL3 genes under control of the SRa promoter.60 Furthermore, 
Flavell's group developed SRG-15 engineered HM which are BALB/
cRag2−/− IL2rgc

−/− knock-in for human SIRPα and IL-15. These HM 
showed increased development and function of NK cells, CD8+ T 
cells, and tissue-resident innate lymphoid cells.61

Although generation of mouse strains bearing these transgenes 
can help in creating a functional myeloid lineage, but they are rela-
tively difficult to breed and their development complicate the gen-
eration of the large cohorts necessary for immune therapy cancer 
studies. Different types of DC exist in mice which are not homol-
ogous human DCs. Also, in HM the development of DCs and their 
maturation are not optimal. In order to overcome this, novel HM 
models based on the BALB/c Rag2 (−/−) Il2rg(−/−) Flt3(−/−) (BRGF) and 
NOD. Cg-Rag1tm1MomIl2rgtm1Wjl/SzJ Flk2/Flt3−/− (NRGF) mice con-
taining a mutated receptor tyrosine kinase Flk2/Flt3 were produced. 
Development of human DCs in BRGF and NRGF mice are improved 
upon exogenous administration of human Flt3 ligand (Flt3L) after 
HCT which results in the marked increase of human NK and T cell 
population.62,63

5.2 | MHC modification and limiting GVHD

Myelopoiesis, a process by which different population of leukocytes 
are generated, is inevitable and associates with pathology in ani-
mal models of GVHD. CD11c+CD14+ is the dominant donor-derived 
population of leukocytes in GVHD. It is observed that GVHD-isolated 
macrophages are able to stimulate greater activation and proliferation 
of allogenic T cells, secret higher levels of inflammatory cytokines in 
steady-state and mediate direct toxicity. These observations accentu-
ate the function of human macrophages and the potential to prevent 
and treat GVHD by exploiting their functionality.64 Another important 
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player in the development of GVHD are T lymphocytes. According to a 
recent study on a humanized mouse model, donor monocytes are able 
to activate host skin-resident T cells and result in GVHD-like derma-
titis. The phenomenon suggests a pathogenic role in development of 
acute GVHD by host tissue-resident T cells.65

Several studies are focusing on the improvement of human T 
cells and preventing GVHD in HM; achieving this purpose will qual-
ify HM with functional T-cell receptors (TCRs) that are able to inter-
act with the matched HLA complexes on antigen-presenting cells. 
In order to do so, different strategies have been tested based on 
the genetic manipulation of the MHC molecules. As for Hu-CD34+ 
mice, defective T cell function was somewhat associated to the 
mismatch between human and mouse MHCs. Conducting this re-
finement relies on the substitution of the mouse MHC I and II by 
different haplotypes. Danner et al66 used NOD-Rag1-IL2γ−/− mice 
that expressed human HLA-DR4 allele and demonstrated that upon 
engraftment with HLA-matched HSCs, the immune system in these 
mice was reconstituted with high numbers of functional B and T cells 
and also was capable of appropriate response to immune challenge. 
Patton et al67 showed that when NSG mice expressing human allele 
HLA.A2.1 were engrafted by CD34+ cells from a HLA.A2.1 matched 
donor, they were not as efficiently humanized as NSG controls. 
They postulated that this could be due to the alloreactivity between 
mouse and human peptide antigens bound to HLA proteins.6

In another study by Kim et al68 a transgenic NRG mouse called 
“DRAG” was produced that could express HLA-DR4. This strain 
of mice which was transplanted with HLA-DR4+ HSCs was able to 
develop higher number of CD4+ T cells and also higher concentra-
tion IgG and IgM. Similarly, BRGSA2DR2 mice, which are gener-
ated from BRGS mice and are able to express human HLA-A2 and 
DR2 transgenes, revealed faster development of CD4+ and CD8+ 
T cells and higher concentration of IgG.69 Lone's team developed a 
mouse called “HUMAMICE” that is a combination of both murine 
MHC deficient and HLA transgene expressing mice. This engineered 
mouse lacks T and B cell as a result of rag mutation, NK cells due 
to IL2Rgc and has no residual cytolytic activity because of perfo-
rin KO.70 Transplanting HLA-matched PBMCs in HUMAMICE re-
constituted with human immune cells was not followed by signs of 
GVHD. Moreover, these mice develop functional human T and B 
cell as evidence of vaccination with Hepatitis B virus (HBV) showed 
production of HBV-specific antibodies.70 Major limitation ahead of 
this approach is the difficulty to find HSCs that express a particular 
combination of HLAs.

Recently by using CRISPR/Cas9 in NOG mice, Ka et al estab-
lished a novel beta-2 microglobulin (B2m) KO mouse model. A modi-
fied dKO (dKO-em) mouse model is established by crossing B2m KO 
mice with I-Ab KO mice. dKO-em mice showed high engraftment 
efficiency as well as no signs of GVHD after the transfer of human 
PBMC. Moreover, engrafted human PBMCs significantly survived 
longer in the peripheral blood and spleens of dKO-em mice, com-
pared with dKO-tm mice. Thus, dKO-em mice may count as a prom-
ising model for preclinical investigations of novel therapeutics for 
human diseases.71

5.3 | Other improvement strategies

Generally, HM mice undergo myeloablative conditioning before im-
plementation of human HSCs in order to provide the required space 
in the host BM niche for the substitution of human HSCs engraft-
ment.11 Each strain of mice reacts differently to the irradiation. For 
instance, the scid mice are more sensitive to radiation-induced DNA 
damage compared with Rag1null or Rag2null mice.12 As mentioned 
earlier, the c-kit (CD117) mutant mouse was found to be a suitable 
host for human HSCs engraftment which requires no prior irradia-
tion. Given that c-kit plays an important role in HSCs maintenance 
and differentiation, NSGW41 mice that carry the w41 mutation in 
c-kit, show reduced HSCs numbers which lead to lower competition 
and better engraftment of human HSCs.36,72

A growing number of engineered mice are being commercially 
developed by modifying immunocompetent mice to express one or 
more fully human genes. Also, by generating “humanized” knock-ins 
mice encoding negative or positive immunomodulatory receptors 
and ligands such as CD47, Programmed death-ligand 1 (PD-L1), B 
and T lymphocyte attenuator (BTLA), CD137, T cell immunoglob-
ulin and mucin domain-containing protein 3 (TIM3), lymphocyte-
activation gene 3 (LAG-3), inducible T-cell costimulatory (ICOS), 
glucocorticoid-induced tumor necrosis factor receptor (GITR), 
OX40, OX40L 43. These mice are particularly utilized for the investi-
gation of checkpoint combination therapy. Mice expressing “human-
ized” programmed cell death 1 receptor (PD-1) or CTLA-4 molecules 
have been also beneficial for separating efficacy and autoimmunity 
induced by anti-CTLA4 antibodies73 or characterizing a clinical can-
didate anti-PD-1 antibody.74

As for autoimmunity complications, Khosravi-Maharlooei 
et al investigated the role of thymus in development of multi-organ 
autoimmunity in HIS mice. They observed that autoimmunity was 
developed earlier in HIS mice with a native mouse thymus than 
thymectomized mice with a thymocyte-depleted human thymus 
graft. Structural defect in the native mouse thymus correlated with 
impairment in the negative selection of transgenic TCR expressing 
thymocytes with the capacity to recognize self-antigens. It appears 
that disease developed in an indirectly and without recognition of 
antigens on recipient mouse MHC. Even if human thymus grafts 
have normal structure and negative selection, failure in tolerating 
human T cells that recognize mouse antigens being presented on 
HLA molecules may explain the development of autoimmunity.75 
This suggests generating methodologies that bypass human autoim-
munity in the next generation of HIS mice.

6  | PRE- CLINIC AL E XPERIENCES OF 
HUMANIZED MICE

6.1 | ICI-based and monoclonal antibody therapy

Humanized mice engrafted with tumors are being used to better 
understand how checkpoint blockade interacts with the immune 
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system and also to test the efficacy and effects of immunomodula-
tion agents. Given the relatively simple accessibility and handling of 
human PBL samples, the Hu-PBL model is widely utilized in evalu-
ating the interactions between human immune cells such as T cells 
and NK cells as well as human tumors in vivo.76 For instance, in a 
study by Ignacio Melero et al it was observed that this model is 
useful for investigating the effect of human PD-1 (Nivolumab) and 
CD137 (Urelumab) antibodies in in vivo T cell-mediated anti-tumor 
responses.28 Furthermore, Wang et al77 reported that PD-1 targeted 
immunotherapy can be installed in Hu-CD34+ humanized NSG mice 
having CDXs and PDXs partial HLA matched human tumor which in-
dicates the value and efficacy of the Hu-CD34+ model for cancer im-
munotherapy investigation. Unusual long serum half-life of IgGs and 
Fc domains are due to their rescue and recycling via the neonatal Fc 
receptor (FcRn). There is a significant difference between rodent and 
human FcRn reactivity, rendering wild type rodents an inadequate 
model for studying monoclonal antibody therapy. To overcome this 
problem with the advance of genetic engineering, mouse models 
have been established expressing human FcRn, and lacking mouse 
FcRn protein like NSG FcRn-/- hFcRn Tg model.78

One of the major limitations associated with using antibodies 
to target checkpoint inhibitors is the incidence of cytokine release 
syndrome (CRS). As demonstrated by the TGN1412 (anti-CD28) clin-
ical trial, screening these antibodies in HM and non-human primate 
may not necessarily represent the response of a human immune 
system.79 To address this issue, two humanized mouse models were 
developed for the detection of a CRS. NRG-AB0 or NSG mice were 
engrafted with PBMC and injected with muromonabCD3(120), or 
TGN1412.80 Utilizing this approach in Hu-CD34+ and BLT models 
would allow evaluating innate immune cell reactions to antibodies 
targeted against these cell populations.81

As more cancer immunotherapy treatments are tested in clin-
ical trials, an association between immune-mediated tumor killing 
responses and CRS are observed by clinicians. Due to these obser-
vations, pre-clinical studies that are capable of recapitulating CRS in 
HM are gaining more interest. In a recent study, HM were engrafted 
with a diffuse large B cell lymphoma (WSU-DLCL2) and treated with 
either novel CD20-T-cell bispecific antibody (TCB) or obinutuzumab 
(anti-CD20 monoclonal Ab).82 CD20-TCB which contains two CD20 
binding domains and one CD3e domain, incited more extensive cy-
totoxic responses than obinutuzumab. Moreover, administration of 
CD20-TCB was associated with enhanced expression of inflamma-
tory cytokines which indicates that CRS responses were not gen-
erated by obinutuzumab treatment. Such pre-clinical experiments 
on HM highlight the value of them in testing protocols that are de-
signed to maximize both efficacy and safety. The key component of 
pre-clinical assessments is the question related to immunotherapy 
mediated toxicity, especially in the context of CRS, and also the 
requirement for a related reliable assay. As an example, recently a 
group at the US Food and Drug Administration (FDA) reported the 
testing of CRS using monoclonal antibody therapies that are known 
to elicit strong cytotoxic response in the BLT-HIS mice.83 Models that 
can accurately and reliably predict the induction of CRS by immune 

therapeutics are scarce. Recently Chunting Ye et al reported the de-
velopment of a HM model based on the NGS mouse to investigate 
CRS in vivo. NSG-MHC-DKO, PBMC-engrafted NSG and NSG-SGM3 
mice were employed in order to study cytokine release in response 
to treatment with monoclonal antibody immunotherapies. Results 
showed that among the three mouse models, PBMC-engrafted NGS 
models are quick, sensitive and reproducible platform for screening 
novel therapeutics for CRS.84 More recently, others developed a 
model for predicting CRS while minimizing GVHD by spleen mono-
nuclear cells (SPMCs). They reported that NSG mice reconstituted 
with PBMC-and SPMC better predicted OKT3-mediated CRS. The 
SPMC model allows generation of large experimental groups while 
NSG-dKO mice are able to mitigate the limitation of early GVHD.85

6.2 | NK cell-based and cytokine-based 
immunotherapy

Another promising cellular immunotherapy for cancer is adaptive NK 
cell therapy. Recently some progression has been made in stimulat-
ing NK and NKT anti-tumor activity utilizing HM models in various 
cancers such as glioblastoma, colorectal, ovarian and pancreatic 
cancer.86–89 Moreover, cytokine therapy has caught attentions in 
the efforts to elicit NK and NKT cell antitumor activities. In a study, 
human neuroblastoma cell line and human NKT cells expanded ex 
vivo were injected into HSC-engrafted NSG mice.90 It was observed 
that NKT cells resided within the tumor associated macrophages 
(TAMs) in the tumor microenvironment. However, the survival and 
function of NKT was inhibited by CCL20 secreted by TAMs favoring 
tumor growth. Lie et al showed that transducing NKT with Il-15 be-
fore transferring into mice led to decreased tumor growth as a result 
of increased NKT survival and suggested a role for IL-15 cytokine 
therapy.90 Immune therapy with IL-15 was utilized to expand the NK 
cell populations of Hu-CD34+ NSG mice implemented with human 
breast cancer and the result was enhanced proportions of activated 
CD56+CD27− NK cells.91

Beside IL-15, the effect of IL-12 in stimulating the immune sys-
tem to attack tumor cells has also been investigated in humanized 
tumor-bearing mice. As an example, NHS-IL12 is an antibody-IL12 
fusion protein targeting the naked histones/DNA complexes that 
are found in necrotic tissues such as tumors.92 NHS-IL12 was uti-
lized in conjunction with antibody-complexed IL12 (IL2MAB602) 
or IL-7 (FcIL7) in the Hu-SRC-SCID model of rhabdomyosarcoma.93 
NHS-IL12/IL2MAB206 enhanced tumor infiltrates of NK cells, T 
cells and macrophages.94

6.3 | T cell editing and CAR-based immunotherapy

One of the strategies of targeting immune system to upgrade its 
anti-tumor activity is redirecting T cell specificity via transgenic 
TCR or chimeric antigen receptor (CAR) engineered T cell therapy. 
CAR-T cells are MHC independent and thereby can be redirected 
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to any target of interest.95 Recently, using CAR-T therapy in HM 
have been employed to broaden the scope of cancer treatment 
as well as optimizing the safety and efficacy of CAR manipula-
tion.96 For instance, CARs targeting mesothelin for mesothelioma, 
CD44v6 for AML and multiple myeloma and ROR1 for mantle cell 
lymphoma have been tested in NSG humanized mice.93,97,98 Adding 
co-stimulatory motifs in the CD3ζ in the intracellular signaling do-
main increases CAR signaling. A CAR without co-stimulatory recep-
tor (CCR) is designed for a single antigen while incorporating CCR 
increased the specificity of CAR for a second antigen. Humanized 
mice have been extensively used to assess and compare the func-
tions of CCR such as ICOS, CD27, CD28 AND 4-1BB.99,100 It is 
documented that CARs incorporated with co-stimulatory domains 
are more effective in targeting tumors. In a Hu-PBL model, com-
bining PSCA-CAR and PSMA-CCR prostate antigens eradicated 
tumor cell lines that expressed both antigens and shaped anti-
tumor immune response to PSCA+PSMA- tumors.101 Jakobsen 
et al reported that Hu-PBL model could be employed to assess 
the efficacy of Bi-specific TCR-anti-CD3 regimen for the treat-
ment of LAGE1- and NY-ESO-1- positive human tumors.76 Another 
approach to test the safety of CARs is using mRNA transfection, 
as opposed to viral transduction, as a mechanism of CAR genera-
tion. The advantage of this method is that it does not involve the 
integration of DNA into the genome, thereby removing the pos-
sibility of genomic editing. MRNA transduction has been utilized 
in developing anti-CD20 NK cells in Hu-PBL model targeted to 
Non-Hodgkin's Lymphoma102 or anti-mesothelin CAR T cells in a 
Hu-PBL model targeted to mesothelioma.93

Another targeted CAR-based therapy is engineering T cells to 
express anti-CD19 CARs. Patients with B cell malignancies showed 
positive response to CD19-targeted CAR-T cell therapy.103–105 
However, many showed severe adverse reaction or relapse after 
therapy largely due to toxicities of unknown mechanisms.105,106 
Development of pre-clinical models would be beneficial in inves-
tigating the underlying mechanisms of relapse and toxicity. PDX 
models engrafted with human B acute lymphocyte leukemia (ALL) 
revealed to be useful in evaluating CD19-targeted human CART cell 
therapy, however, these models either lack host immunity or in-
volve allo- and/or xeno-immune responses.107 On the other hand, 
leukemic HM models have genetically-identical (autologous) primary 
B-ALL and a functional human immune system which make them a 
better model for CD19-targeted CAR T cell therapy.108 Another fa-
vorable feature of HM model is that the anti-CD19 CAR-expressing 
human T cells are also autologous to the human components (either 
normal or malignant human cells) and tolerant to the mouse antigens, 
thereby do not elicit xeno responses against mouse antigens or allo 
responses against human.

Furthermore, BLT mice can be modified to as a TCR transgenic 
HM for studies of human T cell adaptive immunotherapy.109 A mela-
noma antigen (MART-1)-specific TCR transgenic HM model is devel-
oped by cotransplanting autologous human CD34+ FLCs transduced 
with lentiviral vectors containing HLA-A∗0201 restricted MART-1 
specific TCR genes and HLA-A∗0201+ human fetal thymic tissues 

into sub-lethal irradiation pre-conditioned NSG mice.110 Upon 
employing this model it was revealed that anti-melanoma effects 
mediate by adaptive transfer of human MART-1 TCR+ T cells was 
remarkably improved by adding rapamycin for MART-1 TCR+ human 
T cell expansion in vitro and simultaneous supplementation with 
human IL-15 in vivo.109 Recently, other uses of HM have also shown 
that exosomes derived from phosphoantigen-expanded Vδ2-T cells 
(Vδ2-T-Exos) contained MHC class I and II, CD80, CD86, TRAIL, FasL 
and NKG2D. Administration of Vδ2-T-Exos could effectively control 
BV-associated tumors in Rag2-/-γc-/- and HM. Given that the ex-
pansion of Vδ2-T cells and ex vivo preparation of autologous Vδ2-T-
Exos from cancer patients in large scale is challenging, the antitumor 
activity of allogeneic Vδ2-T-Exos was explored in humanized mouse 
cancer models.111

Our focus was on pre-clinical experiments of immunotherapy 
but HM revolutionized the diagnostic and therapeutic approaches. 
Moreover, HM are providing a suitable platform for studies of human 
infectious disease like human immunodeficiency virus, GVHD, re-
generative medicine, allergies, and immunity.

7  | FUTURE

Humanized mice models are powerful tools for immunotherapy 
research in the era of cancer immunotherapy. Despite advances 
in establishing HM, they do not entirely recapitulate a functional 
human immune system. Thus, efforts for improving HM are ongoing. 
Scientists from different biomedical disciplines are testing innumer-
able strategies such as reducing graft rejections, boosting human cell 
reconstitution, improving human-specific responses and supporting 
critical immune cell subsets. Moreover, there are some noticeable 
obstacles which need to be solved soon. For example, if the HM is 
engrafted with an immune system from one person and the tumor 
from another person, then the formed immune response might be 
as the result of tissue incompatibility, rather than being reflective 
of the tested treatment. One of the solutions for the issue of MHC 
incompatibility is using induced pluripotent stem cell (iPSC) technol-
ogy. This method allows for the use of patient-specific iPSC which 
reduces the chance of tissue incompatibility and also provide a re-
newable source of autologous cells. Still, more comprehensive and 
functional immune systems need to be generated in HM. More spe-
cifically, there is an ongoing need to identify new approaches provid-
ing the platform for autologous experiments of engrafted immune 
cell and diseased tissue from the same individual. Thereby, allowing 
for more accurate understanding of disease progression and treat-
ment efficacy.

Considering the complexity of T cell development, even if it is 
possible to recreate the human thymic environment, establishing the 
same TCR repertoire of that particular patient seems very unlikely. 
Eventually, the utmost purpose is the formation of specific anti-
tumor immune responses by these human-derived T cells. Analyzing 
immunosuppressive cells such as T regulatory cells and M2 macro-
phages could also help in drawing the whole picture of the interplay 
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between the patient's immune system and the tumor that has man-
aged to grow.

More recently, it has been reported that microbiota, particularly 
in the gut, affects the efficacy of cancer immunotherapy. Given that 
germ-free mice lack microbes, researchers have established human 
microbiota-associated mice developed from these mice by fecal mi-
crobiota transplantation.112,113 Importance of the microbiota calls for 
further research on the effect of microbiota on biological responses. 
Another challenge in the development of HM is the incomplete cross-
compatibility between the murine stroma and transplanted human 
hematopoietic cells. Recently, complementary strategies have been 
developed to supplement in vivo xenotransplantation models such as 
in vivo utilization of three-dimensional human BM organoids and ex 
vivo deployment of bioreactor models.114 Cancer-associated fibro-
blasts are normaly observed within the stroma of various cancers, 
including lung, breast, colon, and pancreatic carcinomas.115 Recently 
reported that, in preclinical mouse models, fibroblast-activating pro-
tein a targeting OMTX705 represents a novel a model for cancer im-
munotherapy study.116 In conclusion, as humanized PDX are evolving 
and refining to better represent the human biological system, they 
are considered as an appropriate platform in personalized medicine 
and cancer immunotherapy.
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