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There are rapidly emerging efforts to explore tumor-associated macrophages (TAMs) as a tumor therapy target. Tumor cells
express CD47, which can interact with the macrophages’ SIRPα transmitting a “don’t eat me” signal to macrophages. The
expression of CD47 increases in various tumors to evade immune attack. However, the expression of CD47 in endometrial
cancer (EC) and the role of CD47-SIRPα in the TAMs which mediate the progression of EC remain unclear. Our study shows
that there are increased TAMs in EC which dominantly consist of M2 macrophages and contribute to the progression of EC.
We confirm that CD47 is highly expressed in EC tissue using the TCGA database, qPCR, and flow cytometry. Instead of directly
promoting the apoptosis of EC cells, anti-CD47 blocking antibody promoted phagocytosis of EC cells by macrophages and the
increased phagocytosis ability was mediated by M2 macrophages in a coculture assay. Besides, CD47 blockade inhibited the
growth of the EC tumors in vivo and increased the infiltration of macrophages with antitumor ability in the tumor
microenvironment (TME). These findings might assist in developing promising strategies that blocked the CD47-SIRPa
interaction for EC therapy.

1. Introduction

Endometrial cancer is one of the most common gynecologi-
cal malignancies, with 61,380 estimated new cases and
10,920 estimated deaths in 2017 in America [1]. Patients in
less developed regions have poorer prognosis [2]. Novel
therapeutic options are desperately needed. Tumor immuno-
therapies which target the tumor microenvironment to
increase the antitumor activity of the immune system elicit
durable responses in many kind of tumors [3, 4]. The tumor
microenvironment (TME), which is composed of tumor
cells, immune cells, tumor-associated fibroblasts, the vascular

network, cytokines, and so on [5], tends to be polarized to an
immunosuppressive state to facilitate the tumor immune eva-
sion [6]. In endometrial cancer, neoplastic cells can exploit a
large variety of immune evasion mechanisms, including alter-
ations in the expression of some molecules that inhibit antitu-
mor immune response, such as programmed cell death 1
ligand 1 (PD-L1) and indoleamine-2,3-dioxygenase (IDO)
[7, 8]. Accumulating evidence indicates that anti-PD-1/PD-L
immune checkpoint therapy may be effective in DNA
polymerase epsilon- (POLE-) mutated and microsatellite
instability (MSI) EC patients [9–11]. Considering that
POLE-mutated and MSI EC patients account for a small
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fraction of the total EC population (7%–12% and 20%–30%,
respectively) and have better prognosis [12, 13], more
universal drugs should be found.

Recently, the role of immune cells in the TME is well
demonstrated in tumor progression and immunotherapy
[5, 14]. Macrophages infiltrating into the TME are termed
the tumor-associated macrophages (TAMs), which are the
major component of infiltrating leukocytes in most tumors
[15]. Macrophages are characterized by considerable hetero-
geneity and have been divided into two general subtypes: the
classically activated M1 macrophages which have the poten-
tial to exhibit antitumor activity, and the alternatively acti-
vated M2 macrophages which are considered to be involved
in tumor growth and progression [16]. TAMs tend to acquire
a polarized M2 phenotype in many kinds of tumors with low
antitumor activity through various mechanisms [17]. It is
important to investigate the phenotype, phagocytosis ability,
and antigen presenting ability of TAMs in EC.

Considering that TAMs contribute to the formation of an
immunosuppressed state within the TME, one of the thera-
peutic strategies targeting TAMs is reeducating TAMs to an
antitumor phenotype, such as promoting macrophages’
phagocytosis ability [18, 19]. Accumulating evidences show
that the CD47-SIRPα signal participates in tumor immune
evasion mediated by TAMs [20, 21]. CD47 is a broadly
expressed membrane protein on various tumor cells and
plays an important role in self-recognition by which normal
cells protect themselves from phagocytosis [21]. Signal regu-
latory protein alpha (SIRPα, also known as CD172a), which
mainly expresses on the surface of macrophages, is the recep-
tor for CD47. When CD47 binds to SIRPα, the intracellular
immunoreceptor tyrosine-based inhibitory motifs (ITIMs)
of SIRPα is phosphorylated, followed by recruitment and
activation of the tyrosine phosphatases such as SHP-1 and
SHP-2. Then, the phosphoprotein substrates are dephos-
phorylated which affect downstream signaling pathways,
transmitting a “don’t eat me” signal to inhibit the macro-
phages’ phagocytosis ability [22]. Accumulating evidences
showed that CD47 was upregulated in many malignancies
to evade the immune attack, and its overexpression was
correlated with poor prognosis [23–26]. Besides, interrup-
tion of the ligation of CD47 and SIRPα promotes the
tumor cells to be phagocytosed by macrophages in various
malignancies [24, 27, 28]. A number of different drugs tar-
geting the CD47-SIRPα signal are evaluated in patients
with solid tumors in clinical trials (http://clinicaltrials.gov
identifiers: NCT02216409, NCT02890368, NCT02953782,
and NCT03013218).

Intriguingly, researchers found that CD47 was expressed
on all cancer cells from patients [25], pointing out that it is
necessary to investigate the expression of CD47 in EC. To
our knowledge, the role of the CD47-SIRPα signal in EC
has not been studied yet. To clarify whether the CD47-SIRPα
signal contributes to the immune evasion mediated by
TAMs, we perform a phagocytosis assay in vitro and establish
the xenograft EC model to test the antitumor activity of
CD47 blockade therapy. Our studies highlight the potential
therapeutic strategy in which reeducating TAMs may have
beneficial antitumor effects in EC.

2. Materials and Methods

2.1. Preparation of Tissue Samples. All human samples were
obtained from the International Peace Maternity and Child
Health Hospital after receiving patients’ informed consent.

2.2. Immunohistochemistry. The paraffin-embedded tissues
were sectioned into 4μm, then deparaffinized and rehydrated
with xylene and graded alcohol. Antigen retrieval was used
with EDTA. Sections were incubated with mouse anti-
human CD68 antibody (1 : 200; Abcam), mouse anti-human
CD163 antibody (1 : 1000; Bio-Rad), and anti-human CD47
antibody (1 : 1000; GeneTex) at 4°C overnight. EXPOSE
Mouse and Rabbit Specific HRP/DAB Detection IHC Kit
(Abcam) was used for the following steps according to the
manufacturer’s protocol. All the samples were assessed by
two pathologists in 10 different high-power fields (HPFs).
The number of CD68+ cells and CD163+ cells were counted
and the average taken. The staining intensity of CD47 was
scored as 0 (no staining), 1 (weak staining), 2 (intermediate
staining), or 3 (dark staining). The percentage of staining cells
was scored as 0 (0–5%), 1 (1–25%), 2 (26–50%), 3 (51–75%),
or 4 (76–100%). The product of the two scores were consid-
ered as the CD47 IHC score. Samples were classified as low
CD47 expression (IHC score≤ 4) or high CD47 expression
(IHC score> 4).

2.3. Immunofluorescence. Sections or coculture cell (mouse
macrophages +EC cells) dishes were blocked with 10% calf
serum and incubated with rabbit anti-human CD68 antibody
(1 : 100), mouse anti-human CD163 antibody (1 : 1000), and
anti-mouse F4/80 antibody (1 : 200; Abcam) at 4°C overnight.
The sections were then incubated with Alexa Fluor 488
donkey anti-mouse IgG, Alexa Fluor 594 donkey anti-
mouse IgG, and Alexa Fluor 594 donkey anti-rabbit IgG (Life
Technologies) at room temperature for 2 hours followed by
nuclear counterstaining with DAPI (Abcam). The samples
were detected by confocal microscopy.

2.4. RNA Extraction and qPCR. The tissues used for RNA
extraction were ground by a TissueLyser. Total RNA was
extracted using the TRIzol (Invitrogen) method. cDNA was
synthesized from 1μg total RNA using a reverse transcrip-
tion kit (Tiangen Biotech (Beijing) Co. Ltd., China). Real-
time PCR was performed using the SYBR Green Master
Mix (Takara Bio Inc.) on a 7500 Real-Time PCR System
(Applied Biosystems). The 2−ΔΔCt method was used to calcu-
late fold changes in the gene expression normalized to
GAPDH. The primers that were used are shown Table 1.

2.5. The Preparation of Tissue Single-Cell Suspension. From
May 2017 to October 2017, 27 patients who underwent hys-
terectomy for EC or other benign diseases were recruited into
this study. Clinical endometrial tissues were obtained from
the patients after getting their informed consent. Fresh
endometrial tissue specimens were transported on ice to the
laboratory, cut into small pieces of 2–4mm, and enzymati-
cally dissociated with the Tumor Dissociation Kit (Miltenyi
Biotec). ACK Lysing Buffer (Thermo Fisher Scientific) was
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used to remove erythrocytes. Cells were then washed twice
with PBS and filtered through a 70μm filter.

2.6. Flow Cytometry Analysis. Single-cell suspensions
were stained with FITC-conjugated anti-CD47 (eBioscience).
7-AAD (eBioscience) and antibodies targeted to CD45 (BD
Biosciences) and CD31 (eBioscience) were used to exclude
dead, nontumor cells. Flow cytometry analyses were per-
formed on BD FACS Canto II.

2.7. Murine BMDM Culture and Differentiation. Murine
bone marrow cells were collected from 8-week old NOD/
SCID/IL2γnull mice (NSG, Beijing Biocytogen Co. Ltd.).
1× 106 murine bone marrow cells were planted per well in
a 24-well plate and cultured with Dulbecco’s Modified Eagle
Medium (DMEM, Gibco) supplied with recombinant mouse
macrophage colony-stimulating factor (M-CSF; 10ng/mL,
R&D Systems) for 7 days. The macrophages at this state were
considered as M0 macrophages. Purity was verified by flow
cytometry using F4/80 and CD11b. M1 MΦ were obtained
by further treatment on day 7 with recombinant mouse
interferon-gamma (IFN-γ, 20 ng/mL) and lipopolysaccha-
ride (LPS; 100ng/mL, Sigma-Aldrich) for 24 hours. M2
MΦ were obtained by further treatment on day 7 with IL-4
(20 ng/mL) for 24 hours. All cytokines were purchased from
PeproTech Inc. unless otherwise stated.

2.8. Establishment of CD47 Knockdown ECCells.Wedesigned
a shRNA to target the human CD47 gene (NM_198793.2).
The CD47-shRNA and control sequences are as follows:
CD47-shRNA (5′-CCGGGCACAATTACTTGGACTAGT
TCTCGAGAACTAGTCCAAGTAATTGTGCTTTTT-3′),

scramble-shRNA (5′-CCGGTTCTCCGAACGTGTCACGTT
TCAAGAGAACGTGACACGTTCGGAGAA TTTTTG-3′).
The shRNA was cloned into a lentiviral vector (pL-TO-IRES-
LUC) to knockdown the expression of CD47 in EC cells
(GeneChem Biotech, Shanghai, China). 1× 105 Ishikawa cells
or KLE cells were transfected with 2× 106 TU shRNA-
encoding lentivirus in the presence of polybrene (5μg/mL)
for 12h. Then, the EC cells were cultured in DMEM with
10% FBS for 1 week. Puromycin (1μg/mL) was used to select
the cells that were successfully transfected. After 2 weeks,
the CD47 protein expression on EC cells was detected by
flow cytometry.

2.9. In Vitro Phagocytosis Assay. For the in vitro phagocytosis
assay, Ishikawa cells were labeled with 1μM CFSE using
the CellTrace CFSE Cell Proliferation Kit (Invitrogen).
Macrophages were incubated with 1× 106 CFSE-labeled
Ishikawa cells in serum-free medium in the presence of
IgG control (10μg/mL, eBioscience) or anti-CD47 antibodies
(10μg/mL, eBioscience) for 2 h. Then, the plate was washed
for 3 times with warm PBS to remove unphagocytosed
Ishikawa cells.

For the immunofluorescence assay, the cocultured cells
were observed through a fluorescence microscope to investi-
gate the phagocytosis of EC cells by macrophages. For the
flow cytometry assay, the cocultured cells were digested with
0.25% Trypsin-EDTA (Gibco). A single-cell suspension was
incubated with a mAb specific for mouse CD16/CD32 to
prevent nonspecific binding against FcγR, and it was then
incubated with F4/80 antibodies (BioLegend) for 30min at
4°C and washed twice with 2% FBS in PBS. Stained cells were

Table 1: The primers used in this study.

Primers

CD47 (human)
Sense primer 5′-AGAAGGTGAAACGATCATCGAGC-3′

Antisense primer 5′-CTCATCCATACCACCGGATCT-3′

GAPDH (human)
Sense primer 5′-ACCACAGTCCATGCCATCAC-3′

Antisense primer 5′-TCCACCACCCTGTTGCTGTA-3′

TNF-α (mouse)
Sense primer 5′-GATCTCAAAGACAACCAACTAGTG-3′

Antisense primer 5′-AGGTCCAGACGCAGGATGGCATG-3′

iNOS (mouse)
Sense primer 5′-GGCAGCCTGTGAGACCTTTG-3′

Antisense primer 5′-TGAAGCGTTTCGGGATCTG-3′

IL-12 (mouse)
Sense primer 5′-AAATGAAGCTCTGCATCCTGC-3′

Antisense primer 5′-TCACCCTGTTGATGGTCACG-3′

Ym1 (mouse)
Sense primer 5′-TCTGGTGAAGGAAATGCGTAAA-3′

Antisense primer 5′-GCAGCCTTGGAATGTCTTTCTC-3′

Fizz1 (mouse)
Sense primer 5′-CAGCTGATGGTCCCAGTGAA-3′

Antisense primer 5′-TTCCTTGACCTTATTCTCCACGAT-3′

GAPDH (mouse)
Sense primer 5′-AGGTCGGTGTGAACGGATTTG-3′

Antisense primer 5′-TGTAGACCATGTAGTTGAGGTCA-3′
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subjected to flow cytometry, and data was analyzed with
FlowJo software. The phagocytic index was calculated as the
percentage of CFSE+ macrophages.

2.10. Apoptosis Assay. The EC cells were treated with anti-
CD47 antibody (B6H12; 10μg/mL) or control antibody
(10μg/mL) for 2 h or 12 h. Then, the EC cells were digested
and the apoptosis was measured by flow cytometry using
Annexin V-FITC and PI (BD Biosciences).

2.11. Tumor Xenograft Assay in NSG Mice. Twenty 7-week
old female NSG mice were obtained from the Beijing

Biocytogen Co. Ltd. Animal research was carried out in strict
accordance with the Guideline for the Care and Use of Labo-
ratory Animals of China. 107 CD47-knockdown Ishikawa
cells or control Ishikawa cells were injected subcutaneously
to the left flank of NSG mice, and tumor growth was
monitored. The tumor volume and body weight were mea-
sured per week. After four weeks, the mice were sacrificed
by cervical dislocation and tumor bulk was removed from
the animals.

2.12. Statistical Analysis. Statistical analyses were performed
using GraphPad Prism 6.0. Data were analyzed by unpaired
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Figure 1: The majority of infiltrated macrophages in EC tissues are M2 TAMs. (a) Representative immunohistochemical staining of CD68
and CD163 (400x) in normal, EAH, and EC tissues. CD68 (a–c) and CD163 (d–f). Scale bars, 20 μm. (b–c) Cell counts of CD68+ and
CD163+ macrophages. (d) Representative images of CD68+CD163− macrophages (M1 macrophages) and CD163+CD68+ macrophages
(M2 macrophages). Scale bars, 20μm. (e) The ratio of CD163+ to CD68+ cells (M2/total macrophage ratio). There were 26 normal
endometrium samples, 11 EAH samples, and 47 EC samples. Data were shown as the mean± SEM (ns, not significant; ∗P < 0 05 and
∗∗∗∗P < 0 0001).
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Student’s t-test or one-way ANOVA and were presented as
the mean± SEM. P values< 0.05 were considered statistically
significant. All experiments were repeated three times.

3. Results

3.1. M2 TAMs Are Closely Associated with the Tumor
Progression in EC. To study the distribution of macrophages,
immunohistochemistry was used to evaluate the infiltration
of TAMs in normal endometrium, endometrial atypical
hyperplasia (EAH), and EC (Figure 1(a)). CD68 and CD163
are relatively commonly accepted markers for total macro-
phages and M2 macrophages, respectively [19]. There were
more macrophages infiltrating in EC than in the normal
endometrium (Figures 1(b)-1(c)), which were mainly M2
macrophages (Figures 1(d)-1(e)). Besides, there was a pro-
gressive upregulation of M2 macrophages from the normal
endometrium and EAH to EC (Figure 1(c)).

On the basis of the findings that macrophage infiltra-
tion was correlated with patient survival, we hypothesized
that macrophage infiltration might play roles in the pro-
gression of EC. The relationship between total or M2
macrophages and clinicopathological features was ana-
lyzed (Table 2). The high number of macrophages, partic-
ularly M2 macrophages in EC, was strongly correlated
with unfavorable prognostic factors, such as high pathologi-
cal grade (P = 0 0118), high FIGO stage (P < 0 0001), lymph

node metastasis (P = 0 0008), and lymphovascular space
involvement (P = 0 0031). Our results showed that M2
TAM infiltration was closely associated with the progression
of EC.

3.2. CD47 Is Highly Expressed in EC Compared with Normal
Endometrium. Previous researches have reported that CD47
was overexpressed in various tumors [23–28]. We found
that CD47 mRNA was highly expressed in EC samples
using The Cancer Genome Atlas Research Network
(TCGA) database (Figure 2(a)). CD47 was highly expressed
in EC tissue when analyzed by qPCR (Figure 2(b)). CD47
protein expression level was increased in EC tissues by
immunochemistry (Figures 2(c)-2(d)). Considering CD47
that expressed on the cell surface interacted with SIRPα,
we evaluated the CD47 expression on freshly isolated cells
from EC tissue and normal endometrium by flow cytome-
try. Although CD47 protein was detectable on all speci-
mens, it was significantly overexpressed in tumor tissue
compared with normal tissue (Figure 2(e)). Besides, CD47
was detectable in all EC cell lines that we tested (Supple-
mentary Figure 1).

3.3. CD47 Blockade Increases Phagocytosis of EC Cells by
Macrophages In Vitro. To directly study the inhibitory effect
of the interaction between CD47 and SIRPα, we performed
phagocytosis assays in vitro. The majority of the NSG or

Table 2: Correlation between the number of CD68+ or CD163+ macrophages and relevant clinical characteristics of the EC cases.

Parameters Patients (n) Patients (%)
CD68+ macrophages CD163+ macrophages

Mean± SEM P value Mean± SEM P value

Total age (year) 47 100

<55 16 34.0 63.37± 6.261 0.9676 62.44± 6.602 0.7301

≥55 31 66.0 63.73± 5.684 58.95± 6.336
Grade (endometrioid = 37) 37

G1 or G2 33 88.6 63.45± 5.344 0.1247 56.40± 4.675 0.0118a

G3 4 11.4 88.98± 15.07 99.65± 29.49
FIGO stage

I or II 26 55.3 51.19± 5.009 0.0007a 44.71± 3.859 < 0.0001a

III or IV 21 44.7 78.83± 5.731 79.24± 7.620
Histologic type

Endometrioid 37 78.7 65.04± 4.977 0.507 60.65± 5.361 0.8364

Nonendometrioid 10 21.3 57.98± 7.415 58.24± 10.32
Myometrial invasion

<1/2 31 66 62.04± 5.638 0.6016 58.05± 5.843 0.5433

≥1/2 16 34 66.81± 5.857 64.18± 8.107
Positive lymph nodes

No 33 64.1 54.75± 5.356 0.0042a 47.87± 4.430 0.0008a

Yes 14 35.9 81.63± 6.996 84.15± 10.81
Lymphovascular space involvement

No 25 53.2 52.27± 5.558 0.0033a 47.48± 4.536 0.0031a

Yes 22 46.8 76.40± 5.419 74.53± 7.646
aP < 0 05, the difference between CD68/CD163 expression in patients and different grades, FIGO stages, with or without lymph node metastasis, or
lymphovascular space involvement.
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C57BL/6 mouse bone marrow-derived macrophages
(BMDMs) were CD11b+F4/80+ macrophages which sug-
gested successful cultivation (Supplementary Figure 2A).
NSG mouse BMDMs were cocultured with EC cells
(Ishikawa cells or KLE cells) with or without the anti-CD47
antibody. Phagocytosis was evaluated by the percentage of
macrophages engulfing EC cells. CD47 blockade with the
anti-CD47 blocking antibody (B6H12) resulted in a
significant increase in phagocytosis of Ishikawa cells by
NSG and C57BL/6 mouse macrophages, while this effect
was not observed with the anti-CD47 nonblocking
antibody (2D3), which was specific to CD47 but did not
interrupt the interaction between CD47 and SIRPα
(Figures 3(a)-3(b), Supplementary Figures 2B-2C). CD47
blockade could increase phagocytosis of KLE cells by NSG
BMDMs (Figure 3(c)). Some studies showed that anti-CD47
antibodies might directly induce the apoptosis of tumor
cells [29, 30]. However, our results showed that the soluble
anti-CD47 antibody (B6H12) could not promote the
apoptosis of EC cells (Supplementary Figure 3).

3.4. CD47 Knockdown Increases Phagocytosis of EC Cells
by Macrophages In Vitro. We performed a CD47-
knockdown experiment in Ishikawa cells and KLE cells
using a lentiviral-based approach and confirmed that the
successful establishment of CD47-knockdown EC cells
(Figures 4(a), 4(c)). There was an increase in phagocytosis
to both CD47-knockdown Ishikawa cells and CD47-
knockdown KLE cells by NSG mouse BMDMs in phagocyto-
sis assays (Figures 4(b), 4(d)).

3.5. The Increased Phagocytosis Ability with CD47 Blockade
Treatment IsMediated byM2Macrophages In Vitro.To study
whether the CD47 blockade can influence the phagocytosis of
the macrophages with different states, we induced NSG
mouse BMDMs into different phenotypes (Supplementary
Figure 4). Then, the polarized macrophages were cocultured
with Ishikawa cells in the presence of anti-CD47 blocking,
nonblocking antibodies, and control IgG antibody. In the
control group, we found that M1 macrophages had a greater
ability of phagocytosis, compared to M2 macrophages
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Figure 2: CD47 is highly expressed in EC tissues. (a) Analysis of CD47 mRNA expression in EC samples using TCGA RNAseq. (b) CD47
mRNA expression measured by qPCR. There were 18 normal endometrium samples and 22 EC samples. (c) The representative
immunohistochemical staining of CD47 (400x) measured by immunochemistry. Scale bars, 20μm. (d) The quantification of CD47
expression measured by immunochemistry. There were 20 normal endometrium samples and 40 EC samples. (e) The representative
image of CD47 expression measured by flow cytometry. (f) The quantification of CD47 expression measured by flow cytometry. There
were 14 normal endometrium samples and 13 EC samples. Data were shown as the mean± SEM (∗P < 0 05).

6 Journal of Immunology Research



Ishikawa

Anti-CD47 antibody
(B6H12)

IgG iso control

NSG mouse macrophages Merge

(a)

F4
/8

0-
M
Φ

 (N
SG

)

Anti-CD47 antibody
(B6H12)

105

104

103

−103

105

104

103

−103

100 101 102 103 104 105 100 101 102 103 104 105

20

15

10
Ph

ag
oc

yt
os

is
(%

 m
ac

ro
ph

ag
es

)

5

0

0

105

104

103

−103
00

Anti-CD47 antibody
(2D3)

CFSE-Ishikawa

IgG iso control

MΦ

(NSG)
MΦ

(NSG)

ns

Anti-CD47 antibody (B6H12)
Anti-CD47 antibody (2D3)
IgG iso control

⁎

MΦ

(NSG)

(b)

F4
/8

0-
M
Φ

 (N
SG

)

15

10

Ph
ag

oc
yt

os
is

(%
 m

ac
ro

ph
ag

es
)

5

0
CFSE-KLE

Anti-CD47 antibody
(B6H12)

Anti-CD47 antibody
(2D3) IgG iso control

ns

⁎⁎

MΦ

(NSG)
MΦ

(NSG)
MΦ

(NSG)

Anti-CD47 antibody (B6H12)
Anti-CD47 antibody (2D3)
IgG iso control

105

104

103

−103
0

100 101 102 103 104 105

105

104

103

−103
0

100 101 102 103 104 105

105

104

103

−103
0

100 101 102 103 104 105

(c)

Figure 3: CD47 blockade increases phagocytosis of EC cells by macrophages. (a) Representative images of the phagocytosis assay in which
Ishikawa cells were cocultured with NSG mouse BMDMs in the presence of anti-CD47 antibody or control IgG antibody. The white arrows
point to the macrophages that phagocytosed Ishikawa cells. Scale bars, 20 μm. (b-c) Flow cytometry results of phagocytosis assays in which
Ishikawa or KLE cells were cocultured with NSG mouse BMDMs. Percentages of CFSE+ F4/80+ macrophages in total macrophages were
indicated beside the gated population. Data were shown as the mean± SEM (ns, not significant; ∗P < 0 05 and ∗∗P < 0 01).
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(Figures 5(a)-5(c)). However, we found thatM2macrophages
display a larger phagocytic response towards EC cells thanM1
macrophages when treatedwith anti-CD47 blocking antibody
(Figures 5(a)-5(c)). In other words, CD47+ Ishikawa cells
mainly inhibited themselves from being engulfed by M2
macrophages rather than by M1 macrophages.

3.6. CD47 Knockdown Inhibits Tumor Growth and Promotes
the Infiltration of M1 Macrophages in the TME In Vivo. To
examine whether CD47 knockdown contributed to the
growth of EC, we found that the size of the tumors formed
by shCD47 clones in NSG mice were smaller, when com-
pared with those in the control group (Figures 6(a), 6(c)),
although there was no difference in mouse body weight
between the two groups (Figure 6(b)). More importantly,
we observed that there were more macrophages which
were mainly M1 macrophages in xenografted tumors
formed by shCD47 clones than in the control group
(Figures 6(d)-6(f)). These results suggested that CD47

knockdown inhibited the growth of the EC tumors in vivo
and promoted the infiltration of macrophages which might
play an important role in antitumor activity.

4. Discussion

The underlying mechanism of tumor progression and
immune evasion mediated by TAMs in EC has been poorly
characterized to date. Our results showed that TAMs in EC
tended to acquire a polarized M2 phenotype which might
contribute to skewing the TME to a tumor-progressive con-
dition. Besides, our results indicated that the increased num-
ber of TAMs was positively correlated with the progression of
EC; therefore, they are consistent with other studies [31–33].

CD47 expressed by tumor cells interact with SIRPα trans-
mitting a “don’t eat me” signal to macrophages to avoid being
eliminated. The CD47 overexpression was responsible for
immune suppression and tumor progression in EC. The
CD47 blockade treatment could increase the phagocytosis
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Figure 4: CD47 knockdown increases phagocytosis of EC cells by macrophages. (a, c) Successful knockdown of CD47 in EC cell lines
(Ishikawa cell line and KLE cell line) measured by flow cytometry. (b, d) Representative images of the phagocytosis assay in which
CD47-knockdown EC cells (Ishikawa or KLE cells) or control EC cells were cocultured with NSG mouse BMDMs. Percentages of CFSE+

F4/80+ macrophages in total macrophages were indicated beside the gated population. Data are shown as the mean± SEM (ns, not
significant; ∗P < 0 05 and ∗∗P < 0 01).
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ability of M2 macrophages instead of M1 macrophages
in vitro. These results suggested that CD47 blockade therapy
could take advantage of M2 macrophages in the TME with-
out affecting the normal function of M1 macrophages in
our bodies. Besides, the in vivo experiment suggested that
there were smaller tumor sizes and increased TAMs which
dominantly consisted of M1 macrophages in the CD47-
knockdown group, indicating that these macrophages played
an important role in eliminating EC cells.

Our study first revealed that CD47 was overexpressed in
several EC cell lines and in all clinical specimens that we
tested, regardless of pathological or molecular features.
Besides, the anti-CD47 antibody could increase phagocytosis
of both Ishikawa cells and KLE cells. Compared to PD-1
blockade immunotherapy which might be effective in a
minority of EC patients with the polymerase epsilon (POLE)
or microsatellite instability (MSI) mutations [34–36], CD47

blockade immunotherapy might be an extensive and effective
choice for EC patients.

In addition to inhibiting the “don’t eat me” signal, other
potential mechanisms also contributed to the antitumor
effects of the anti-CD47 therapy. For instance, some anti-
CD47 antibodies could induce the apoptosis of tumor cells
directly in several malignancies. However, our results sug-
gested that the antitumor activity of the anti-CD47 blocking
antibody was mediated by the interruption of CD47-SIRPα
interaction instead of promoting the apoptosis of EC cells.

With the use of immunodeficient NSG mice completely
lacking T cells, B cells, and NK cells [37], the involvement
of macrophages might be the predominant mechanism to
regulate the growth of EC in vivo. Besides, the SIRPα protein
produced by NSG mice has greater reactivity with human
CD47 than other strains [38] which could better reflect the
effect of the CD47-SIRPα interaction. However, CD47
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negatively regulates the function of the human T cell, den-
dritic cell [39, 40], NK cell [41], and B cell [42] and plays
an inhibitory role in the immune response against tumor

cells. The animal model we used could not reflect the role
of CD47 in these immune cells. Thus, further studies which
focus on CD47 in other immune cells in EC are needed.
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5. Conclusions

Taken together, we have found that the overexpression of
CD47 in EC protected tumor cells against phagocytosis by
macrophages in vitro and promoted the progression of EC
in vivo. In conclusion, the CD47 blockade therapy, which
can reeducate M2 macrophages by increasing their phagocy-
tosis ability, might be an attractive target for tumor immuno-
therapy for EC.
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