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Abstract
Conventional measures of radiologist efficiency, such as the relative value unit, fail to account for variations in the com-
plexity and difficulty of a given study. For lumbar spine MRI (LMRI), an ideal performance metric should account for the 
global severity of lumbar degenerative disease (LSDD) which may influence reporting time (RT), thereby affecting clinical 
productivity. This study aims to derive a global LSDD metric and estimate its effect on RT. A 10-year archive of LMRI 
reports comprising 13,388 exams was reviewed. Objective reporting timestamps were used to calculate RT. A natural lan-
guage processing (NLP) tool was used to extract radiologist-assigned stenosis severity using a 6-point scale (0 = “normal” 
to 5 = “severe”) at each lumbar level. The composite severity score (CSS) was calculated as the sum of each of 18 stenosis 
grades. The predictive values of CSS, sex, age, radiologist identity, and referring service on RT were examined with mul-
tiple regression models. The NLP tool accurately classified LSDD in 94.8% of cases in a validation set. The CSS increased 
with patient age and differed between men and women. In a univariable model, CSS was a significant predictor of mean 
RT (R2 = 0.38, p < 0.001) and independent predictor of mean RT (p < 0.001) controlling for patient sex, patient age, service 
location, and interpreting radiologist. The predictive strength of CSS was stronger for the low CSS range (CSS = 0–25, 
R2 = 0.83, p < 0.001) compared to higher CSS values (CSS > 25, R2 = 0.15, p = 0.05). Individual radiologist study volume 
was negatively correlated with mean RT (Pearson’s R =  − 0.35, p < 0.001). The composite severity score predicts radiolo-
gist reporting efficiency in LMRI, providing a quantitative measure of case complexity which may be useful for workflow 
planning and performance evaluation.

Introduction

Efficient interpretation and reporting are central principles of 
delivering value in diagnostic radiology [1]. Common per-
formance metrics such as the relative value unit (RVU) are 
used to quantify the value of physician work as a function of 

time [2]. However, the RVU does not account for variability 
in procedural complexity which may significantly alter the 
duration of a medical procedure [3]. This discrepancy can 
generate systemic bias and misaligned incentives for physi-
cians and healthcare organizations [4]. In diagnostic radiol-
ogy, we hypothesize that studies with more complex pathol-
ogy would require more cognitive energy, resulting in longer 
reporting time (RT) that is not captured by the RVU [5–7] .

To address this question, we studied degenerative disease 
of the lumbar spine (LSDD) on MRI (LMRI). Compared 
with other imaging reports, LMRI reporting is typically 
structured by anatomic level and each level is assigned a 
grade of relative severity of stenosis [8]. Prior work has 
shown that inter-radiologist agreement for spinal canal ste-
nosis (SCS) and neural foraminal stenosis (NFS) is moderate 
to strong [9–13]. Moreover, the descriptive terminology for 
LSDD is standardized by an interdisciplinary consortium of 
national societies allowing comparison between radiologists 
with different training and levels of experience [14]. These 
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features enable analysis of reporting text by natural language 
processing (NLP) algorithms, which allow a large corpus of 
text to be analyzed rapidly.

We hypothesized that a measurable relationship exists 
between disease severity (complexity) and RT owing to 
increased cognitive energy required to render a diagnosis 
and assign a severity value [15, 16]. The primary aim of this 
study was to quantify the relationship of radiologist-assigned 
LSDD severity and reporting time, leveraging NLP to ana-
lyze a large volume of reports from many individual radiolo-
gists. To this end, we present and validate an NLP tool and 
derive a composite “severity score” reflecting the cumulative 
severity of LSDD at 18 discrete sites in the lumbar spine. We 
then evaluate the predictive value of this composite severity 
score on objective reporting times.

Methods and Materials

Data Selection

We performed an institutional review board-approved review 
of LMRI reporting data in compliance with the Health Insur-
ance Portability and Accountability Act for which informed 
consent was waived. The 10-year archive of report text and 
reporting metadata comprised 43,255 LMRI studies from a 
single, multi-site institution (BLINDED FOR REVIEW), 
representing 29 different MR scanners. Studies which 
were co-interpreted with trainee assistance (n = 23,607) or 
reported on the weekend (n = 3202) were excluded because 
the workflow for these studies was presumably different. We 
also excluded studies in which the calculated RT was over 
60 min (n = 3058) because this was felt to be beyond the 
conventional RT for an attending radiologist without sig-
nificant interruption (exclusion criteria summarized in sup-
plemental Fig. 1) [17]. Reports were signed by 152 unique 
attending radiologists including generalists, fellowship-
trained musculoskeletal radiologists, and neuroradiologists. 
Patient age, sex, and the requesting service (documented 
as “inpatient”, “outpatient”, “emergency”, or “unknown”) 
were recorded. Reporting documentation timestamps were 
extracted from the institution’s reporting software API (Pow-
erscribe, Nuance Communications, Burlington VT, USA). 
The timestamps marked the initialization and finalization of 
the radiology report to the 1/100 of a second; the difference 
between these time points was recorded as the RT (min).

Natural Language Processing

We applied a customized NLP algorithm to raw radiol-
ogy report text. Using a rule-based approach employing a 
dictionary of customized regular expressions (RegEx), the 
algorithm was designed to extract a severity rating using 

a 6 point scale (0 = “normal”, 1 = “mild”, 2 = “mild to 
moderate”, 3 = “moderate”, 4 = “moderate to severe”, and 
5 = “severe”). A severity score was extracted for spinal canal 
stenosis (SCS) and left and right neural foraminal stenosis 
(LNFS, RNFS) for each of six spinal levels: T12-L1 through 
L5-S1. The NLP was designed using empirically, iteratively 
developed syntactic and semantic rules including common 
radiology terminology and phraseology to elicit a severity 
score (0–5) for the 18 locations (e.g., T12-L1 SCS, T12-L1 
LNFS), resulting in a 6 × 3 matrix for each study (Fig. 1). 
When the model failed to assign a score, a default value of 
0 (“normal”) was applied. To test the accuracy of the model, 
we randomly selected 100 studies out of the full dataset 
(n = 43,255) and manually reviewed the radiology report-
ing text to assess for discrepancy or error. For each case, the 
reporting text was manually reviewed and assigned a 0–5 
value by a radiologist. Scores were considered concordant 
if NLP and manual review matched exactly and any degree 
of discordance was considered unsuccessful.

Calculation of Severity Scores

The composite severity score (CSS) was calculated as the 
sum of the constituent severity scores (n = 18) resulting in 
scale ranging from 0 (“normal” at all locations) to a theoreti-
cal maximum of 90 (“severe” at all 18 locations).

The distribution of CSS was assessed for the study pop-
ulation (n = 13,388) and subdivided by age and sex. Age 
groups were defined as < 40, 40–49, 50–59, 60–69, 70–79, 
and ≥ 80. The sex-based distributions and age group distribu-
tions were compared to exponential theoretical distributions 
using quantile–quantile plots. The Kolmogorov–Smirnov 
(K-S) test was used to test difference in distribution between 
subgroups.

Quantifying Relationships Among CSS, Age, Sex, 
and RT

CSS and RT were grouped by sex and age and inter-group 
differences were calculated using ANOVA and pairwise t 
tests with the Benjamini–Hochberg method correcting for 
multiple comparisons. CSS were clustered into deciles and 
compared to RT using pairwise t tests. The results are visual-
ized in box-and-whisker diagrams which show the median 
(central bar), interquartile range (box margins).

Simple, univariable linear least squares regression was 
used to assess the predictive relationship of CSS, age, sex, 
service location, and interpreting radiologist on RT. The 
distribution of residuals indicated heteroscedasticity (Sup-
plemental Fig. 2); therefore, the regression was performed 
using log–log transformation. Significant predictors were 
then grouped, and a multiple least squares regression was 
performed to assess for independent effects of each variable 
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on RT. For each test, p value < 0.05 was considered signifi-
cant. A curvilinear regression was then fitted to model pre-
dictive value of CSS on mean RT. This was repeated for 
subgroups of low-CSS (0–25) and high-CSS (> 25) groups. 
Unless otherwise stated, values are reported with ± standard 
error of the mean (SEM). All statistical analysis and data 
visualizations were performed using R statistical computing 
software (v 3.6.2, The R Corporation).

Results

Study Characteristics

From the initial dataset of 43,255 studies, we included 
13,388 after applying exclusion criteria (Supplemental 

Fig.  1) representing 12,326 unique patients. The mean 
patient age was 54.8 ± 0.1 years and the sex distribution was 
54.5% women. The mean RT for the study population was 
14.41 ± 0.1 min (median = 10.7), with no significant differ-
ence in mean RT by patient sex (14.56 ± 0.15 min for men 
vs. 14.29 ± 0.14 min for women, p = 0.17). These differences 
are summarized in Table 1.

Natural Language Processing

The NLP accuracy at the level of CSS was 94.8% (93 mis-
classifications out of 1800 test values in random sample 
of 100 cases). The NLP was 100% accurate in 5/18 level 
instances (27.8%) and was least accurate at right L5-S1, cor-
rectly classifying the severity in 86% of cases.

Fig. 1   Two examples of NLP analysis of archived radiology report 
text (A). Using regular expression methods and the structured or 
semi-structured nature of LMRI spine reporting, the NLP algorithm 

extracted severity scores for the lumbar spine, resulting in a 6 × 3 
matrix of values ranging 0–5 (normal–severe). The composite sever-
ity score is the sum of these values
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Relationship of CSS, Age, and Sex

Mean CSS for the full study population was 6.04 ± 0.07. The 
relationship of CSS and RT to patient age is shown in Fig. 2A 
and showed a moderate positive correlation with Pearson cor-
relation coefficient R = 0.44 (p < 0.001) and a weak positive 
correlation between age and RT (Pearson coefficient R = 0.16, 
p < 0.001). The distribution of CSS was exponential and dif-
fered by different age group with increasing flattening of the 
distribution at higher age groups, indicating a shift toward 
higher CSS (Fig. 2B). The distribution of CSS differed 
between men and women (K-S test, p < 0.001, Fig. 3A). Mean 
CSS was higher for men than women overall (7.0 ± 0.11 vs. 
5.23 ± 0.09, p < 0.001) and the relative difference in propor-
tion by sex is shown for each CSS value in Fig. 3B. The rela-
tionships of age and sex to CSS are summarized in Table 1.

Predictive Value of CSS on RT

There was a modest, positive correlation between CSS 
and RT (Pearson’s R = 0.23, p < 0.001). In a log–log 
linear regression model, CSS was a significant predic-
tor of RT (adjusted R2 = 0.063) according to the func-
tion ln(RT) = 2.14 + 0.17(ln(CSS)) (F1,13386) = 905.6, 
p < 0.001) meaning that for every 1% increase in CSS, 
we predict a 0.17% increase in RT. The predictive rela-
tionship of mean RT to CSS was better modeled using a 
3rd order polynomial regression which shows an adjusted 
R2 = 0.38 (p < 0.001) (Fig. 4). Polynomial regression for 
the low CSS range (0–25) showed a stronger predictive 
value (R2 = 0.83, p < 0.001) compared to high CSS range 
(> 25) (R2 = 0.15, p = 0.05) (Supplemental Fig. 3).

Table 1   The mean composite severity score (CSS) and interpretation and reporting time (RT) for the full study population and subgroups by sex 
and age

* Interquartile range

CSS mean ± SE p Value RT (min) p Value

Total population (n = 13,388) 6.04 ± 0.07 –- 14.41 ± 0.1 –-

Sex Pairwise t test ANOVA Pairwise t test ANOVA

Men (n = 6088) 7.0 ± 0.11  < .001 –- 14.56 ± 0.15 0.17 –-
Women (n = 7300) 5.23 ± 0.09 14.29 ± 0.14
Age groups
 < 40 (n = 2885) 1.63 ± 0.06 –-  < .001 11.9 ± 0.2 –-  < .001
40–50 (n = 2440) 3.20 ± 0.10  < .001 13.23 ± 0.22  < .001
50–60 (n = 2844) 5.38 ± 0.12  < .001 14.38 ± 0.21  < .001
60–70 (n = 2639) 8.35 ± 0.18  < .001 15.7 ± 0.23  < .001
70–80 (n = 1817) 11.47 ± 0.25  < .001 16.32 ± 0.28 0.07
80 + (n = 763) 13.29 ± 0.44  < .001 18.83 ± 0.47  < .001

Fig. 2   Distribution of composite severity score (CSS) showed a moderate positive correlation between age and disease severity (Pearson’s 
R = 0.44, p < 0.001) A. The distribution of CSS by age group B showed greater proportion of higher CSS in older patients
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The interpreting radiologist identity was also a sta-
tistically significant predictor for RT, accounting for a 
larger portion of variance than CSS (adjusted R2 = 0.45, 
F(151,13236) = 73.97, p < 0.001). Simple regression mod-
els also identified smaller, significant predictive value 
of age (adjusted R2 = 0.04, F(1, 13386) = 528.4, p < 0.001), 
sex (adjusted R2 =  < 0.01, F(1, 13386) = 4.47, p = 0.03), and 
requesting service (adjusted R2 = 0.026, F(3, 13384) = 118.7, 
p < 0.001). In the multiple regression model incorporating 
all 5 predictors (CSS, interpreting radiologist, patient age, 

patient sex, and requesting service), each variable was a 
significant and independent predictor of RT (p < 0.001 for 
each). In this 5-variable model, the adjusted R2 was 0.52 
(F(216, 13171) = 67.56, p < 0.001) and the interpreting radiolo-
gist was the most important predictor (partitioned R2 = 0.43) 
followed by CSS (partitioned R2 = 0.043), age (partitioned 
R2 = 0.025, requesting service (partitioned R2 = 0.19), and 
sex (partitioned R2 = 0.00024).

We next examined the CSS in 10 groups, based on rela-
tive sample size distribution deciles. The relationship of CSS 
groups and RT is shown in Fig. 5. There were significant 
stepwise increases between groups (ANOVA, p < 0.001) and 
pairwise analysis showed a significant, stepwise for each 
sequential group except the transition from CSS 21–30 
to CSS 31–40 (p = 0.74) and CSS 31–40 to CSS 41–50 
(p = 0.13) (Table 2).

Because the effect size of individual radiologist iden-
tity was large, the mean RT as a function of mean CSS 
was plotted for individual radiologists, excluding the 5% 
upper and lower tail outliers (Fig. 6). There was a signifi-
cant positive relationship between mean CSS and RT by 
radiologist (Pearson’s R = 0.26, p = 0.002). There was also 
a significant negative correlation between the radiologist’s 
study volume (number of studies interpreted by each radi-
ologist over the 10-year period) and mean RT (Fig. 7A, 
Pearson’s R =  − 0.35, p < 0.001). Pairwise t tests between 
radiologist volume quintiles showed significant decrease 
in mean RT between the 3rd and 4th quintiles (Fig. 7B) 
(25.02 ± 5.13 min vs. 20.76 ± 5.30 min, p = 0.02) and the 
4th and 5th quintiles (20.76 ± 5.30 min vs. 15.00 ± 3.67 min, 
p = 0.004). There were no significant pairwise differences 
in the 1st–3rd quintiles (p > 0.05). The correlation between 

Fig. 3   The distribution of composite severity scores (CSS), stratified 
by sex (M = male, F = female, A) showing an exponential pattern. 
Distribution of CSS for men and women differed (K-S test p < .001). 
A large portion of both groups including 1797/6088 (27.87%) men, 

2679/7300 (36.69%) women had CSS = 0 (normal). The proportions 
of the sex distributions are compared in B by CSS value indicating 
relative greater proportion of normal and low CSS for women (0–5) 
and relative greater proportion of higher CSS (10–40) in men

Fig. 4   CSS was a significant predictor of RT in least squares polyno-
mial regression (R2 = 0.38, p < 0.001). Mean values for each CSS are 
plotted with vertical lines indicating standard error. Red dashed line 
shows the regression model with shading indicating 95% confidence 
interval of the model
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individual radiologist volume and CSS was nonsignificant 
(p = 0.75).

Discussion

The CSS is a tool for quantifying radiologic complexity in 
lumbar spine MRI and is a significant, independent predic-
tor of interpretation and reporting time (RT). The relation-
ship of CSS and RT supports the anecdotal observation 
that severe LSDD is more challenging to interpret than 

normal anatomy, measured in terms of time spent generat-
ing a final radiology report. The CSS may be useful as a 
‘correction factor’, allowing studies to be weighted based 
on overall complexity. The CSS could then be applied to 
quality improvement by defining efficiency benchmarks, 
ensuring equitable distribution of work, and improving 
existing measures of radiologist productivity (i.e., RVU).

The principle finding of this study is that the CSS is a 
reasonable predictor of mean RT (R2 = 38%). Notably, the 
CSS performed better at low-range CSS than high-range 
CSS (R2 = 83% vs. 15%), suggesting a de-coupling of this 

Fig. 5   The relationship of CSS 
group to RT shown as box-and-
whisker plots. The box deline-
ates the median and interquar-
tile range. Individual CSS-RT 
relationship is superimposed 
as a color-matched dot within 
each CSS group. Significant 
pairwise increase in RT is indi-
cated by *p < 0.05, **p < 0.01, 
***p < 0.001

Table 2   The relationship 
of CSS and RT subdivided 
by 10 CSS groups. Mean 
RT increased in a stepwise 
fashion (pairwise t test) at each 
increment except for CSS 21–30 
to 31–40 and CSS 3140 and 
41–50

* Pairwise t test with Benjamini–Hochberg correction

Interpretation and reporting time (RT) as a function of composite severity score (CSS) group

CSS group Mean RT (min) 
(± SE)

Median RT (min) 
(interquartile range)

p value

Pairwise t test ANOVA
Normal (n = 4376) 11.76 (± 0.15) 8.60 (9.42)
1 or 2 (n = 2154) 12.89 (± 0.22) 9.78 (10.50)  < .001  < .001
3–5 (n = 2012) 14.72 (± 0.26) 10.97 (12.48)  < .001
6–9 n = 1801) 15.49 (± 0.28) 11.99 (12.95) 0.04
10–15 (n = 1438) 17.07 (± 0.33) 13.26 (14.72)  < .001
16–20 (n = 680) 18.36 (± 0.48) 14.92 (16.32) 0.02
21–30 (n = 637) 20.22 (± 0.53) 16.33 (16.92) .003
31–40 (n = 204) 20.52 (± 0.91) 17.21 (19.01) 0.74
41–50 (n = 66) 22.96 (± 1.53) 21.60 (18.06) 0.13
Above 50 (n = 20) 29.61 (± 3.25) 29.05 (19.63) .02
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relationship for LMRI studies with large burden of LSDD. 
In multiple regression, CSS was relatively less important 
than the identity of the interpreting radiologist. Taken 
together, these findings indicate that LSDD severity is only 
one of many factors which influence real-time radiologist 
efficiency. Nonetheless, we can extract meaningful bench-
marks from this large dataset which estimates an increase 
in median RT of 50% for LMRI studies with a CSS of ~ 12 

relative to a normal study (CSS = 0). The Current Procedural 
Terminology (CPT) Code for non-contrast LRMI (72,148) 
in the Washington, DC area, is assigned a global RVU of 
6.32, of which 1.48 RVU is allocated for physician work 
(estimated payment ranging from $220.87 to $273.47) [4, 
18, 19]. LMRI can therefore account for a considerable por-
tion of revenue for both academic and private groups. Within 
a radiology practice, a CSS-weighted RVU could result in 
more equitable recognition of work, accounting for proce-
dural complexity, a process which has been used to improve 
performance and quality in pediatrics and surgery[20, 21]. 
Moreover, the CSS was a stronger relative predictor of RT 
than conventional demographic information (sex, age) and 
referring service (inpatient, outpatient, emergency). The 
CSS also remained a robust predictor despite significant 
variation between radiologists with different training back-
grounds and experience level.

Differences observed in CSS by sex and age group are 
largely consistent with prior cohort studies of LSDD in 
cohort populations, supporting the feasibility of the model 
[22–25]. The distribution of CSS by sex indicates a higher 
prevalence of normal-low CSS for women and conversely, 
higher prevalence of high CSS for men, consistent with prior 
work showing sex differences in lumbar spine degeneration 
patterns, attributed to occupational and hormonal differ-
ences, gestation, among others [26]. In our population, the 
difference in CSS was significant (7.00 vs. 5.23 for men 
and women, respectively, p < 0.001), and the distribution of 
CSS also differed by sex. However, despite these anatomic 
differences, there was no sex difference in RT. It is unclear 
if this asymmetry is due more to sex-specific differences in 
natural history and disease prevalence, other unaccounted 

Fig. 6   Individual radiologist practice patterns: the relationship of 
mean CSS and mean RT for each radiologist included in this study 
(n = 152), excluding 5% upper and lower tail outliers. Each point 
represents an individual radiologist and point size is proportional to 
cumulative volume of LMRI for that individual. The volume quin-
tiles are indicated by the color scale. Vertical and horizontal lines 
represent median RT and CSS, respectively. There was a significant 
positive correlation between mean CSS and mean RT (R = 0.26, 
p = 0.002)

Fig. 7   The relationship of individual radiologist LMRI volume and 
RT, color-coding represents LMRI volume by quintile (purple = 1st…
yellow = 5th). A Mean RT as a function of radiologist volume, indi-
cating a significant negative relationship (R =  − 0.35, p < 0.001). 

Vertical and horizontal lines indicate median LMRI volume (by radi-
ologist) and median RT, respectively. Between-group differences for 
quintiles are shown as box and whisker plots B; between-group differ-
ences are indicated by *p < 0.05, ***p < 0.001
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sex differences in anatomy, or potentially due to implicit 
bias. While the CSS is not sufficient to directly inform surgi-
cal decision-making, the utility of CSS in predicting surgical 
candidacy as well as its correlation with functional status 
could be evaluated in future work.

Lastly, while CSS was an important predictor of RT, the 
effect size attributable to different radiologists was tenfold 
higher in the multiple regression model (43% vs. 4.3%). In a 
population of 152 radiologists, significant variation in train-
ing, experience, and clinical role could all contribute to this 
effect. Still, the relationship of CSS and RT showed a signifi-
cant correlation across radiologists despite substantial dif-
ferences in individual practice patterns (R = 0.26, p = 0.002). 
There was a highly significant negative relationship between 
cumulative study volume and RT indicating that radiolo-
gists who read more LMRI over the 10-year period tended to 
report studies more efficiently. This effect was driven largely 
by the top quintile of radiologists, who read a disproportion-
ately high number of studies. This may reflect experience; 
radiologists with higher cumulative volume have likely been 
in practice longer and may need less time to interpret LMRI; 
alternatively, radiologists who interpret studies quickly 
(regardless of experience) are likely to have higher volume 
overall. The impact of CSS on individual reader practice 
could be studied in future, prospective work.

The major strength of this study is the large and heterog-
enous dataset from which the input and outcome variables 
are derived. By modeling the LSDD pattern of over 12,000 
unique patients, the CSS reflects large sample distribution 
which is likely representative of the general population. The 
CSS also incorporates the interpretation styles and practice 
behaviors of over 150 radiologists. The use of timestamp-
derived performance metrics is also a strength because these 
values represent “real-world” practice and more likely to 
capture realistic practice patterns than an artificial experi-
mental setting.

The principal limitations of this study lie in the assump-
tions used to build our measurement variable (CSS) and 
outcome variable (RT). Our CSS model does not account 
for NLP model error, which, although uncommon, could 
bias the CSS from ground truth report text. Moreover, the 
NLP tool was validated on the complete dataset rather than 
the study population (n = 13,388). It is plausible that the 
exclusion criteria for this study may introduce additional 
unmeasured bias in NLP accuracy. Further, we opted to 
use reporting text rather than the underlying radiographic 
images that were not referenced as a standard. Instead, our 
CSS presumes high fidelity translation of disease severity in 
the report and does not account for inter-reader variability. 
Nonetheless, the simplicity of the CSS provides an intui-
tive understanding of the interpretation process. Lastly, the 
generalizability of our results outside of this single academic 

institution is uncertain. Significant variations in reporting 
style, case mix, and patient demographics all likely con-
tribute to variance in RT in other organizations and may 
not translate to private practice workflows. Extrinsic factors 
such as time of day, day of week, and more granular clini-
cal factors such as chief complaint are all likely important 
predictors of RT not included in this model. Future work 
should strive to integrate intrinsic (i.e., disease severity, sex, 
age) and extrinsic (i.e., time, date, scanner) factors to predict 
RT toward a more comprehensive and equitable model of 
radiologist efficiency.

Conclusion

The CSS is an NLP-based method for analyzing lumbar 
MRI reports which allows quantitative characterization of 
degenerative disease severity in a large population of imaged 
patients. The CSS summates the cumulative severity of 18 
lumbar spine components providing a global marker of 
LMRI study complexity which is a significant and independ-
ent predictor of radiologist reporting time. The CSS may 
improve existing quality metrics by allowing one to weight 
metrics such as the RVU by study complexity.
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