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Abstract: Investors wish to obtain the best trade-off between the return and risk. In portfolio opti-
mization, the mean-absolute deviation model has been used to achieve the target rate of return and
minimize the risk. However, the maximization of entropy is not considered in the mean-absolute
deviation model according to past studies. In fact, higher entropy values give higher portfolio diver-
sifications, which can reduce portfolio risk. Therefore, this paper aims to propose a multi-objective
optimization model, namely a mean-absolute deviation-entropy model for portfolio optimization by
incorporating the maximization of entropy. In addition, the proposed model incorporates the optimal
value of each objective function using a goal-programming approach. The objective functions of the
proposed model are to maximize the mean return, minimize the absolute deviation and maximize
the entropy of the portfolio. The proposed model is illustrated using returns of stocks of the Dow
Jones Industrial Average that are listed in the New York Stock Exchange. This study will be of
significant impact to investors because the results show that the proposed model outperforms the
mean-absolute deviation model and the naive diversification strategy by giving higher a performance
ratio. Furthermore, the proposed model generates higher portfolio mean returns than the MAD
model and the naive diversification strategy. Investors will be able to generate a well-diversified
portfolio in order to minimize unsystematic risk with the proposed model.

Keywords: entropy; goal programming; optimal portfolio; risk; return

1. Introduction

Complex economic relations and models due to unprecedented events in the ever-
evolving financial markets make estimating stock market returns and volatility become
complex nonlinear relations, in need of advancements in mathematical models to adapt
to changes in the financial markets and mental resources of the investors. The COVID-19
pandemic has led investors to demand portfolios that are resilient towards the disease.

Investors aim to minimize the risk as well as maximize the return in their portfolio
investments. In past studies, portfolio management has been analyzed and solved with
optimization models [1–3]. Markowitz [4] was the pioneer in portfolio optimization by
introducing the mean-variance (MV) model to minimize the risk and achieve the investor’s
mean return. In MV model, the risk and mean return of investors are measured with
portfolio variance and portfolio mean return, respectively. The MV model has been studied
in portfolio management according to past research [5–9].

Konno and Yamazaki [10] have introduced the mean-absolute deviation (MAD) model
by using absolute deviation in replacement of variance as the portfolio risk measure,
because the MV model assumes that the assets’ returns are normally distributed. Konno
and Yamazaki [10] have studied the MAD model for the Tokyo stock market. The MAD
model has been studied in portfolio optimization [11–14]. Zenios and Kang [11] have used
mortgage-backed securities for portfolio optimization with the MAD model. Zenios [12]
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has investigated the MAD model for fixed-income securities. Konno [13] has studied the
MAD model for small-scale funds. The MAD model has been studied for stock–bond
portfolio optimization [14]. Erdas [15] has investigated the MAD model for the Borsa
Istanbul 30 Index. Ghahtarani and Najafi [16] have studied the MAD model in portfolio
optimization for investments. Kasenbacher et al. [17] have generated the optimal portfolio
of stocks with the MAD model. However, the maximization of entropy is not considered in
the MAD model of Konno and Yamazaki [10].

Entropy is an important element in portfolio selection [18]. Shannon [19] has intro-
duced entropy as the uncertainty measure. An entropy-based portfolio is constructed
based on Shannon entropy. Entropy is a wide measure of diversity [20,21]. According to
the principle of maximum entropy, a higher value of entropy for the portfolio will give a
higher portfolio diversification, which can reduce the unsystematic risk of the portfolio.
Bera and Park [20] constructed a well-diversified portfolio based on the entropy measure
for portfolio optimization. Jana et al. [21] incorporated entropy as an objective function
in their optimization model, to increase the diversification degree of an optimal portfolio.
According to Murialdo et al. [22], the entropy measure generates a high level of diversity
and stability in portfolio selection.

Zhou et al. [18] conducted a review on the principles of entropy and their applications
in finance, such as portfolio selection. Lu et al. [23] presented an optimization model
based on the principle of entropy in portfolio investment. Li and Zhang [24] studied a
mean-variance-entropy model by considering the level of diversification in the optimal
portfolio. The mean return is measured by expected value, whereas the risk is measured by
variance. Entropy is used to measure the level of diversification in the optimal portfolio.
The results showed that the level of diversification had an effect on the optimal portfolio
investment. The principle of maximum Shannon entropy has been incorporated into the
portfolio-optimization model to improve the level of optimal diversification. Therefore,
Shannon entropy is used to measure the level of diversification in portfolio selection. Olbryś
and Ostrowski [25] introduced a market-depth indicator to investigate the market depth
based on Shannon entropy. Other than achieving optimal diversification using a portfolio-
optimization model, naive diversification is another investment strategy which aims to
reduce the risk measure by forming an equally weighted portfolio, or naive 1/N portfolio,
without using a mathematical model [26].

The maximization of entropy is not considered in the MAD model according to past
studies. Therefore, this paper aims to propose a multi-objective optimization model,
namely a mean-absolute deviation-entropy model, by incorporating the maximization of
entropy to generate a well-diversified portfolio, to minimize unsystematic risk in portfolio
optimization. Maximization of entropy increases the heterogeneity of the portfolio and
makes asset allocation more practicable than models without entropy. The proposed model
is a multi-objective model with three objective functions that maximizes the mean return,
minimizes the absolute deviation and maximizes the entropy of the portfolio, which has
not been studied by past researchers. Furthermore, the proposed multi-objective model
incorporates the optimal values of each objective function and is solved using a goal-
programming approach. Section 2 describes the research development, methodology of
the MAD model and the proposed model. Section 3 presents the empirical results of this
research and discussion. The conclusion is presented in the last section of the paper.

2. Methodology
2.1. Research Development

In this research, we propose a multi-objective model for portfolio optimization, namely
mean-absolute deviation-entropy model. Figure 1 presents a flowchart of the research
framework in this paper.
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Figure 1. Flowchart of the research framework.

Based on Figure 1, the details of the research framework are presented as follows:
Step 1: Construction and ranking of the composition of the optimal portfolio with the

MAD model. Firstly, the optimal portfolio is constructed with the MAD model. Next, the
stocks are ranked based on weight, in descending order.

Step 2: Development of the proposed multi-objective model, namely a mean-absolute
deviation-entropy model, by incorporating the maximization of entropy as an objective
function. In addition, the proposed model incorporates the optimal value of each objective
function using a goal-programming approach. The objective functions of the proposed
model are to maximize the mean return, minimize the absolute deviation and maximize
the entropy of the portfolio.

Step 3: Construction and ranking of the composition of the optimal portfolio with the
proposed model. Firstly, the optimal portfolio is constructed with the proposed model.
Next, the stocks are ranked based on weight, in descending order.
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Step 4: Evaluation of the performance of the MAD model. The optimal portfolio
performance of the MAD model is measured using performance ratio.

Step 5: Evaluation of the performance of the proposed model. The optimal portfolio
performance of the proposed model is measured using performance ratio.

Step 6: Comparison of the models’ performances. The optimal portfolio performance
among the MAD model, proposed model and benchmark naive diversification strategy,
are compared using performance ratio.

Step 7: Testing the stability of the proposed model. Simulation analyses are performed
on the portfolio return of the MAD model, proposed model and the naive diversification
strategy using bootstrap simulation. Based on the simulation analyses, the optimal portfolio
performance among the MAD model, proposed model and the naive diversification strategy
are compared using performance ratio.

The MAD model, proposed model and the naive diversification strategy are tested
with a numerical example that consists of weekly returns of stocks of the Dow Jones
Industrial Average (DJIA), which are listed in the New York Stock Exchange (NYSE), by
comparing the performance of the optimal portfolio for the two periods, which are January
2016–December 2019 (before the COVID-19 pandemic period) and January 2020–March
2021 (within the COVID-19 pandemic period). The returns of stocks of the DJIA have been
used as data in studies on portfolio optimization by past researchers [27–29].

The methodologies of the MAD model and the proposed model are presented in
Sections 2.2 and 2.3, respectively. Table 1 presents the symbols of the MAD model and the
proposed model used in this study.

Table 1. Symbols of the MAD model and the proposed model.

Symbol Description

Rj return of asset j
xj weight of asset j
ρ minimum return set by the investor

R(x) portfolio mean return
w(x) portfolio absolute deviation
H(x) portfolio entropy

R∗ optimal value for portfolio mean return
W∗ optimal value for portfolio absolute deviation
d1 deviation of portfolio mean return from the optimal value
d2 deviation of portfolio absolute deviation from the optimal value
d3 deviation of portfolio entropy from the optimal value

2.2. Mean-Absolute Deviation Model

Konno and Yamazaki [10] have proposed the absolute-deviation risk function, as
shown in Equation (1), to replace the standard-deviation risk function, σ(x), of Markowitz [4].

w(x) = E[

∣∣∣∣∣ n

∑
j=1

Rjxj − E[
n

∑
j=1

Rjxj]

∣∣∣∣∣] (1)

Minimizing w(x) is equivalent to minimizing σ(x) if (R1 . . . , Rn) are multivariate and
normally distributed, leading to the following MAD model:

Minimize w(x), (2)

subject to
n

∑
j=1

E[Rj]xj ≥ ρ, (3)

n

∑
j=1

xj = 1, (4)
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xj ≥ 0, j = 1, . . . , n. (5)

In the MAD model, the objective function is to minimize the absolute deviation of the
portfolio.w(x) can be approximated as follows:

w(x)=
1
T

T

∑
t=1

∣∣∣∣∣ n

∑
j=1

(rjt − rj)xj

∣∣∣∣∣ (6)

Denoting
ajt = rjt − rj (7)

Assume rjt to be the realization of random variable Rj during period t (t = 1,2,...,T).
The model (2)–(5) converts to the following model:

Minimize
T

∑
t=1

∣∣∣∣∣ n

∑
j=1

ajtxj

∣∣∣∣∣/T (8)

subject to
n

∑
j=1

rjxj ≥ ρ, (9)

Equations (4) and (5).

The model above [(8), (9), (4), (5)] is equivalent to the linear programming model as
shown below:

Minimize
T

∑
t=1

yt/T (10)

subject to yt +
n

∑
j=1

ajtxj ≥ 0, t = 1, . . . , T, (11)

yt −
n

∑
j=1

ajtxj ≥ 0, t = 1, . . . , T, (12)

Equations (4), (5) and (9).

According to Konno and Yamazaki [10], short sale is not allowed for the MAD model
as shown in Equation (5).

2.3. Proposed Mean-Absolute Deviation-Entropy Model

Shannon [19] has introduced entropy, H(x), as the uncertainty measure, as shown in
Equation (13).

H(x) = −
n

∑
j=1

xj ln xj, (13)

The main advantage of entropy is to generate a well-diversified portfolio. As shown in
Equation (13), the entropy function is a concave function of the portfolio weights x1, . . . xn,
which has its maximum value lnn, when xj =

1
n for j = 1, . . . , n. Therefore, due to this

property, entropy is a good indicator of diversity in a probability distribution for generation
of a well-diversified portfolio.

Another advantage of the principle of maximum entropy is the prevention of extreme
weight on asset allocation due to a very small number of assets in portfolio selection. For
the extreme case, according to Equation (13), the entropy function achieves the minimum
value 0, when xj = 1 and xi = 0, i 6= j for i = 1, . . . , n. This implies that the entropy
achieves the minimum value 0 when only one asset is selected in the portfolio. Therefore,
a higher value of the entropy measure for portfolio weights will give higher portfolio
diversification. Diversification can reduce unsystematic risk in the portfolio.
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Additionally, the incorporation of entropy as an objective function in the optimization
model can increase the diversification degree of the optimal portfolio. A multi-objective
optimization model, namely mean-absolute deviation-entropy model is proposed in this
section by incorporating the maximization of entropy. This is because the incorporation of
entropy can diversify the allocation of various assets in portfolio selection. The proposed
multi-objective optimization model consists of three objective functions that focus on the
mean return, absolute deviation and entropy of the portfolio. The three objective functions
of the proposed model are to maximize the mean return, minimize the absolute deviation
and maximize the entropy of the portfolio. In addition, the proposed multi-objective
optimization model incorporates the optimal value of each objective function and is solved
using a goal-programming approach. This is because the goal-programming approach can
solve multi-objective problems [30–32]. The proposed model is formulated as follows:

Maximize R(x) =
n

∑
j=1

E[Rj]xj, (14)

Minimize w(x), (15)

Maximize H(x), (16)

subject to
n

∑
j=1

xj = 1, (17)

xj ≥ 0, j = 1, . . . , n. (18)

The optimal value for portfolio mean return, R*, can be obtained by solving the
following model.

Maximize R(x), (19)

subject to
Equations (17) and (18).

The optimal value for portfolio absolute deviation, W*, can be determined by solving
the following model.

Minimizew(x), (20)

subject to
Equations (17) and (18).

Then, the optimal values R∗ and W∗ are substituted into the following model based
on the goal-programming approach:

Minimize Z =

∣∣∣∣ d1

R∗

∣∣∣∣+ ∣∣∣∣ d2

W∗

∣∣∣∣+ ∣∣∣∣ d3

ln n

∣∣∣∣, (21)

subject to

R(x)+d1= R∗, (22)

w(x)−d2= W∗, (23)

H(x)+d3 = ln n, (24)

Equations (17) and (18).

The target value for portfolio entropy is set as lnn, because it is the maximum value of
portfolio entropy. The objective function of the proposed model is to minimize deviations
from the optimal values R∗, W∗ and target value, lnn using a goal-programming approach.

Short sale is not allowed for the proposed model as shown in Equation (18). This is
because the proposed model is developed based on the MAD model [10] and the entropy
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that has been introduced by Shannon [19]. Both the MAD model and entropy function
require positive weights of assets as shown in Equations (5) and (13), respectively. These
are the limitations of the proposed model.

2.4. Model Performance

The performance of the model is measured with performance ratio. The performance
ratio is measured based on the mean-absolute deviation ratio [10] as shown in Equation
(25). Higher performance ratio indicates higher performance of the model.

Performance ratio =
Portfolio mean return

Portfolio absolute deviation
(25)

The computational works of the MAD model and the proposed model are performed
using LINGO software. The performance of the optimal portfolio for the MAD model, the
proposed model and benchmark naive diversification strategy (1/N portfolio) are com-
pared for the two periods which are January 2016–December 2019 (before the COVID-19
pandemic period) and January 2020–March 2021 (within the COVID-19 pandemic period).
The January 2016–December 2019 period (before the COVID-19 pandemic period) is de-
noted by D1 period, while the January 2020–March 2021 period (within the COVID-19
pandemic period) is denoted by D2 period.

2.5. Bootstrap Simulation

In this study, we test the stability of the proposed model using bootstrap simulation [33,34].
Bootstrap simulation is an important financial tool in portfolio optimization [34,35]. We
simulate the portfolio return of the proposed model, the MAD model and the naive
diversification strategy (1/N portfolio). Bootstrapping is repeated 5000 times for the tested
D1 period and D2 period in this study with R software. Based on the simulation analyses,
the performance of the optimal portfolios among the MAD model, the proposed model
and the naive diversification strategy are compared using performance ratio.

3. Results and Discussion
3.1. Descriptive Statistics of the Returns of Stocks

Table 2 displays descriptive statistics of the returns of stocks of the DJIA that are used
as the data of this study.

As shown in Table 2, the descriptive statistics of returns of stocks which are mean,
standard deviation, skewness and kurtosis, are presented. AAPL gives the highest mean
(0.0063) while WBA gives the lowest mean (−0.0010). In addition, BA has the highest
standard deviation (0.0775), whereas PG has the lowest standard deviation (0.0249). Fur-
thermore, BA exhibits the highest skewness (2.1565), while KO exhibits the lowest skewness
(−1.5923). Moreover, BA shows the highest kurtosis (31.7449), whereas AMGN shows the
lowest kurtosis (0.5722). This implies that the mean, standard deviation, skewness and
kurtosis of the returns of stocks are different.
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Table 2. Descriptive statistics of returns of stocks.

Stocks Mean Standard
Deviation Skewness Kurtosis

MMM 0.0015 0.0322 −0.7917 2.1866
AXP 0.0037 0.0474 0.1840 10.4748

AMGN 0.0022 0.0349 −0.0553 0.5722
AAPL 0.0063 0.0393 −0.2796 2.8098

BA 0.0048 0.0775 2.1565 31.7449
CAT 0.0053 0.0418 −0.2800 1.4749
CVX 0.0014 0.0405 −1.1459 11.2163

CSCO 0.0030 0.0338 −0.2415 1.9929
KO 0.0012 0.0293 −1.5923 12.5853
GS 0.0031 0.0449 0.4427 5.7500
HD 0.0038 0.0381 −0.3786 14.4991

HON 0.0035 0.0353 −0.8228 11.6518
IBM 0.0006 0.0350 −0.2287 3.6550

INTC 0.0031 0.0411 −0.3729 2.6244
JNJ 0.0020 0.0257 −0.4792 2.5670
JPM 0.0039 0.0396 0.1057 6.3517

MCD 0.0028 0.0290 −0.7580 7.1262
MRK 0.0018 0.0284 −0.0812 0.9399
MSFT 0.0057 0.0301 −0.4318 2.5895
NKE 0.0034 0.0380 0.6587 5.3541
PG 0.0022 0.0249 −0.1018 3.4584

CRM 0.0046 0.0447 1.1580 8.4621
TRV 0.0017 0.0354 0.1498 6.1128
UNH 0.0050 0.0400 −0.5416 7.4587

VZ 0.0011 0.0254 0.1536 1.0952
V 0.0042 0.0310 −0.6160 5.6441

WBA −0.0010 0.0408 −0.0805 2.0924
WMT 0.0033 0.0280 0.1636 2.5789
DIS 0.0027 0.0354 0.0463 4.4153

3.2. Optimal Portfolio Composition

Table 3 presents the composition and ranking of stocks in the optimal portfolio that
was constructed with the MAD model for the D1 period and D2 period.

Table 3. Composition and ranking of stocks in the optimal portfolio (MAD model) for the D1 period
and D2 period.

Stocks Weights (%) [D1
Period]

Ranking
[D1 Period]

Weights (%) [D2
Period]

Ranking
[D2 Period]

AXP 0.7904 12 - -
AAPL - - 2.9198 6

BA 2.3983 10 - -
CAT - - 10.1117 4
CVX 11.2762 4 - -
KO 9.5720 5 - -
JNJ - - 1.4497 7
JPM 6.0708 7 - -

MCD 15.8696 3 7.6486 5
MRK 4.5878 8 - -
MSFT 3.7366 9 23.4267 2

PG 18.5039 1 - -
CRM 1.2556 11 - -
UNH 9.2145 6 - -

VZ 0.0759 13 31.1050 1
WMT 16.6482 2 23.3385 3
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As presented in Table 3, PG is ranked the highest because it gives the largest weight
to the portfolio composition using the MAD model for the D1 period. Conversely, VZ is
ranked the lowest as it gives the smallest weight to the portfolio composition using the
MAD model for the D1 period.

For the D2 period, VZ is ranked the highest since it gives the largest weight to the
portfolio composition using the MAD model. In contrast, JNJ is ranked the lowest as
it gives the smallest weight to the portfolio composition using the MAD model for the
D2 period.

Table 4 presents the composition and ranking of stocks in the optimal portfolio that
was constructed with the proposed mean-absolute deviation-entropy model for the D1
period and D2 period.

Table 4. Composition and ranking of stocks in the optimal portfolio (Proposed model) for the D1
period and D2 period.

Stocks Weights (%) [D1
Period]

Ranking
[D1 Period]

Weights (%) [D2
Period]

Ranking
[D2 Period]

MMM 0.0287 27 4.0459 9
AXP 0.9634 20 0.0246 26

AMGN 0.2127 25 1.4396 15
AAPL 7.7781 6 4.0520 8

BA 7.2796 7 0.77584 × 10 −7 29
CAT 1.3159 14 8.6001 4
CVX 1.0525 17 0.0140 28

CSCO 0.3132 22 1.8066 14
KO 1.3468 13 0.1865 22
GS 0.0261 28 0.8782 17
HD 1.2611 15 3.0300 10

HON 0.9761 19 0.0896 24
IBM 0.0316 26 0.4680 19

INTC 0.3000 23 0.4319 20
JNJ 1.0515 18 4.3079 7
JPM 3.1691 11 0.6681 18

MCD 6.6089 8 4.9987 5
MRK 4.3922 9 1.3984 16
MSFT 15.1745 1 25.6371 1
NKE 1.1007 16 2.3731 12
PG 8.1654 5 1.9720 13

CRM 3.8759 10 2.4811 11
TRV 0.2590 24 0.0879 25
UNH 10.6100 3 0.2193 21

VZ 1.7637 12 13.2411 2
V 9.5210 4 0.1586 23

WBA 0.0015 29 0.0175 27
WMT 11.0766 2 12.5844 3
DIS 0.3443 21 4.7879 6

Based on Table 4, MSFT is ranked the highest because it gives the largest weight to the
portfolio composition using the proposed model for the D1 period. In contrast, WBA is
ranked the lowest as it gives the smallest weight to the portfolio composition using the
proposed model for the D1 period.

According to Table 4, MSFT is ranked the highest because it gives the largest weight
to the portfolio composition using the proposed model for the D2 period. Conversely, BA
is ranked the lowest as it gives the smallest weight to the portfolio composition using the
proposed model for the D2 period.

The MAD model (Table 3) and the proposed model (Table 4) led to different composi-
tions of the optimal portfolio in both the D1 period and the D2 period. This implies that the
incorporation of entropy in the proposed model will change the optimal portfolio composi-
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tion. It shows that the proposed model is able to generate a well-diversified portfolio. This
is because the proposed model gives a higher portfolio entropy value than the MAD model
for the D1 period and the D2 period. Based on Equation (13), the portfolio entropy values
of the MAD model and the proposed model are 2.2156 and 2.7054, respectively, for the D1
period. Furthermore, the portfolio entropy values of the MAD model and the proposed
model are 1.6357 and 2.5124, respectively, for the D2 period.

Table 3 indicates that the ranking of all stocks in the optimal portfolio of the MAD
model for the D1 period and D2 period are different. The symbol—implies that the stock is
not selected in the optimal portfolio of the MAD model for the D1 period and D2 period.
AAPL, CAT and JNJ are not selected in the optimal portfolio of the MAD model for the
D1 period. On the other hand, AXP, BA, CVX, KO, JPM, MRK, PG, CRM and UNH are
not selected in the optimal portfolio of the MAD model for the D2 period. Furthermore,
Table 4 indicates that the ranking of all stocks in the optimal portfolio of the proposed
model for the D1 period and D2 period are different, except for MSFT.

3.3. Model Performance

Table 5 shows the performance comparison of the optimal portfolios among the MAD
model, the proposed model and the naive diversification strategy for the D1 period.

Table 5. Performance comparison of the optimal portfolios among the MAD model, the proposed
model and the naive diversification strategy for the D1 period.

Optimal Portfolio MAD
Model Proposed Model Naive

Diversification Strategy

Portfolio mean return (%) 0.3000 0.4000 0.2425
Performance ratio 0.2970 0.3254 0.2245

Based on Table 5, the MAD model generates the portfolio mean return at 0.3000% for
the D1 period. Furthermore, the portfolio performance ratio of the MAD model is 0.2970.
The performance ratio is measured based on the mean-absolute deviation ratio.

On the other hand, the proposed model generates the portfolio mean return at 0.4000%
for the D1 period. In addition, the portfolio performance ratio of the proposed model
is 0.3254.

Besides that, the naive diversification strategy generates the portfolio mean return
at 0.2425% for the D1 period. Moreover, the portfolio performance ratio of the naive
diversification strategy is 0.2245.

Table 6 shows the performance comparison of the optimal portfolios among the MAD
model, the proposed model and the naive diversification strategy for the D2 period.

Table 6. Performance comparison of the optimal portfolios among the MAD model, the proposed
model and the naive diversification strategy for the D2 period.

Optimal Portfolio MAD Model Proposed Model
Naive

Diversification
Strategy

Portfolio mean return (%) 0.3400 0.4400 0.3185
Performance ratio 0.1762 0.2041 0.1313

Based on Table 6, the MAD model generates the portfolio mean return at 0.3400% for
the D2 period. Furthermore, the portfolio performance ratio of the MAD model is 0.1762.
The performance ratio is measured based on the mean-absolute deviation ratio.

On the other hand, the proposed model generates the portfolio mean return at 0.4400%
for the D2 period. In addition, the portfolio performance ratio of the proposed model
is 0.2041.
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Finally, the naive diversification strategy generates the portfolio mean return at
0.3185% for the D2 period. Moreover, the portfolio performance ratio of the naive di-
versification strategy is 0.1313.

The proposed model outperforms the MAD model and the naive diversification
strategy by giving a higher performance ratio for the D1 period (Table 5) and the D2 period
(Table 6). In addition, the proposed model generates higher portfolio mean return than the
MAD model and the naive diversification strategy for both periods. This is because the
proposed model is a multi-objective model that maximizes the mean return, minimizes the
absolute deviation and maximizes the entropy of the portfolio. Moreover, the proposed
model incorporates the optimal value of each objective function and is solved using a
goal-programming approach.

3.4. Simulation Analyses

Table 7 presents the bootstrap simulation analysis on the portfolio return of the MAD
model, proposed model and the naive diversification strategy for the D1 period.

Table 7. Bootstrap simulation analysis on the portfolio return of the MAD model, proposed model
and the naive diversification strategy for the D1 period.

Optimal Portfolio MAD Model Proposed Model Naive
Diversification Strategy

Portfolio mean return (%) 0.2984 0.4011 0.2445
95% Confidence Interval 0.2955–0.3012 0.3979–0.4043 0.2416–0.2474

Performance ratio 0.2909 0.3798 0.2340

As shown in Table 7, the MAD model generates the portfolio mean return at 0.2984%
with a 95% confidence interval of 0.2955–0.3012% for the D1 period. The portfolio per-
formance ratio of the MAD model is 0.2909. The proposed model generates the portfolio
mean return at 0.4011% with a 95% confidence interval of 0.3979–0.4043% for the D1 period.
The portfolio performance ratio of the proposed model is 0.3798. On the other hand, the
naive diversification strategy generates the portfolio mean return at 0.2445% with a 95%
confidence interval of 0.2416–0.2474% for the D1 period. The portfolio performance ratio
of the naive diversification strategy is 0.2340.

The simulation analysis shows that the proposed model outperforms the MAD
model and the naive diversification strategy by giving a higher performance ratio for
the D1 period. In addition, the proposed model generates a higher portfolio mean return
than the MAD model and the naive diversification strategy for the D1 period. The simula-
tion analysis is consistent with the results for actual portfolio mean return and performance
ratio, which are presented in Table 5.

Table 8 presents the bootstrap simulation analysis on the portfolio return of the MAD
model, proposed model and the naive diversification strategy for the D2 period.

Table 8. Bootstrap simulation analysis on the portfolio return of the MAD model, proposed model
and the naive diversification strategy for the D2 period.

Optimal Portfolio MAD Model Proposed Model Naive
Diversification Strategy

Portfolio mean return (%) 0.3507 0.4341 0.3073
95% Confidence Interval 0.3417–0.3597 0.4234–0.4447 0.2947–0.3199

Performance ratio 0.1927 0.2242 0.1635

Based on Table 8, the MAD model generates the portfolio mean return at 0.3507% with
a 95% confidence interval of 0.3417–0.3597% for the D2 period. The portfolio performance
ratio of the MAD model is 0.1927. The proposed model generates the portfolio mean
return at 0.4341% with a 95% confidence interval of 0.4234–0.4447% for the D2 period. The
portfolio performance ratio of the proposed model is 0.2242. In contrast, the naive diver-
sification strategy generates the portfolio mean return at 0.3073% with a 95% confidence
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interval of 0.2947–0.3199% for the D2 period. The portfolio performance ratio of the naive
diversification strategy is 0.1635.

Based on the simulation analysis, the proposed model outperforms the MAD model
and the naive diversification strategy by giving a higher performance ratio for the D2 period.
Furthermore, the proposed model generates a higher portfolio mean return than the MAD
model and the naive diversification strategy for the D2 period. This shows that the simula-
tion analysis is consistent with the results for actual portfolio mean return and performance
ratio, which are presented in Table 6.

The simulation analyses show that proposed model generates a higher portfolio mean
return and a higher performance ratio than the MAD model, as well as the naive diversi-
fication strategy, consistently for both periods of study, which are before the COVID-19
pandemic period (Table 7) and within the COVID-19 pandemic period (Table 8). This
implies that the proposed model is robust and stable for portfolio investment. This is
because the proposed model is a multi-objective model that maximizes the mean return,
minimizes the absolute deviation and maximizes the entropy of the portfolio. Furthermore,
the proposed model incorporates the optimal value of each objective function and is solved
using a goal-programming approach.

4. Conclusions

In conclusion, a multi-objective optimization model, namely a mean-absolute deviation-
entropy model is proposed in this paper by incorporating the entropy as well as the optimal
value of each objective function using a goal-programming approach. The results indicate
that the MAD model and the proposed model give different portfolio composition for
both periods of study, which are before the COVID-19 pandemic period as well as within
the COVID-19 pandemic period. In addition, the results show that the proposed model
is able to generate well-diversified portfolios consistently, because the proposed model
gives a higher portfolio entropy value than the MAD model for both periods of study.
The incorporation of entropy in the proposed model will change the optimal portfolio
composition in order to generate well-diversified portfolio.

The proposed model outperforms the MAD model and the naive diversification
strategy by giving higher performance ratios consistently for both periods of study. Besides
that, the proposed model generates higher portfolio mean returns than the MAD model
and the naive diversification strategy consistently, both before the COVID-19 pandemic
period as well as within the COVID-19 pandemic period. Based on the simulation analyses,
the proposed model generates higher portfolio mean returns and higher performance
ratios than the MAD model, as well as the naive diversification strategy, consistently
for both periods of study. This implies that the proposed model is robust and stable for
portfolio investment.

As presented in this paper, the proposed mean-absolute deviation-entropy model is
superior to both the MAD model and the naive diversification strategy, as it gives higher
performance ratios and higher portfolio mean returns. This study will contribute to the
portfolio management of investors. This is because investors will be able to maximize the
portfolio mean return, minimize the portfolio absolute deviation and maximize the portfolio
entropy, therefore generating well-diversified portfolios and reducing the unsystematic risk
of the portfolios using the proposed model. Portfolio optimization with the proposed model
should be extended to the stock market of the other countries for future research. This
proposed model can be applied using data from other markets, be it developed, emerging,
or developing markets, with promising results, benefiting investors in various countries.

Author Contributions: Conceptualization, W.S.L. and W.H.L.; methodology, W.S.L. and W.H.L.;
software, W.S.L. and W.H.L.; validation, W.H.L. and S.H.J.; formal analysis, W.S.L. and W.H.L.;
investigation, W.S.L., W.H.L. and S.H.J.; resources, W.S.L. and S.H.J.; data curation, W.S.L. and
W.H.L.; writing—original draft preparation, W.S.L., W.H.L. and S.H.J.; writing—review and editing,
W.S.L., W.H.L. and S.H.J.; supervision, W.S.L. and S.H.J. All authors have read and agreed to the
published version of the manuscript.



Entropy 2021, 23, 1266 13 of 14

Funding: This research was funded by research grant provided by Universiti Kebangsaan Malaysia,
GUP-2019-038.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This study is supported by Universiti Kebangsaan Malaysia grant GUP-2019-038
and Universiti Tunku Abdul Rahman.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lim, A.E.B.; Wimonkittiwat, P. Dynamic portfolio selection with market impact costs. Oper. Res. Lett. 2014, 42, 299–306. [CrossRef]
2. Choi, B.G.; Rujeerapaiboon, N.; Jiang, R. Multi-period portfolio optimization: Translation of autocorrelation risk to excess

variance. Oper. Res. Lett. 2016, 44, 801–807. [CrossRef]
3. Sun, Y.F.; Aw, G.; Loxton, R.; Teo, K.L. Chance-constrained optimization for pension fund portfolios in the presence of default

risk. Eur. J. Oper. Res. 2017, 256, 205–214. [CrossRef]
4. Markowitz, H. Portfolio Selection. J. Financ. 1952, 7, 77–91. [CrossRef]
5. Kuzmanovic, M.; Nikolic, D.M.; Nikolic, N. Preference based portfolio for private investors: Discrete choice analysis approach.

Mathematics 2020, 8, 30. [CrossRef]
6. Xiao, H.; Ren, T.; Zhou, Z. Time-consistent strategies for the generalized multiperiod mean-variance portfolio optimization

considering benchmark orientation. Mathematics 2019, 7, 723. [CrossRef]
7. Ivanova, M.; Dospatliev, L.K. Application of Markowitz portfolio optimization on Bulgarian stock market from 2013 to 2016. Int.

J. Pure Appl. Math. 2017, 117, 291–307. [CrossRef]
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