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One of the main functions of the human placenta is to provide a barrier between the

fetal and maternal blood circulations, where gas exchange and transfer of nutrients to

the developing fetus take place. Despite being a barrier, there is a multitude of crosstalk

between maternal immune cells and fetally derived semi-allogeneic trophoblast cells.

Therefore, thematernal immune system has a difficult task to both tolerate the fetus but at

the same time also defend the mother and the fetus from infections. Mucosal-associated

invariant T (MAIT) cells are an increasingly recognized subset of T cells with anti-microbial

functions that get activated in the context of non-polymorphic MR1 molecules, but also

in response to inflammation. MAIT cells accumulate at term pregnancy in the maternal

blood that flows into the intervillous space inside the placenta. Chemotactic factors

produced by the placenta may be involved in recruiting and retaining particular immune

cell subsets, including MAIT cells. In this Mini-Review, we describe what is known about

MAIT cells during pregnancy and discuss the potential biological functions of MAIT cells

at the fetal-maternal interface. Since MAIT cells have anti-microbial and tissue-repairing

functions, but lack alloantigen reactivity, they could play an important role in protecting

the fetus from bacterial infections and maintaining tissue homeostasis without risks of

mediating harmful responses toward semi-allogenic fetal tissues.

Keywords: MAIT cells, placenta, pregnancy, decidua, intervillous blood

INTRODUCTION

During pregnancy, the maternal immune system is confronted with foreign antigens derived
from the semi-allogenic fetus and placenta. A challenging task is therefore to display tolerance
toward the HLA-disparate fetus and at the same time maintain anti-microbial responses.
Feto-maternal tolerance is retained due to several mechanisms, including physical barriers, a
diminished expression of polymorphic HLAmolecules on fetal trophoblast cells, and production of
immunosuppressive factors from fetally derived cells including trophoblasts, as well as maternally
derived cells including both stromal cells and immune cells (1, 2). However, it is evident that the
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maternal immune system not only detects but also reacts toward
fetal antigens. For instance, it has been shown that women during
early pregnancy transiently increase T cell-mediated responses
toward tumor-associated antigens that are highly expressed by
fetal trophoblasts in the placenta, including HER2 and WT1 (3).
Furthermore, fetal DNA and fetal immune cells are detected in
the maternal circulation (4), and anti-HLA antibodies are often
developed during pregnancy (5).

PLACENTAL STRUCTURE AND
FETAL-MATERNAL INTERFACE

Amain function of the placenta is to provide the developing fetus
with nutrients and gas exchange through an intricate placental
blood circulation system. The maternal placental circulation is
gradually established during the first trimester (6), and from
the second trimester until birth, maternal arterial blood delivers
oxygen, IgG antibodies and nutrients over a thin membrane of
fetally derived cells to the fetal blood circulation via the umbilical
cord (7) (Figure 1A). Maternal immune cells are in close contact
with semi-allogeneic fetal trophoblast cells in two anatomically
different parts of the placenta; in the decidua and in the
intervillous space (Figure 1B). The decidua is a specialized tissue
emanating from the uterine endometrium, which functions to
prepare for and accommodate pregnancy. The decidua is invaded
by bothmaternal immune cells and fetal extravillous trophoblasts
during early pregnancy. The extravillous trophoblasts play an
important role in the remodeling of the spiral arteries (8), thereby
securing the maternal blood flow into the intervillous space
from the second trimester, where nutrients and gas exchange to
the fetus takes place over the syncytiotrophoblast layer of the
chorionic villi (Figure 1B).

MATERNAL IMMUNE CELLS AT THE
FETAL-MATERNAL INTERFACE

The composition of maternal immune cells in the decidua
has been characterized both in early and term pregnancy,
showing that first trimester decidua is dominated by CD56bright

NK cells with few T cells, whereas the proportion of T cells
increases substantially at term (9). Macrophages in the decidua
maintain their proportion during pregnancy and display immune
regulatory actions (10). Maternal decidual stromal cells are tissue
resident cells that can suppress immune activation (11, 12). It
has been suggested, based on murine studies, that these cells
prevent activated maternal T cells from entering the decidua in
early pregnancy by silencing of the T cell-attracting chemokines
CXCL9 and CXCL10 (13). In humans, the mechanisms for the
relative low proportion of T cells in the first trimester decidua
are not known. Regulatory T cells are enriched in the decidua
(14), and both γδ T cells and CD8+ T cells make up larger
portions relative to CD4+ T cells compared with blood (2). γδ

T cells have been suggested to have a protective role during
early pregnancy by producing IL-10 and promote trophoblast
survival and invasion (15). Invariant NKT cells are also enriched
in the decidua relative to peripheral blood (16). Activation of

NKT cells with the CD1d agonist αGalCer promotes pregnancy
loss in murine models (17). Single cell analysis of the early
fetal-maternal interface in the decidua has further identified
predicted regulatory interactions betweenmaternal immune cells
and fetal trophoblasts that prevent harmful immune reactions
(18). For instance, extravillous trophoblasts highly express the
genes encoding PD-L1 and CD155, which could inhibit cytotoxic
responses by T cells and NK cells via PD-1 and TIGIT
ligation, respectively.

In contrast to the decidua, very little is known about
the composition and function of maternal immune cells in
the intervillous space, in which fetal villous tissue bathes in
maternal blood (Figure 1B). The general notion has been that
the blood volume in the intervillous space is replaced 2–3 times
every minute to provide gas exchange (7), suggesting that the
intervillous blood cell composition reflects that of peripheral
blood. However, others (19, 20) and our own recent studies (21–
23) show that NK cells and certain T cell and B cell subsets are
enriched in the intervillous blood, indicating that particular cell
types are sequestered in the intervillous space, which is discussed
in more detail below. Similar to the spleen and liver, in which
a proportion of the circulating blood is shunted into the low-
pressure pools in the sinusoids, it is likely that maternal blood
constituents entering the intervillous space are retained inside
the placenta. Mucosal-associated invariant T (MAIT) cells are
one type of immune cell subset that is relatively enriched in
intervillous compared to peripheral blood at term pregnancy
(21, 22) and MAIT cells are also present in decidual tissues (24).

MAIT CELLS AT THE FETAL-MATERNAL
INTERFACE AND IN UTERINE
ENDOMETRIUM

In contrast to conventional T cells, which need to get
their peptide antigen presented on highly polymorphic MHC
molecules, MAIT cells are restricted to the monomorphic MHC-
like receptor 1 (MR1) molecule (25). MAIT cells express the
semi-invariant T cell receptor alpha chain Vα7.2 (TRAV1-
TRAJ33) (26), and respond to vitamin B2metabolites in anMR1-
dependent manner (27). These non-peptide ligands are produced
by microbes with a functional riboflavin biosynthesis pathway
(27–31), including many commensal and pathogenic bacterial
and fungal species. Inflammatory cytokines, such as IL-12 and
IL-18, can also partially activate MAIT cells without the need
for TCR-ligation (32), which broadens their capacity to also
be involved in anti-viral and inflammatory responses (33). The
majority ofMAIT cells are CD8+, but a subset ofMAIT cells lacks
the expression of both CD4 and CD8 (double-negative, DN),
and a minor fraction expresses CD4 (34–36). MAIT cells display
a memory phenotype and they respond quickly by producing
cytotoxic molecules and inflammatory cytokines upon activation.
Moreover, there is emerging evidence suggesting that MAIT cells
also express tissue repair signatures upon TCR-ligation (37–40).
Thus, MAIT cells are anti-microbial and tissue-repairing T cells
that lack the capacity to respond to allogeneic HLA molecules,
which could be ideal traits of effector cells at the fetal-maternal
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FIGURE 1 | Fetal-maternal interface and immune cells at term pregnancy. The placenta serves to ensure exchange of nutrients and gases between the maternal and

fetal blood circulation. The fetal part of the fetal-maternal interface consists of chorionic villi that extend from the chorionic plate (A) into the intervillous space and

bathe in maternal intervillous blood (B). On the maternal side, the decidua parietalis and decidua basalis are in direct contact with fetal membranes (amniochorion) and

the invading fetal extravillous trophoblasts, respectively (A). The intervillous blood enters the intervillous space through spiral arteries (B) and leaves this compartment

through uterine veins (not shown). Maternal immune cells in the intervillous blood are in direct contact with the fetal syncytiotrophoblast and decidual immune cells can

interact with extravillous trophoblasts (B). DSC, decidual stromal cells; HC, Hofbauer cells (fetal macrophages); MAIT, mucosal associated invariant T cells; M8,

macrophages; uNK, uterine natural killer cells. The pink cells in the intervillous space depict erythrocytes.

interface. On the other hand, since MAIT cells respond quickly
and are capable of inducing prominent inflammation, they must
also be kept under strict control.

In healthy term pregnancies, pregnant women had lower
proportions of MAIT cells in the circulation compared to non-
pregnant women, suggesting that MAIT cells home to the
placenta (22). Indeed, the proportion of MAIT cells among both
CD3+ T cells and total CD45+ cells is approximately 2-fold
higher in placental intervillous blood compared to peripheral
blood in healthy term pregnancies (21). Ravi et al. showed that
proportions of peripheral MAIT cells were unaltered during
the course of pregnancy (41), and since MAIT cell proportions
were not investigated before pregnancy it can be speculated
that MAIT cells localize to the placenta or other tissues already

during early gestation. Although leukocyte counts increase
during pregnancy, the lymphocyte concentration shows a slight
decrease from early to late pregnancy, which can be attributed
to the hemodilution that takes place because of the physiological
increase in plasma volume during pregnancy (42). However,
since the proportion of T cells in blood does not change
during pregnancy (43) and since most studies report MAIT
cell frequencies as proportion of CD3+ T-cells, early and late
pregnancy can safely be compared.

Intervillous MAIT cells exhibit a stronger IFN-γ and
granzyme B expression compared to paired peripheral MAIT
cells in response to riboflavin-producing Escherichia coli (21).
However, in a resting state, intervillous and peripheral MAIT
cells express similar levels of the activation markers HLA-DR
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and CD69, while intervillous MAIT cells express lower levels
of CD25 and PD-1 (21, 22). Intervillous MAIT cells consist of
a higher proportion of DN MAIT cells compared to peripheral
MAIT cells. This is in accordance with the reported decrease in
peripheral DN MAIT cells from the first to the third trimester
(41), which could potentially reflect their localization to the
intervillous space of the placenta. Together, these data suggest
that maternal MAIT cells in the intervillous space of the placenta
at term pregnancy display an increased inflammatory response
to riboflavin-producing bacteria and that there are phenotypic
differences between peripheral and intervillous MAIT cells. It
remains to be determined if the elevated inflammatory response
of intervillous MAIT cells is due to intrinsic properties or
whether extrinsic effects, such as antigen presentation or soluble
factors, are involved in potentiating the response compared to
peripheral MAIT cells.

MAIT cells are present also in the endometrium and cervix of
the genital tract of non-pregnant women, but the endometrium
contains lower frequencies of MAIT cells out of CD3+ T
cells compared to peripheral blood (44). After fertilization, the
endometrium undergoes decidualization to form the decidua.
The part of the decidua underlying the placental disc, which is
perfused by spiral arteries to provide the intervillous space with
maternal blood, is termed decidua basalis (Figures 1A,B). The
decidua parietalis refers to the decidual layer that is attached to
the fetal membrane, consisting of the fused chorion and amnion
which create the amniotic sac. For early pregnancy, it is known
that MAIT cells are present in the decidua (18), but there is no
information on their relative abundance, phenotype or location.
In contrast to the non-pregnant endometrium, which contains
fewer MAIT cells compared to peripheral blood, the proportion
of MAIT cells in term pregnancy decidua parietalis is similar to
peripheral MAIT cells, and MAIT cells are even more abundant
in the decidua basalis compared to the decidua parietalis (24).
This may suggest that MAIT cells to some degree home to the
decidual mucosa at term pregnancy.

Decidual MAIT cells at term express high levels of CD69,
consistent with a tissue-residency phenotype (21, 24). MAIT
cells in decidua parietalis express higher levels of PD-1, CD38
and CD25 compared to MAIT cell in decidua basalis, indicating
a more activated phenotype (24). While endometrial MAIT
cells are biased toward IL-17 and IL-22 expression, with less
production of IFN-γ and granzyme B (44), decidual MAIT cells
produce higher levels of granzyme B and similar levels of IFN-γ
in response to E. coli as compared to peripheral MAIT cells (21).
It is not yet known if decidual MAIT cells also have a propensity
to produce IL-17 and IL-22. Mucosal production of IL-17 and
IL-22 is important for anti-bacterial and anti-fungal responses
and mucosal barrier function, respectively (45, 46), suggesting
that it would be an advantage also for decidual MAIT cells to
possess this function. It remains to be determined how decidual
MAIT cells in early and late pregnancy are polarized in terms
of cytokine production, but in contrast to genital tract MAIT
cells it appears that IFN-γ and cytotoxic molecule secretion from
term decidual MAIT cells are comparable to that of peripheral
MAIT cells, indicating that pregnancy may affect the functional
responses of uterine MAIT cells.

CHEMOKINE-INDUCED ATTRACTION OF
MAIT CELLS TO THE PLACENTA

Intervillous MAIT cells do not express the proliferation marker
Ki67, suggesting that they are in a non-cycling state (21). It can
therefore be speculated that the increased proportion of MAIT
cells in the intervillous space is due to recruitment and retention
by chemotactic factors. The fetal placenta and its trophoblasts
produce a wide array of chemokines (22, 47), and maternal
platelets in the intervillous space may also contribute to local
chemokine release (48). Interestingly, the chemokine pattern
in intervillous plasma is clearly different compared to paired
peripheral plasma, with higher levels of several chemokines,
including macrophage migration inhibiting factor (MIF), CCL2,
CCL25, CXCL9, and CXCL10 (22). Other chemokines are instead
lower in intervillous compared to peripheral plasma, including
CCL21 and CCL27 (22). MAIT cell proportions in intervillous
blood and in decidua are positively associated to levels of
MIF and CCL25 in intervillous plasma. Migration assays have
shown that conditioned medium from term fetal placental tissues
attracts effector memory T cells in general and MAIT cells in
particular, and thatMIF is one of the factors involved in attracting
MAIT cells (22). MIF is a chemokine-like cytokine that binds
to CXCR4 and CXCR2 (49). MAIT cells express high levels
of CXCR4 but low levels of CXCR2 (22, 34), suggesting that
CXCR4 is an important receptor for MIF-mediated homing of
MAIT cells. CD8+ and DN MAIT express similar proportions
of CXCR4 (50), and both subsets migrated to the same extent
toward placental conditioned medium (22). However, CD8+

MAIT cells have been described to express higher levels of CCR6
compared to DNMAIT cells (51).

In contrast to MAIT cells, proportions of conventional CD8+

effector memory T cells, which are also enriched in intervillous
blood of term placentas, showed no correlation to MIF levels
but to the CXCR3-ligands CXCL9, CXCL10, and CXCL11 in
intervillous plasma (22). Moreover, the levels of the CCR6-ligand
CCL20 is correlated to proportions of mature naïve B cells in
intervillous blood (23). This suggests that different kinds of
chemokines are involved in attracting and retaining distinctive
immune cell subsets to the placenta, but it is likely a combination
of different chemokines that shapes the composition of immune
cell subsets in the intervillous space. It should also be noted
that other chemokines could play a more prominent role in
attracting MAIT cells to other types of tissues. For instance,
MAIT cells have been suggested to home to ascites in liver
cirrhosis patients by CXCR3-CXCL10 ligation (52) and to the
liver by CXCR6 and CCR6 and their ligands CXCL16 and CCL20,
respectively (53).

Interestingly, both syncytiotrophoblasts and extravillous
trophoblasts highly express the chemokine decoy receptor
D6/ACKR2, which can decrease chemokine availability to
control leukocyte migration (54). D6 internalizes and degrades
inflammatory CC chemokines which are ligands to the classical
chemokine receptors CCR1-CCR5 (55). It can be speculated that
this atypical chemokine receptor with CC chemokine scavenging
function can play a role in regulating the number and position of
maternal immune cells at the fetal-maternal interface. It remains
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to be determined if D6 is involved in shaping the immune cell
composition with increased accumulation of MAIT cells, effector
memory T cells and mature naïve B cells in the intervillous space.

ANTIGEN-PRESENTING MOLECULES ON
CELLS IN THE PLACENTA

The syncytiotrophoblasts, which line the fetal villi and are in
immediate contact with maternal blood in the intervillous space
(Figure 1B), appear to lack expression of the MR1 molecule both
at early second trimester and at term (21). This is in line with
the absence of HLAmolecule expression on syncytiotrophoblasts
from the second trimester (56). Thus, this lack of antigen
presenting molecules could prevent any MR1- or HLA-mediated
cytotoxicity toward the fetal syncytiotrophoblasts by maternal
MAIT cells and T cells, respectively. It is not yet known if
extravillous trophoblasts express MR1, but they do express
HLA-C and the non-classical oligomorphic HLA-E, HLA-G and
HLA-F at varying intensities during gestation (56). Extravillous
trophoblasts also express CD1d in early pregnancy, suggesting
that NKT cells may interact with fetal cells in the decidua (16).
Fetal macrophages (also called Hofbauer cells) in the fetal villi
(Figure 1B) express MR1 both at second trimester and at term,
indicating that they can function as antigen-presenting cells to
MAIT cells if the barrier of the fetal syncytium is broken (21).
CD8+ maternal T cells can be detected inside the villi in villitis
of unknown origin, a non-infectious condition that is associated
with fetal growth restriction (57). Whether maternal MAIT cells
are present in the villi during this condition is not yet known.
MR1+ cells are also detected in term decidua and some of
these cells are macrophages, as assessed by CD68 expression
(21), indicating that decidual macrophages have the potential to
present antigens to MAIT cells.

CAN MAIT CELLS ENCOUNTER THEIR
ANTIGENS IN THE PLACENTA?

It has long been thought that the placenta is devoid of microbes
in healthy pregnancies. This perception was challenged by
studies suggesting that the placenta has its own microbiome
(58, 59), but emerging evidence indicates that the detection of the
placental microbiome may have been caused by contamination
during the analysis process (60–62). However, De Goffau et
al. observed that approximately 5% of placentas contained
Streptococcus agalactiae, which was concluded to not be due to
contamination (63). S. agalactiae is associated with commensal
carriage, but is also a neonatal pathogen since it can cause
neonatal sepsis (64). S. agalactiae strains possess riboflavin
operons (65), suggesting that they have the potential to produce
MR1-ligands and act as MAIT cell targets. Seferovic et al.
used 16S in situ hybridization to visualize bacteria in healthy
placental tissues and found that microbes were present at
low abundance and preferably were localized to the villous
parenchyma and syncytiotrophoblast layers. Thus, the current
literature suggests that bacterial cells occasionally are present

in the healthy placenta. Intervillous and decidual MAIT cells
could play a role in preventing bacteria from crossing the fetal-
maternal barrier.

TISSUE-REPAIRING CAPACITY OF MAIT
CELLS

Apart from mediating pro-inflammatory responses upon
infection, MAIT cells have recently been described to express a
functional gene signature of tissue repair (37–40) and to have
tissue protective capacities in murine models of inflammation
(66, 67). The tissue repair function of MAIT cells is dependent
on TCR-triggered activation, indicating that activation of this
pathway is dependent on the presence of riboflavin-producing
bacteria. The activating bacterial MR1-ligand 5-OP-RU can
cross epithelial barriers (68), and it could potentially be
present in organs devoid of infection, including the placenta.
It is possible that intervillous MAIT cells are involved in
maintaining barrier integrity to protect the fetal villi from barrier
disruption and other placental lesions. Discontinuities in the
syncytiotrophoblast layer with fibrin deposits are common
in term villi (69). Fetal macrophages have been described
to aggregate around injured regions of villous tissue in ex
vivo models (70) and could potentially interact with maternal
intervillous MAIT cells to assist tissue repair. Since MAIT
cells express several genes encoding proteins involved in tissue
repair and fibrin formation, including thrombospondin-1,
furin and thrombin receptors (37, 38, 40), it is possible that
they play a role in repairing the syncytiotrophoblast layer.
It can also be speculated that MAIT cells could be involved
in accelerating wound repair when the placenta is detached
from the uterine wall and the spiral arteries are disrupted
at birth. However, further studies are needed to increase
our knowledge in the intriguing area of MAIT cells and
tissue repair.

MAIT CELLS IN PREGNANCY
COMPLICATIONS

An insufficient invasion of extravillous trophoblasts leads to
a poor development of spiral arteries and, hence, to an
impaired maternal blood circulation in the intervillous space.
This is one of the causal factors of preeclampsia. Preeclampsia
affects 3–5% of pregnant women and is a leading cause of
maternal and perinatal morbidity and mortality worldwide (71).
Immunological factors are likely involved in the pathogenesis of
preeclampsia, including an imbalance in CD4+ T cell subsets
with increased proportions of inflammatory Th17 cells and
less regulatory T cells (72) and elevated systemic inflammation
(73), but the mechanisms remain to be defined. It was recently
shown that the proportion of peripheral MAIT cells was lower
in mothers with early-onset preeclampsia compared to healthy
pregnancies (74). No investigation of placental MAIT cells
was performed, and a low MAIT proportion in peripheral
blood could account for homing to tissues as discussed
above. Peripheral MAIT cells from preeclampsia patients also
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displayed a lower expression of PD-1, but higher expression of
CD69 and perforin, compared to healthy pregnancies. Whether
MAIT cells play an active role in preeclampsia remains to
be determined.

Spontaneous preterm birth (PTB), i.e., birth before gestational
week 37, is one of the leading causes of childhood morbidity and
mortality. Similar to preeclampsia, there is an association with
immunological factors also in PTB (75). For instance, maternal
T cell infiltration is observed in chronic chorioamnionitis, the
most common placental lesion leading to late spontaneous PTB,
and increased influx of cytotoxic effector memory cells has
been associated with preterm labor and birth (76). Although
the overall frequencies of peripheral MAIT cells were unaltered
during the course of healthy pregnancy, in HIV-infected
pregnant women, and in women with subsequent PTB, MAIT
cells subsets were altered with a higher proportion of CD8+

MAIT cells in first trimester in women with PTB compared
to term birth (41). HIV-infection, which entails a higher risk
of PTB, was associated with a higher proportion of CD8+

MAIT cells compared to HIV-negative women. In healthy
pregnancies the proportion of CD8+ MAIT cells increased
during the course of pregnancy. Functional differences in
MAIT cell subsets have been described (51, 77), and CD8+

MAIT cells express more IFN-γ, granzyme B and perforin
compared to DN MAIT cells (77) and CD4+ MAIT cells
(51). It is possible that an imbalance in the different MAIT
cell subsets during early pregnancy could be involved in
immunological aberrations associated with PTB, but the putative
importance of MAIT cells and different subsets of MAIT
cells in PTB and other pregnancy complications still needs to
be defined.

CONCLUDING REMARKS

Several questions remain regarding the function of MAIT cells
during pregnancy and the data available so far derive solely
from observational studies on human pregnancies. It is not
known if MAIT cells are enriched in the placenta throughout
pregnancy or if they are retained in the intervillous space
only at term. Selective enrichment of MAIT cells in the
intervillous space but not in adjacent decidual tissue signify
separate immunological entities which deserve more attention
in future research. The enhanced functional response of term
placental MAIT cells could indicate a putative role in placental
inflammation and dysregulated MAIT cell responses could be
involved in pregnancy complications. However, since MAIT
cells have anti-microbial and tissue-repairing functions, but lack
alloantigen reactivity, they could play an important role in
protecting the fetus from bacterial infections and maintaining
homeostasis at the fetal-maternal interface.
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