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Abstract
Degeneracy in biological systems refers to a many-to-one mapping between physical structures and their functional (including 
psychological) outcomes. Despite the ubiquity of the phenomenon, traditional analytical tools for modeling degeneracy in 
neuroscience are extremely limited. In this study, we generated synthetic datasets to describe three situations of degeneracy 
in fMRI data to demonstrate the limitations of the current univariate approach. We describe a novel computational approach 
for the analysis referred to as neural topographic factor analysis (NTFA). NTFA is designed to capture variations in neural 
activity across task conditions and participants. The advantage of this discovery-oriented approach is to reveal whether and 
how experimental trials and participants cluster into task conditions and participant groups. We applied NTFA on simulated 
data, revealing the appropriate degeneracy assumption in all three situations and demonstrating NTFA’s utility in uncover-
ing degeneracy. Lastly, we discussed the importance of testing degeneracy in fMRI data and the implications of applying 
NTFA to do so.

Introduction

Degeneracy refers to the capability of different structures to 
produce the same effects (Edelman & Gally, 2001; Tononi 
et al., 1999; Whitacre, 2010). For example, different sets 
of codons in genetics can produce the same phenotype 
(Konopka, 1985). Different ion channels - more than are 

strictly necessary - are used to tune the firing rate of neu-
rons (Drion et al., 2015). Different distributions of neural 
modulators and circuit parameters nonetheless produce the 
same rhythmic activity in a neural circuit (Gutierrez et al., 
2013; Gutierrez & Marder, 2014). Simple motor behaviors, 
like finger tapping, may also be produced by an abundance 
of distinct motor pathways (Bernstein, 1966; Wolpert, 2003; 
Seifert et al., 2016; Latash, 2012). In functional neuroanat-
omy, degeneracy refers to the notion that the brain may have 
multiple solutions or a surplus of neural pathways to pro-
duce the same mental state or behavior (Price & Friston, 
2002; Friston & Price, 2003; Sajid et al., 2020). Indeed, 
computational simulations show that degeneracy is high in 
networks with high complexity such as the brain (Tononi 
et al., 1994; Tononi et al., 1996), in which multiple distinct, 
parallel structural pathways may lead from a source node to 
a destination node. Such an architecture enables a degree of 
robustness to changes in the neural environment (e.g. due to 
tissue damage) (Price & Friston, 2002; Sajid et al., 2020). 
The concept of degeneracy may overlap with redundancy 
because they both suggest there are multiple solutions that 
can produce the same output, however they differ in the flex-
ibility for the system to choose which solution to produce the 
outcome (Edelman & Gally, 2001; Friston & Price, 2003; 
Marder & Taylor, 2011; Sajid et al., 2020).
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In cognitive neuroscience, degeneracy suggests there 
might be systematic sources of variance across trials or indi-
viduals that are of interest for the brain-behavior relation-
ship. For example, two individuals may use different neural 
pathways to perform the same task, or one individual may 
use different neural pathways in different moments when 
performing a task. Commonly used analytical approaches 
often treat such variation across trials within a condition 
and across individuals within a sampled group of par-
ticipants as error. For example, functional neuroimaging 
studies that examine task-dependent changes in functional 
activation often estimate parameters assuming invariance 
across trials or participants. Offering a bit more flexibility, 
recent machine learning approaches have also been applied 
to functional neuroimaging data (e.g. multivoxel pattern 
analysis)(Kriegeskorte et al., 2006; Haxby, 2012), however, 
these approaches commonly rely on supervised analytical 
approaches that imply a common neural activation pattern 
for trials in the same task (Azari et al., 2020). In both cases, 
summaries are calculated either across participants, trials, or 
both in order to increase signal-to-noise ratios, and residual 
variance is assumed to provide an estimate of error for cal-
culating inferential statistics. However, in doing so, these 
approaches are assuming a non-degenerate functional archi-
tecture a priori. As a result, little is known about the extent 
to which these assumptions prevail vs. the extent to which 
there is degeneracy in functional neuroanatomy.

Uncovering degeneracy requires analytical tools that are 
explicitly designed for this purpose. If the brain provides 
multiple solutions to complete a given task, then functional 
activation patterns in a given study may depend on the 
participant and moment in time (i.e. by stimulus or trial) 
in ways that are unbeknownst to investigators. Thus, it is 
important to develop an analytical approach that can iden-
tify sources of structure in signal with minimal supervision 
- that is, without relying on strong a priori assumptions of 
investigators of how functional activity ought to relate with 
task performance. Here, we propose a novel computational 
model, referred to as Neural Topographic Factor Analysis 
(NTFA), to examine degeneracy in functional neuroanatomy. 
Our model is built off of earlier topographic factor analy-
sis approaches (Manning et al., 2014b) and takes as input 
individuated segments of 4D fMRI timeseries data with 
labels for participant and trial. It does not require knowledge 
about the attributes of participants (demographic, personal-
ity, genetic, etc.), nor does it require knowledge about how 
trials sort into conditions. NTFA learns a low-dimensional 
representation - or an embedding - of functional activity for 
each participant and trial on the basis of shared patterns of 
neural activation from segments of data. These embeddings 
provide a simple, readily visualizable depiction of whether 
and how neural responses during a task vary across partici-
pants, trials, and participant by trial combinations.

In this paper, our goal is to validate NTFA using a simu-
lation approach. Computational simulations are critical to 
test whether novel computational models are capable of per-
forming as expected in principle, that is, under conditions 
with a known ground truth. In practice, the data generating 
mechanisms for functional neuroanatomy are rarely, if ever, 
known. That is why it is of particular importance in cogni-
tive neuroscience to develop modeling approaches that are 
capable of providing insight as to whether there is likely to 
be degeneracy in functional neuroanatomy from the data 
alone and with minimal supervision. Using computational 
simulations, we first demonstrate the considerable shortcom-
ings of applying the most commonly used “univariate” acti-
vation-based analytical approach in fMRI data analysis when 
there is degeneracy. In the typical form of this analysis, a 
general linear model is used to determine whether functional 
activity in a given voxel or brain region (i.e. set of voxels) is 
greater during trials from one experimental condition rela-
tive to a baseline condition. We then implement NTFA on 
simulated datasets with minimal assumptions about whether 
trials ought to be nested into particular task conditions, or 
participants into particular groups. Our deliverable is a dem-
onstration of the ability of NTFA to recover embeddings 
that reveal degeneracy, and non-degeneracy, in simulated 4D 
timeseries data with topological structure (e.g. as in fMRI 
data).

Experimental Design

Rather than extensively review the various forms of degen-
eracy that can occur in the brain, we generated a synthetic 
dataset to demonstrate two aspects of degeneracy that could 
occur in fMRI data. There could be many reasons for degen-
eracy, as noted in the introduction and as we speculate upon 
in the discussion. The focus of this paper is to illustrate how 
well certain models would perform when the assumption 
of degeneracy by condition holds. We opt to use simula-
tion data for two reasons: 1) the synthetic data allows us to 
mathematically specify the assumption of degeneracy, and 
2) the synthetic data also provides a known ground truth to 
validate NTFA’s performance.

The synthetic dataset reflects a generic experimental 
framework in which participants undergo a baseline condi-
tion and an experimental condition. In this simulated experi-
ment, participant completed eight trials total. The baseline 
condition has two trials and the experimental condition has 
six trials. Each trial contains 20 TRs. The synthetic dataset 
used a downsampled MNI template with a 8x8x8mm voxel 
size.

To offer a concrete example, in a study on fear, the base-
line condition may consist of multiple trials that maintain a 
neutral affective state in the baseline condition and multiple 
trials that induce fear in the experimental condition and. In 
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a study on working memory, there may be trials that involve 
low capacity demand in the baseline condition, and trials 
that involve high capacity demand in the experimental con-
dition. We used the term, trial, to broadly represent trials in 
sequence (e.g. the first, second, ..., trial of the task), or the 
specific contents of a trial in a task (e.g. trials that present 
stimulus A, stimulus B, ..., in which each stimulus is a sam-
pled instance from the same task). Degeneracy may occur 
in either case. In the simulated data, there are three trials of 
type A, B, C in the experimental condition and a baseline 
trial type in for each scenario. We varied the underlying 
distribution for the trial types to reflect the assumption of 
degeneracy.

We simulated multivariate patterns of neural activity 
throughout the brain by sampling from a prespecified under-
lying distribution. We assumed a single baseline state such 
that the neural activity of the baseline condition is generated 
from one distribution. We then modeled three hypothetical 
situations to reflect different assumptions of degeneracy, 
which are described in more detail in the subsequent section 
(Fig. 1). For simplicity, the analysis was performed on the 

synthetic dataset consisted of two participants. We simulated 
20 participants and the results showed the same conclusion 
as results from 2 participants (See Supplementary Materi-
als B). The simulated data used in the manuscript assumes 
an SNR of 8 which is well within the range for fMRI datasets 
(Welvaert & Rosseel (2013) found various fMRI datasets to 
range in SNR between 0.35 and 203. Results on simulated 
data over a range of lower SNR (down to 0.16) is provided 
in Supplementary Materials 6.

Since this paper is interested in variations in the task-
related signal, the synthetic dataset is meant to resemble a 
denoised dataset in real life. The simulation did not include a 
hemodaynamic function or any nuisance related signal (e.g., 
head motion, white matter, CSF, etc) that might be present in 
the real data. We simulated the data under varying additive 
noise conditions to show reliability.

Non‑Degeneracy

The non-degenerate functional neuroarchitecture stipulates 
that experimental trials evoking a common psychological 

Fig. 1  Standard univariate analysis applied to degenerate situa-
tions. We applied univariate analysis (right panel) to three simulated 
datasets (left panels), assuming a simple experimental design with a 
baseline condition and a task condition involving multiple trials. In an 
affective neuroscience task, for example, the experimental condition 
might be a fear condition, as designated and labeled by the experi-
menter, which consists of multiple trials that are thought to induce 
fear. (A) Non-degeneracy: We simulated data from a situation with-
out degeneracy, in which a consistent set of regions are more active 
during the experimental condition than the baseline condition across 
trials (and across participants). (B) Condition degeneracy: Simulated 

data included different patterns of activation associated with different 
trials of the same experimental condition. (C) Degeneracy by con-
dition and participant: Simulated data included different patterns of 
activation are associated with different trials and participants. (D) A 
traditional univariate analysis performs well in the situation without 
degeneracy. However, the analysis would be insensitive to the varia-
tions in the two situations involving degeneracy. Critically, with suf-
ficient statistical power, the univariate analysis may still yield signifi-
cant activations in  situations B and C. However, the summary map 
would grossly mischaracterize the data, and the underlying data gen-
erating distribution
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state or process share a common underlying pattern of acti-
vation. We generated simulated data to fit this assumption. 
We started by selecting three brain areas randomly to create 
a pattern of activation during experimental condition trials 
(Fig. 1A). We chose three areas arbitrarily to reflect the fact 
that the assumptions of a non-degenerate functional neuro-
anatomy have little to do whether the pattern of activation 
is localized to one area or distributed across many areas. 
What is important is that the same pattern of activation is 
assumed to occur consistently across trials and participants, 
and that a non-degenerate model treats variation as residual 
error. To capture this assumption in our synthetic data, we 
specified the data generating process as a unimodal distribu-
tion. This refers to one pattern of neural activity with some 
Gaussian distributed noise across trials and participants. The 
synthetic data from individual trials A, B, and C, as shown in 
(Fig. 1A), were sampled from this distribution. This model 
suggests there is a common pattern of activation across all 
trials that evoke fear, for example.

Degeneracy by Condition

Degeneracy by condition refers to the existence of multiple 
distinct patterns of neural activation that occur across tri-
als of the same experimental condition. Using fear as our 
running example, different fear induction trials may involve 
different patterns of brain activation (Fig. 1B). To simulate 
data corresponding to a degeneracy by condition model, our 
data generating process involved sampling from one of three 
different distributions. Each of the three distributions gave 
rise to distinct activation patterns from the others, while 
maintaining similar activation patterns within the distribu-
tion. In Fig. 1B, Trials A, B, and C are exemplars, with each 
one sampled from a different distribution. Thus, degeneracy 
by condition suggests that multiple distinct activation pat-
terns may occur during trials within the same experimental 
condition.

Degeneracy by Participant and Condition

For our third situation, we examined degeneracy with respect 
to both condition and participant. Similar to the example in 
the degeneracy by condition scenario, a participant would 
have different patterns of activation during different trials 
of the same experimental condition. In addition, however, 
the participant would also have a different pattern of neural 
activation than other participants, even during the same trial. 
For example, both participants may report experiencing the 
same level of fear when shown the same fear-inducing stimu-
lus, but nevertheless show differential activation patterns.

This situation is illustrated in Fig. 1C. Two participants 
may be presented with the same set of trial stimuli and even 
have the same behavioral responses, but the underlying 

neural patterns may nonetheless vary. For example, in Trial 
A, the exemplar data from two participants share activity 
in dorsal areas, but one participant also shows activity in 
ventral areas. In Trial B, they show similar patterns of acti-
vation. In contrast, in Trial C, there are again differences 
between participants. Thus, our data generating procedure 
was designed to capture: (i) degeneracy across participants 
by including both participant-specific activation patterns 
(e.g. Trials A and C), (ii) degeneracy by condition by includ-
ing variation in activation patterns across Trials A-C within 
a participant, and also (iii) activation patterns that are also 
shared across participants (e.g. Trial B).

Univariate Analysis

We applied a standard univariate General Linear Model 
(GLM) to calculate a contrast between the experimental 
conditions and the baseline condition. We implemented the 
GLM in which each trial was modeled as a separate regres-
sor, such that the model estimated a statistical map for each 
trial. The model then calculated a contrast on trials in the 
experimental condition and on trials in the baseline condi-
tion to assess which voxels showed greater activity in the 
experiment conditions than in the baseline condition. The 
average betas over two participants was presented. The 
model did not include nuisance regressors and were not 
convolved with a hemodynamic response function since the 
synthetic data did not include nuisance related signal and 
was not convolved with hemodynamic function since they 
were not included in the simulated dataset.

Neural Topographic Factor Analysis (NTFA)

NTFA is a class of generative models built off of earlier 
topographic factor analysis (TFA) approaches for fMRI 
data (Manning et al., 2014b) that is designed to learn low-
dimensional, visualizable embeddings from segments of 
data for different participant and tasks (Sennesh et al. 2019). 
We modify the original NTFA model such that the modified 
model (we will continue to referred to this modified model as 
NTFA, as it still consists of a neural network prior combined 
with a TFA likelihood) can reveal different aspects of the 
data, including degeneracy. Moreover, NTFA is primarily 
unsupervised, requiring only the participant and trial identi-
ties. We provide an overview of NTFA’s generative model 
and training mechanism in Figs. 2 and 3 respectively.

NTFA is designed to enable systematic comparison of 
functional neuroanatomy across individuals and task condi-
tions by mapping fMRI data to low-dimensional (and visu-
alizable) embeddings. We achieve this goal by formalizing 
three assumptions:
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• First, we assume voxel-level data can be parsimoniously 
expressed as a much smaller set of functional units, 
which we refer to as spatial factors. We model these 
spatial factors as radial basis functions, and the activation 
at a given voxel as a sum of weighted contributions from 
these factors.

• Second, we assume that the same spatial factors exist 
in all participants, but their precise spatial location may 
vary across individuals. A set of low dimensional partici-
pant dependent spatial embeddings ( zPF ) capture this 

variation. A neural network maps these embeddings to 
the centers (location) and widths (extent) of the spatial 
factors. This neural network is shared across participants. 
The neural network allows us to learn a possibly non-
linear mapping from the space of spatial embeddings to 
that of spatial factors. This is important, as the anatomi-
cal alignment literature Haxby et al. (2011); Saxe et al. 
(2006) makes it implausible that this relationship can be 
captured with a linear transformation. Similarly, sharing 
a single neural network among all factors and all partici-

Fig. 2  NTFA Generative Model: This figure describes how NTFA 
generates a single segment of fMRI data with V voxels and T TRs. 
NTFA treats a single participant-trial combination in the experiment 
as a segment of fMRI data such that it could model the participant 
and trial dependent activation without grouping participants or trials 
a priori. Concisely, NTFA splits this data generation into two parts, 
reflected by the two pathways in this figure. The first pathway, fol-
lowing the blue arrows, generates a participant dependent set of spa-
tial factors. The second pathway, following the red arrows, generates 
the participant and trial dependent activation weights for these fac-
tors. The multiplication of these spatial factors and the factor weights 
gives us the generated fMRI segment. (a-c) Generating spatial 
factors:(a) We sample 2-dimensional spatial embeddings ( zPF ) from 
a gaussian prior, with each dot representing a participant in the shared 
embedding space. For each segment we only use the spatial embed-
ding for the participant in that segment, shown here as the red dot. 
(b) This spatial embedding is submitted to a neural network. The 
same neural network is shared by all spatial embeddings. The use 
of neural networks allows a potentially non-linear mapping between 
the embedding space and the variations in the spatial factors. (c) The 
neural network maps this embedding to the K spatial factors to repre-
sent the functional units of activation in the brain, shown as the red 
circles. These spatial factors are assumed to be radial basis functions 
parameterized by the centers and widths output by the network. Here 
we show these spatial factors as red circles covering two widths of the 
radial basis function. The Spatial Factors are mathematically denoted 

by a matrix F of size K x V. As such, the differences in the spatial 
embeddings reflects the variations in these spatial factors. (d-g) Gen-
erating factor weights:  (d,e) Similar to the spatial embeddings we 
also sample a participant activation embedding for the same partici-
pant and trial activation embedding for the trials across task condi-
tions corresponding to the combination. These embeddings are meant 
to capture overall participant and trial dependent activity respectively. 
(f) These two embeddings are then passed to a neural network to pro-
duce the corresponding p × s - activation embedding. Each dot repre-
sents a unique participant and trial combination. (g) The activation 
embedding is then passed through another neural network to generate 
the Factor Weight matrix of W of size T × K . The factor weights cap-
ture the activations of the spatial factors. The neural network outputs 
the mean and a standard deviation of activation for each factor. Each 
factor’s activation is then generated by sampling independently over 
TRs from the corresponding Gaussian distribution to create the time 
varying weights W. As such, variations in locations of these activa-
tion embeddings reflects variations in the activations of spatial fac-
tors. The embeddings provide a way to visualize high dimensional 
variations between brain activations for different participant-stimulus 
combinations. (h) Finally, these weights and spatial factors can be 
arranged in the form of two matrices W ∈ ℝ

T×K and F ∈ ℝ
K×V . The 

matrix of spatial factors F and their activations W can be multiplied 
to generate data � i.e. this segment of fMRI data. For a comprehen-
sive version of this figure, see Fig. A1 in Supplementary Materials
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pants allows the spatial embeddings to be commensura-
ble between participants. A Gaussian prior on the spatial 
embeddings encourages them to be close to each other.

• Third, we assume that degeneracy or non-degeneracy is 
effectively revealed as a combination of how a single 
participant’s brain responds to the various trials in a task 
condition (i.e. participant dependent activity) and how 
multiple individuals might respond to a the same trial in 
a task condition (i.e. trial dependent activity). By com-
bining estimates of these sources of variation, we are 
able to detect whether neural activity in response to the 
same trial varies systematically across individuals, which 
we refer to as participant task combinations. Similar to 

the approach used for the spatial embeddings, participant 
dependent (p) and trial dependent (s) activity is estimated 
across the spatial factors (through embeddings zPW and 
zS respectively) and combined through a neural network 
to generate (� × �)activation embeddings ( zC ). The use 
of shared neural networks here once again ensures that 
the low dimensional embeddings can capture non-linear 
effects, and makes these embeddings commensurable 
between different participant-task combinations.

Taken together, these spatial and activation embeddings 
respectively provide a low-dimensional summary of where 
and how individuals’ brains respond to an experiment. 

Fig. 3  NTFA Training using variational inference: This figure 
shows the training procedure for NTFA for a hypothetical dataset 
that includes two participants and two stimuli for a total of four com-
binations. Mean brain images for the four segments can be seen in 
panel (d) where the preprocessed BOLD data is split into segments of 
participant-trial combinations, denoted here as c1, c2, c3 and c4 for this 
hypothetical example. (a) Initialization All parameters and distribu-
tions are initialized as specified in Supplementary Information. (b) 
Training (b-i) Starting of from this initialization intermediate recon-
structions are generated at each step. (b-ii) The parameters are used 
iteratively to calculate the reconstructions error. The loss function 
is defined as the sum of reconstruction error and a regularizer (see 
Supplementary Information Eq. (10)for more detail). This is a conse-
quence of using variational inference which aims to approximate the 
unknown posterior distributions of all the hidden variables with a set 
of simpler distributions, Gaussian in this case. (b-iii) These parame-
ters are then updated in the direction of decreasing loss using stochas-
tic gradient descent (SGD). The iterations are repeated until conver-
gence that is when the loss function stops decreasing. (c) Results at 
convergence The learned parameters at convergence are represented 

by the embeddings. The embeddings provide a visual conclusion of 
variances in neural activity across different participant-trial combina-
tion. (c-i) The learned spatial embeddings encode the relative differ-
ences in the locations and widths of the spatial factors between partic-
ipants. (c-ii) The learned activation embeddings are highlighted here 
in yellow as they are the main focus of this paper. These embeddings 
represent the differences in activation of the spatial factors among dif-
ferent participant-trial combinations. For example, in this hypothet-
ical case the combinations 1 and 2 on the left of the plot are more 
similar to each other as compared to combinations 3 and 4. (c-iii) The 
three trained neural networks allow us to capture potentially nonlinear 
relationships between different participants’ spatial factors as well as 
activations for different combinations. These neural networks can also 
be used to generate unseen data including unseen participant-trial 
combinations by providing inputting appropriate embeddings. (c-iv) 
Shows the learned reconstructions that should approximate the major 
patterns in the input data as can be seen by side by side comparison 
with panel (d) with a limited number of spatial factors K << V  . For 
a comprehensive version of this figure see Fig. A1 in the Supplemen-
tary Materials
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Critically, the activation embeddings also summarize 
whether such responses are shared or diverge across indi-
viduals, hereby revealing potential degeneracy. In the fol-
lowing subsections, we first discuss NTFA generative model 
in detail ("Generative Model"). We then explain the vari-
ational distribution used for the inference procedure ("Infer-
ence") and how it is initialized ("Initializing Variational Dis-
tribution"). Lastly, we explain how the NTFA deploys the 
variational inference procedure iteratively to estimate the 
distribution of the latent variables given the observed data 
("Training").

Generative Model

The crux of NTFA’s generative model can be explained 
in three parts. First is to assume that a segment of fMRI 
data consisting of T time points and V voxels Y ∈ ℝ

T×V 
can be approximated by the matrix product of two matrices 
Y ≈ WF ; a matrix F ∈ ℝ

K×V that defines the spatial loca-
tion of K ≪ V  factors, with each row defining that factor’s 
influence over each voxel, and a matrix W ∈ ℝ

T×K defining 
the weight of each factor at each time instant. Second, the 
model assumes that for a given participant “p” in a segment, 
the parameters that define matrix F can be generated from a 
lower dimensional vector zPF

p
 by passing it through a train-

able non-linear mapping (a neural network �F in this case). 
This neural network is shared across all trials and all partici-
pants, which means the factors for all participants are gen-
erated through a shared mapping and the differences in the 
lower dimensional vectors can be interpreted as differences 
in matrix F for participants across the experiment. Third, 
the model also assumes that given a participant-trial combi-
nation “ c = p × s ” in a segment, the parameters that gener-
ate the matrix W for this segment are generated by another 
lower dimensional vector zC

c
 mapped through another neural 

network �W . This neural network is also shared across tri-
als for all possible combinations and thus the differences 
in the lower dimensional vectors can be interpreted as dif-
ferences in the activation of the spatial factors for different 
participant-trial combinations. This embedding is itself the 
output of a neural network �C that takes as input a participant 
dependent embedding zP and a task dependent embedding 
zS . In the following paragraphs we unpack this model and the 
underlying assumptions in more detail. This description is 
also summarized and presented in Supplementary Materials 
Fig. A1 for an example setting.

Let’s assume we want to generate fMRI data for an 
experiment with n = {1,… ,N} segments. Each segment n 
consists of a participant pn out of a total of P participants 
( pn ∈ {1,… ,P} ) undergoing a trial sn out of a total of S 
unique trials ( sn ∈ {1,… , S} ). This leads to every segment 
being defined by a combination cn = {pn, sn} of the partici-
pant identity and trial identity, where cn ∈ {1,… ,C = PS}.

The first assumption we make is that each participant p 
has a D-dimensional spatial embedding vector zPF

p
 (Fig. 2a, 

Fig. S5(A)) and a participant embedding vector zP
p
 (Fig. 2d, 

Fig. S5(E)) associated with it. The participant embedding 
is the vectors of all participants plotted in a 2-dimensional 
space. The spatial embedding captures the mean and vari-
ance of the center and width for each spatial factor in the 
brain space. The participant embeddings captures the 
participant dependent response across all trials in a task 
condition, Similarly we assume that each trial s also has a 
separate D-dimensional trial embedding vectors zS

s
 (Fig. 2e, 

Fig. A1(F)) associated with it. We assume D = 2 for both 
cases as we would like to be able to visualize these vec-
tors. These embeddings allow us to reason about differences 
between participants and trials as signal rather than noise. 
These participant and trial embeddings then pass through 
a neural network �C to generate participant-trial activation 
embeddings zC . These combination embeddings in turn 
generate through another neural netwok �W the parameters 
for the distributions of activations of the spatial factor for a 
given participant-trial combination.

The second assumption is that these embeddings are sam-
pled from a standard normal prior (a gaussian distribution 
with zero mean and identity covariance i.e. N(0, I) ). The 
embeddings are assumed to lie in two separate 2-dimen-
sional spaces as shown in Fig. 2a, d, e (for detailed visu-
alization, see Fig. A1(A, E, F). Note that we will infer the 
distributions of each of these embeddings later, these priors 
serve to constrain the space in which these embeddings lie 
in relation to each other.

The third assumption is that the participant weight 
embeddings zP

p
 and trial embeddings zS

s
 can be combined 

through a non-linear mapping (with a simple neural net-
work) to generate the combination embedding zC

c
 for that 

particular participant-trial combination.

The fourth and the most critical assumption is that the 
spatial embeddings and the activation embeddings can be 
mapped to two matrices: a matrix of factors F ∈ ℝ

K×V and 
a matrix of weights W ∈ ℝ

T×K through a non-linear map-
ping (using neural networks). Where V is the number of 
voxels in the fMRI data and T is the number of time points 
in a segment. To realize this mapping, we assume that after 
sampling a participant embedding zPF

p
 using Eq. (1) it can be 

passed through a neural network �F that outputs four quanti-
ties. It outputs 3-dimensional means of K centers �x

p
 in voxel 

space, 3-dimensional standard deviations �x
p
 associated with 

these means. Similarly it outputs 1-dimensional means of K 

(1)zP
p
∼ N(0, I), zPF

p
∼ N(0, I), zS

s
∼ N(0, I).

(2)zC
c
← �C(z

P
p
, zS

s
),
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log-widths ��
p
 , and associated 1-dimensional standard devia-

tions ��
p
 (Figs. 2c, A1(C)). After generating these means and 

standard deviations, we assume that the K centers for the 
participant p i.e. xF

p
 and K log-widths �F

p
 can be sampled 

from Gaussian distributions with means and variances gen-
erated above (Fig. A1(D)).

Once the centers and log-widths are sampled using 
Eq. (3) we can use these to define K spatial factors using a 
radial basis function. That is, each factor fk is defined as a 
Gaussian “blob” centered at xF

p,k
 with a log-width �F

p,k
 . Each 

factor fk defines a single V-dimensional row of the matrix Fp 
for participant p (Figs. 2d, A1(E)).

Note that the neural network �F is the same for all partici-
pants, implying that this mapping is shared across partici-
pants and for all segments. The embedding zPF

p
 once sampled 

for a particular participant also stays the same across all 
segments. These two assumptions combined indicate that 
there’s something common for a participant across the whole 
experiment, and that the embeddings for the participants can 
be compared with each other.

Similarly we assume after generating the activation 
embeddings zC

c
 using Eq. (1) for a trial n these can be passed 

through another neural network �W to generate 1-dimen-
sional means of K factor weights �W

n
 and associated stand-

ard deviations �W
n

 . Then the weight for each factor can be 
sampled from a Gaussian distribution with the generated 
mean and standard deviation for each time point t (Figs. 2e, 
A1(F), (G)).

Once we have Wn,t and Fp for a segment our last assump-
tion is that noisily sampling the matrix product of these two 
matrices generates the fMRI image at time t for segment n 
(Figs. 2f, A1(H)).

This generative model can be summarized in the form 
a joint probability density over all the random variables in 
the model p�(Y ,W, xF, �F, zP, zPF, zS) which can be defined 
as follows:

(3)xF
p
∼ N(�x

p
, �x

p
),�x

p
, �x

p
← �F(z

P
p
),

(4)�F
p
∼ N(��

p
, ��

p
),��

p
, ��

p
← �F(z

P
p
).

(5)Wn,t ∼ N
(

�W
n
, �W

n

)

, �W
n
, �W

n
← �W

(

zC
c

)

.

(6)Yn,t ∼ N
(

Wn,tFp, �
Y
)

, Fp ← RBF(xF
p
, �F

p
).

(7)

p�(Y ,W, xF, �F, zP, zPF, zS) = p(Y ∣ W, xF, �F)p�W (W ∣ zC

= �C(z
P, zS))p�F (x

F, �F ∣ zPF)p(zS)

p(zP)p(zPF)

Inference

The generative model we have discussed so far and summa-
rized in Eq. 7 describes the generation of the data. While the 
actual quantity of interest for us is what we can learn when 
we already have the data. Given data Y from an fMRI experi-
ment, all the other random variables in Eq. (7) are unobserved 
(latent) and we’d like to learn the distribution of these latent 
variables given the data i.e. we are interested in the poste-
rior distribution p�(W, xF, �F, zP, zPF, zS ∣ Y) . Unfortunately, 
learning this distribution directly is intractable since it involves 
multiple integrations over all possible values of all the latent 
variables (See: Supplementary Information Bayes Rule). For-
tunately, there is a group of techniques in Machine Learning 
literature called Variational Inference that aim to approximate 
the posterior distribution with a simpler distribution defined 
over all the latent variables. This approximate posterior distri-
bution is often called variational distribution and denoted as 
q� with parameters �.

This variational distribution is often assumed to be factoriz-
able, in our case this means assuming a variational distribution 
that is the product of individual distributions defined over all 
the latent variables as follows:

where q�Wn,t (Wn,t) approximates the posterior distribution of 
factor weights for trial n and time point t. q�S

s
(zS

s
) approxi-

mates the posterior distribution of trial embedding for trial 
s. q

�
XFp
(xF

p
) approximates the posterior distribution of factor 

centers for participant p, while q
�
�Fp
(�F

p
) does the same for 

factor log-widths. q�P
p
(zp) approximates the posterior distri-

bution for the participant embedding for participant p and 
q�PF

p
(zPF

p
) does the same for participant facto embedding .

Once we have defined the variational distribu-
tion in Eq.  (8) the next step is to learn the parameters 
� = {�W , �S, �X , ��, �P, �PF} of this distribution and the neural 
network parameters � = �W , �F, �C such that it comes as close 
as possible to the true posterior p�(W, xF, �F, zP, zPF, zS ∣ Y) . 
Once again using well known derivations (detailed in Sup-
plementary Materials) this can be done without knowing the 
actual posterior distribution by instead maximizing the follow-
ing objective with respect to � and �:

(8)

q�(W, �F, xF, zP, zPF,zS) =

N
∏

n=1

T
∏

t=1

q�Wn,t
(Wn,t)

S
∏

s=1

q�S
s
(zS

s
)

P
∏

p=1

q
�
XFp
(xF

p
) q

�
�Fp
(�F

p
) q�P

p
(zp)q�PF

p
(zPF

p
).

(9)L(�, �) = �q

[

log
p�(Y ,W, xF, �F, zP, zPF, zS)

q�(W, xF, �F, zP, zPF, zS)

]
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The right hand side of this equation can be split into two 
parts:

Since p(Y|W, xF, �F) is a Gaussian distribution, the first 
time on the right is equivalent to the negative of the expected 
reconstruction error between the observed data and the data 
reconstructed from the samples from the variational distribu-
tion q� . The second term is a regularizer term that measures 
how similar the variational distribution is to the prior distri-
bution. Maximizing this objective with respect to �, � then 
equates to minimizing the reconstruction error as well as 
making sure that the priors and the variational distribution 
become similar.

This objective can be optimized using black-box methods 
provided by available libraries such as Probabilistic Torch 
(Siddharth et al., 2017). Broadly this optimization proceeds 
in two steps, the first is to initialize the parameters of the var-
iational distribution q� and second is to sample from this q, 
calculate the objective (10) and then to iteratively update all 
parameters of q in such a way that the objective is expected 
to increase until it stops increasing. We now discuss these 
two steps in the following paragraphs:

Initializing Variational Distribution

All distributions are assumed to be gaussian, owing to the 
universality of gaussian distributions and the ease of sam-
pling and optimizing objective (10) when using gaussian 
distributions. This is also a fairly established standard prac-
tice in variational inference. Below we provide a list of how 
the means and variances of these gaussian distributions are 
initialized.

• The variational distributions over the participant embed-
dings q�P

p
(zp) q�PF

p
(zp) for a participant p and trial embed-

dings q�S
s
(zs) for a trial c are both initialized with a zero 

mean and unit variance. i.e. a standard normal. When we 
learn these distributions, we will not only learn a point 
estimate for these embeddings, but also an estimate of 
our uncertainty about the location of each embedding. 
The same initialization is used for all participants, and all 
combinations.

• The means of variational distribution over the centers 
of the factors q

�
XFp
(xF

p
) and the means of variational dis-

tribution over factor log-widths q
�
�Fp
(�F

p
) can be initial-

ized in two ways suggested by Manning et al. (2014b): 
1. The means of centers can be initialized by performing 
k-Means clustering on the voxel locations using number 

(10)
L(�, �) = �q[log p(Y|W, xF, �F)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
negative of reconstruction error

−KL(q�(W, xF, �F, zP, zPF, zS) ∣∣ p�(W, xF, �F, zP, zPF, zS))

of factors K as number of clusters. The centers of the 
resulting clusters can then be used to initialize the means 

of factor centers. Each voxel is then labeled by the center 
closest to it and the variance of each cluster is used to 
initialize the mean of the width of each factor. 2. By hot-
spot initialization, While this process is described in more 
detail in the Supplementary Material it involves placing 
the initial factor centers one by one at the peak of average 
fMRI image calculated from the whole dataset, solving 
a least square problem to approximate the width of that 
factor, subtracting this factor from the mean image and 
choosing the next peak as the next center until all factors 
have been initialized. The hotspot initialization works 
well for smaller number of factors for example when deal-
ing with simulated data. A standard deviation of 1 is used 
to initialize the standard deviation of the variational distri-
butions for factor centers. For factor widths, the standard 
deviation is initialized as the standard deviation of widths 
for all factors.

• The means of variational distribution for weights 
q�Wn,t

(Wn,t) are initialized by constructing the initial spatial 
factors using the centers and log-widths from the previ-
ous step (using a radial basis function), and then solving 
an ordinary least squares (OLS) problem. The OLS prob-
lem uses the average brain image computed across the 
whole dataset, and tries to learn the weights of the initial 
factors such that the weights and the factors combine can 
approximate this average image. The resulting weights 
are then used as mean of variational distributions for 
weights for all segments n and time points t. Once again 
the standard deviation is initialized to 1.

Training

Once the variational distribution q� has been initialized, 
we can sample from this distribution and approximate the 
objective (10). At first iteration we sample the variables 
W, xF, �F, zP, zPF, zS from the initialized distributions for 
factor weights, factor centers, factor log-widths, partici-
pant embeddings and combination embeddings. This and 
the initial (random) weights of the neural networks are used 
to calculate the objective (10). This is equivalent to calcu-
lating the reconstruction error between the input data and 
the data reconstructed from the the sampled factor weights 
and spatial factors, and a regularizer term that calculates 
the KL divergence between model prior distribution and the 
variational distribution. The parameters of the variational 
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distribution � and the parameters of the neural networks 
� are then updated using stochastic gradient descent in a 
direction that improves the expected reconstruction error in 
the next iteration and also makes the model priors and the 
variational distribution more similar. This process ensures 
that variational distribution is updated in such a way that 
samples from it can reconstruct the data well, at the same 
time the neural network parameters are updated in such a 
way that samples generated from the model will be more 
and more similar to the samples from the variational distri-
bution. This process is repeated until convergence which is 
achieved when the value of the objective function in Eq. (10) 
stops changing for successive iterations. Once convergence 
is achieved we can analyze the posterior distributions of 
the participant embeddings and the combination embed-
dings by visualizing their means and standard deviation. A 
detailed example of this is shown in Supplementary Mate-
rials Fig. A2. We can also visualize the reconstructions by 
combining the posterior estimates of weights and factors. 
Similarly, at this point the neural network �C is trained to 
generate combinations which in turn can generate average 
reconstructions for a segment through the trained neural net-
works �W , �F and can also be used to generate data similar to 
the training data by providing embeddings as input.

Results

Univariate Results

The GLM resembles a supervised analytical approach inso-
far as experimenters must specify beforehand the regres-
sors in the model. In so doing, experimenters must make 
assumptions about how trials are nested into conditions. We 
evaluate how a standard univariate analysis using a GLM 
performs on the three synthetic datasets. In our example 
experiment, Trials A, B, and C, would all be modeled with 
a single regressor since they belong to the same experimen-
tal condition. A non-degenerate functional architecture was 
quantified as having the same data generating mechanisms 
across all trials in the experimental condition in the first 
synthetic dataset. The GLM has a single regressor for Tri-
als A, B, and C, sharing the same assumptions as the data 
generating process. Applying the GLM to this synthetic data 
shows that it perfectly suits the non-degenerate functional 
neuroanatomy (Fig. 1D top).

In the situation of degeneracy by condition, there are 
multiple underlying data generating processes across dif-
ferent trials in the experimental condition. a standard uni-
variate analysis does not perform well. The univariate acti-
vation result (Fig. 1D middle) appears as an amalgam of 
the three data generating distributions. Without knowledge 

of the actual data generating process, experimenters would 
again model the data using a single regressor for Trials A, 
B, and C – even though the underlying distributions are 
heterogeneous. In other words, the standard GLM requires 
the experimenter to make assumptions about how trials are 
organized into experimental conditions, with one of those 
assumptions being the absence of degeneracy. As a result, 
the GLM precludes the ability to test whether there is, or is 
not, a degenerate relationship. Even when the ground truth 
(i.e. the underlying generative process) exhibits degeneracy 
by condition, the standard univariate analysis may still 
produce seemingly “reliable” findings (i.e. significant and 
reproducible findings with enough participants). However, 
the resulting pattern of activation in Fig. 1D (middle) would 
not accurately capture the actual data generating process. 
Consequently, it could lead to a mistaken, but statistically 
“reliable”, conclusion about the relationship between neural 
activity and the experimental condition.

Lastly, in the situation of degeneracy by Participant and 
Condition, the data generating process varies across partici-
pants and experimental condition. The standard univariate 
approach are insensitive to variations across trials, com-
pounded by degeneracy across individuals (Fig. 1D bottom). 
It treats the systematic variation in activation patterns across 
trials and participants as error. Though it may produce reli-
able findings with sufficient power, it would result in a dif-
fuse pattern of activation that is not representative of the data 
generating process.

Critically, the later two synthetic datasets highlight 
important assumption of standard univariate analyses. The 
analytical procedure of a GLM involves stages such that the 
outputs of the trial- and subject-level analyses are inputs to 
the group-level analyses. This sequence of analyses assumes 
a nested data structure in which trials of an experimental 
condition within one participant’s data and each partici-
pant from their group are from one normal distribution. 
This assumption is valid under a non-degeneracy functional 
neuroanatomy (Fig. 1A), but could preclude the ability to 
examine degeneracy in the functional neuroanatomy (eg., 
Fig. 1B, C). Instead of applying the same first level model 
to all participants, a more appropriate model would fit the 
run and participant level simultaneously without assuming 
this nested structure.

The study demonstrates the consequences of applying 
widely used univariate analyses (Monti, 2011) to synthetic 
data that exhibit degeneracy. The results illustrate the pitfalls 
of using traditional univariate analyses in terms of capturing 
degeneracy. In light of the shortcomings of the standard uni-
variate analysis, there is a need for models that can uncover 
degeneracy when it is present in the data. In the next session, 
we applied NTFA to the synthetic dataset to test the utility of 
NTFA (Sennesh et al., 2019) in addressing this complexity.
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NTFA Results

For the simulated data from the three models discussed 
above, we can observe the inferred activation embeddings 
for each of the three scenarios and see if they arrange them-
selves in the expected group structure for each scenario:

• Non-degenerate: For the non-degenerate scenario 
discussed in "Non-Degeneracy", we would expect the 
participant-trial activation embeddings to broadly fall in 
just two clusters: one for baseline and the other for the 
experimental condition. Figure 4A shows that the embed-
dings learned from NTFA indeed fall into two clusters.

• Degeneracy by condition: In the scenario discussed in 
"Degeneracy by Condition", the activation embeddings 
are expected to fall in four distinct clusters: one for the 
baseline, and one each for the three underlying degener-
acy modes. These will correspond to the differences in the 
three trials. Figure 4B shows that is indeed the case for the 
learned embeddings on this data.

• Degeneracy by condition and participant: In the scenario 
discussed in "Degeneracy by Participant and Condition", the 
activation embeddings can be expected not only to group by 
trial, but also to split up by participants, with trials A and 
C revealing the degeneracy by condition and participants. 
Figure 4C shows precisely this expected behaviour.

We also trained NTFA on simulated data using 20 partic-
ipants These results along with results for simulated data 
at various additive noise levels is provided in Appendix B. 
The inferred embeddings in these cases also have the same 
expected structure as presented here for a range of SNR. 
Embeddings only lose structure when SNR is lowered to 
0.16, which is a very aggressive level of added noise, for 
context Welvaert & Rosseel (2013) found typical SNR to be 
between 0.35and203 for fMRI.

Discussion

Recent work in computational biology and functional 
neuroanatomy suggests that the brain may have multiple 
solutions, or degenerate neural pathways, when trying 
to solve a given task. However, current analytical meth-
ods are not optimized to capture such degeneracy. Here, 
we advanced a novel computational approach, NTFA, to 
address this issue. NTFA is a generative model that learns 
a low-dimensional space of embeddings from the temporal 
and spatial variation of fMRI data. The embeddings yield 
a visualizable representation of the latent variations in 
functional activity across trials and participants. The dis-
tribution of these embeddings can provide useful informa-
tion for researchers to assess whether the data generating 

Fig. 4  Inferred activation embeddings: The activation embed-
dings learned from NTFA for the three scenarios depicted in Fig. 1 
are shown here. NTFA was trained in an unsupervised manner and 
labels and colors are overlaid only for visualization and interpretation 
purposes. Each point represents a unique participant-trial combina-
tion. The colors correspond to trials as shown in the legend. Circles 
represent participant 1 and triangles represent participant 2. (a) Non-
degenerate: The embeddings suggest there is no degeneracy, with 
combinations for all three experimental condition trials grouping 
together and away from the baseline combinations. (b) Degeneracy 

by condition: The embeddings suggest degeneracy in brain response 
based on trials, as the combination embeddings for each trial form a 
cluster of its own away from other clusters and away from baseline. 
There are no participant driven differences suggesting no degeneracy 
by participants. (c) Degeneracy by condition and participants: The 
embeddings here suggest degeneracy by both trials as well as partici-
pants, with the combinations forming groups of their own based on 
not just trials, but also splitting up by participants in case of Trial A 
and Trial C
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mechanism is degenerate or non-degenerate with respect 
to trial conditions and participants.

NTFA is designed to capture the underlying variations 
that depends on the combination of the tasks and partici-
pants. The output of NTFA provides a visual representa-
tion of these variations. The core features of NTFA are 
designed to facilitate comparison across task and partici-
pants. Related to NTFA, there are other models that also 
use latent factorization methods to analyze fMRI data, 
however, they are not currently equipped for modeling 
degeneracy with respect to task conditions and partici-
pants. For example, hyper alignment (Haxby et al., 2011) 
and dictionary learning methods (Mensch et al., 2017; 
Iqbal et al., 2018) focus on characterizing subject-specific 
spatial variations (e.g., the precise location of the fusiform 
face area differ across individuals (Saxe & Kanwisher, 
2003; Saxe et al., 2006)). Standard factor analysis, such 
as principal component analysis (Pearson, 1901) focuses 
on identifying components that best explain the overall 
covariance in the structure of the data, as Sennesh et al. 
(2019) demonstrate this linear projection of the data fails 
to capture complex and potentially nonlinear underlying 
structures in the data and thus would not be suitable to 
investigate degeneracy. Like other methods in the fam-
ily of topographic factor analysis (Manning et al., 2014a; 
Manning et al., 2014b; Gershman et al., 2011), NTFA is 
useful in revealing the hidden structures in the fMRI data. 
However, the methods in this family differ in their assump-
tion about the hidden structures, such as whether neural 
activity in the same task condition share the same struc-
ture. These methods may be able to identify degeneracy 
in simple scenarios where different groups of participants 
show clearly different patterns for the same task. For more 
complicated scenarios of degeneracy e.g. where the degen-
eracy arises from how different participants interact with 
different tasks in potentially non-linear ways, models that 
don’t explicitly account for such variance will likely fail 
to capture this degeneracy. NTFA learns embeddings of 
the unique combination of trials and participants such that 
it does not impose a shared structure across participants 
or task conditions. Of note, NTFA is flexible in its imple-
mentation. If researchers preferred to label their trials as 
belonging to specific task conditions, or participants as 
belonging to specific groups, NTFA can accommodate 
these assumptions and develop a generative model with 
these assumptions built in (e.g. for more direct comparison 
with other approaches). NTFA’s other features may also 
be useful to the community. For example, NTFA explicitly 
models variation in the locations, sizes, and magnitudes 
of activation, whereas the vast majority of studies using 
univariate analysis of fMRI data focus only on activation 
magnitudes.

NTFA is, of course, not without some limitations, one 
of which is determining whether learned embeddings are 
modeling functionally meaningful signal or simply noise. 
It is commonly assumed that residual noise is randomly 
distributed error once all sources of “systematic noise” are 
accounted for, for example by using aggressive denoising 
procedures to remove spurious signals related to motion, 
signal drift, physiological noise artifacts, scanner artifacts, 
etc. We embedded this assumption in our simulated data 
and note that interpretation of our algorithm’s performance 
on real datasets will similarly benefit from denoising pro-
cedures. To examine how noise may influence model per-
formance, we also introduced different levels of noise into 
our simulations and showed how NTFA’s affected by SNR 
("Conclusion"). Although much variation in fMRI data 
across time/trials (and across participants) is noise and 
should be discarded, that does not mean that all (or even 
most) variation unaccounted for by standard modeling 
approaches is necessarily noise. Here, we suggest that there 
is good reason to think that such variation might be struc-
tured and functionally meaningful (as described next), that 
historical approaches are insensitive to such variation unless 
it aligns with a narrow range of a priori hypotheses, and 
that NTFA is a technique that is designed to sift potentially 
interpretable, structured variation from random noise.

While our primary aim is constrained to establishing 
and validating our model using simulations, highlighting 
some relevant research findings may point to useful future 
directions in which to develop applications for NTFA. In 
general, it is well-known that psychological tasks are not 
“process pure” (Jacoby, 1991; Surprenant & Neath, 2013). 
A given task may involve a variety of different cognitive 
processes, neural pathways and/or strategies, which may 
shift and change over time and trials. Indeed, carefully 
constructed experiments have found results consistent with 
degeneracy even when using more traditional analytical 
tools. For example, dissociable neurocognitive memory 
systems can be used to complete the same overt memory 
task (Morgan et al., 2020; Zeithamova & Maddox, 2006; 
Knowlton & Squire, 1993; Casale & Ashby, 2008). When 
one system is compromised due to brain damage, other 
systems may be utilized to nonetheless complete the task 
at hand (Poldrack & Packard, 2003; White & McDonald, 
2002; Price & Friston, 2002). An increasing number of 
findings suggest that the brain is likely to offer multiple 
solutions in other domains too, such as in social cogni-
tion (Lieberman et al., 2004; Amodio, 2019) and emotion 
(Satpute & Lindquist, 2019; Azari et al., 2020). NTFA may 
also be of particular relevance for translational research. 
Emerging work suggests that distinct neuropathologies 
may underlie a common clinical phenotype (Fried, 2017). 
For example, research on depression suggests that there 
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may be many different neuropathologies that give rise to 
depressive symptoms (Beijers et al., 2019; Müller et al., 
2017; Price et al., 2017a, b). Indeed, the call for “precision 
medicine” reflects a general failure of more traditional, 
non-degenerate theoretical models and rigid analytical 
approaches to account for heterogeneity in the underlying 
neural causes of mental health. A systematic evaluation of 
this variance is a critical step towards enabling precision 
medicine approaches in fMRI, in which neuroimaging stud-
ies have the potential to significantly advance diagnosis and 
treatment (Fonseka et al., 2018).

Despite these notable empirical examples, more often 
than not researchers assume that a given task involves a 
core set of processes that are shared across trials and par-
ticipants. This may be because more traditional theoretical 
models in cognitive neuroscience rarely postulate degen-
eracy in functional neuroanatomy. However, more recent, 
predictive processing models of the brain suggest that 
degeneracy is likely to be common in mind-brain mapping 
(Sajid et al., 2020; Hutchinson & Barrett, 2019; Lee et al., 
2021). Another reason that researchers tend to assume a 
non-degenerate functional neuroanatomy is because it has 
been analytically challenging to not make this assump-
tion. By addressing this analytical gap, NTFA offers new 
opportunities to model structured variance in fMRI data 
with a degree of independence from our own preconceived 
ideas of how this variance ought to be structured, and the 
opportunity to discover and model degeneracy in func-
tional neuroanatomy.

Conclusion

Degeneracy is a ubiquitous phenomenon in complex biology 
systems but has yet to be systematically modeled in human 
neuroimaging studies. To address the analytical gap in mod-
eling degeneracy in functional neuraoanatomy, we proposed 
and validated the utility of NTFA in this regard. The cur-
rent study compared the performance of NTFA and standard 
analytical approach on synthetically generated datasets that 
depicted neural model of non-degeneracy, degeneracy by 
condition, and degeneracy by condition and by participant. 
The standard univariate analysis and NTFA both detected 
the activation pattern in the non-degenerate model that one 
set of brain region consistently showed higher activation 
for the task than the baseline in all subjects. When there 
was more heterogeneity of the neural activity across condi-
tion and subjects, the univariate analysis failed to capture 
the effect. The NTFA was able to recover participants and 
stimuli embeddings that distinguish different participants 
and different stimuli types. It provides a first step towards 
formally characterizing degeneracy.
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