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Abstract
To investigate the correlations between ultrasonographic morphological characteristics quantitatively assessed using a deep
learning-based computer-aided diagnostic system (DL-CAD) and histopathologic features of breast cancer.
This retrospective study included 282 women with invasive breast cancer (<5cm; mean age, 54.4 [range, 29–85] years) who

underwent surgery between February 2016 and April 2017. The morphological characteristics of breast cancer on B-mode
ultrasonography were analyzed using DL-CAD, and quantitative scores (0–1) were obtained. Associations between quantitative
scores and tumor histologic type, grade, size, subtype, and lymph node status were compared.
Two-hundred and thirty-six (83.7%) tumors were invasive ductal carcinoma, 18 (6.4%) invasive lobular carcinoma, and 28 (9.9%)

micropapillary, apocrine, and mucinous. The mean size was 1.8±1.0 (standard deviation)cm, and 108 (38.3%) cases were node
positive. Irregular shape score was associated with tumor size (P< .001), lymph nodes status (P= .001), and estrogen receptor
status (P= .016). Not-circumscribed margin (P< .001) and hypoechogenicity (P= .003) scores correlated with tumor size, and non-
parallel orientation score correlated with histologic grade (P= .024). Luminal A tumors exhibitedmore irregular features (P= .048) with
no parallel orientation (P= .002), whereas triple-negative breast cancer showed a rounder/more oval and parallel orientation.
Quantitative morphological characteristics of breast cancers determined using DL-CAD correlated with histopathologic features

and could provide useful information about breast cancer phenotypes.

Abbreviations: BI-RADS = breast imaging-reporting and data system, DL-CAD = deep learning-based computer-aided
diagnosis, ER = estrogen receptor, HER2 = human epidermal growth factor receptor 2, IHC = immunohistochemical, LN = lymph
nodes, MG = mammography, MRI = magnetic resonance imaging, PR = progesterone receptor, ROI = region of interest, TNBC =
triple-negative breast cancer, US = ultrasonography.
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1. Introduction
Breast cancer is the most commonly diagnosed cancer and the
leading cause of cancer-related deaths in women worldwide.[1]

Histopathologic evaluation of breast cancer by tissue sampling is
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essential for treatment planning and prediction of prognosis, and
it provides information on the tumor size, histologic grade, nodal
status, expression of estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor 2
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(HER2), which are very important prognostic markers.[2,3]

Recent advances in image acquisition, computational power, and
algorithmic development have allowed quantitative information
acquisition from computer-aided diagnosis.[4–8] Imaging techni-
ques have been shown to non-invasively provide information
regarding the underlying histopathology,[9] and this technology
has been adopted previously to phenotypically characterize
breast cancers using preoperative magnetic resonance imaging
(MRI).[10–12]

Ultrasound (US) has many advantages such as ease of
accessibility without the need for radiation and contrast material.
Recently, high-resolution US has proven useful for the evaluation
of small structures, such as nerves or tendons, and its diagnostic
accuracy is comparable to that of MRI.[13,14] US is a widely used
imaging modality for breast cancer detection in adjunct to
mammography (MG) in women with dense breasts and breast
mass differentiation.[15] In breast cancer evaluation, US can be
used to assess the extent, multifocality, and multicentricity of the
tumor in the breast, and axillary lymphadenopathy.[16–18]

Besides, US is useful for the treatment response monitoring of
breast cancer.[19,20] However, US has some limitations, including
operator dependency and limited reproducibility. Consequently,
quantitative and objective analyses of morphological character-
istics with US are limited, and the correlation between
breast cancer and histopathologic features has not been well
investigated.
Recent advances in artificial intelligence, particularly deep

learning algorithms, have gained extensive attention owing to
their excellent performance in image recognition tasks.[21] It can
be used to detect subtle findings in US images that expert
radiologists overlook and automatically produce a quantitative
assessment.[7,8] Deep learning-based computer-aided diagnosis
(DL-CAD) software for breast US has been developed and
applied in clinical practice, and its assistance in the morphologi-
cal analysis of breast masses has improved diagnostic accuracy
and sensitivity.[8,22–24] A recently developed, commercially
available DL-CAD software for breast US (S-Detect; Samsung
Medison Co., Seongnam, Korea) provides computer-based
analysis of breast tumors based on morphologic features using
a novel feature extraction technique and support vector machine
classifier that provides a dichotomized final assessment of breast
mass, possibly benign or possibly malignant, based on the
American College of Radiology Breast Imaging Reporting and
Data System ultrasonographic descriptors.[8,25,26]

In addition to lesion differentiation, we assume that the
quantitative morphological information regarding breast cancer
obtained on US would provide histopathologic information,
including molecular subtypes, similar to quantitative radiomics
analysis using MRI.[27–30] Previous studies have revealed that
irregular shape and spiculated or indistinct margins with
posterior acoustic shadowing are associated with the luminal
subtype, and oval to round shape and circumscribed margins
with posterior acoustic enhancement are common in triple-
negative breast cancer (TNBC) on breast US.[31–34] However, the
mass characteristics were assessed by qualitatively by radiologist,
and quantitative assessment was not performed. The limitations
of ultrasound, especially operator dependency, could be reduced
by proving an association between quantitative assessment of
ultrasound images using DL-CAD and histopathologic features,
such as a specific tumor subtype.
Therefore, the purpose of our study was to investigate the

correlations between ultrasonographic morphological character-
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istics, quantitatively assessed using DL-CAD, and histopatholog-
ic features of breast cancer.
2. Methods

2.1. Patients

We present the following article in accordance with the STROBE
reporting checklist. The Institutional Review Board of Yeungnam
University Hospital (IRB No. 2018-07-016) approved this
retrospective study and waived the requirement for informed
consent. All the methods in the study involving human
participants were performed in accordance with relevant guide-
lines and regulations of the institutional and/or national research
committee and with the 1964 Helsinki declaration and its lateral
amendments or comparable ethical standards. Between February
2016 and April 2017, 459 women with newly diagnosed invasive
breast cancer (on percutaneous biopsy) who had previously
undergone preoperative breast US and subsequent surgery were
included through a review of medical records at our institution, a
tertiary academic hospital. Women were excluded if they had
only ductal carcinoma in situ without invasive cancer on the
surgical specimen (n=84), the tumor was >5cm (n=32), had
previously undergone neoadjuvant chemotherapy before surgery
(n=52), had previously undergone vacuum-assisted or excisional
biopsy for diagnosis before preoperative US (n=8), and had
insufficient immunohistochemical (IHC) results on pathologic
reports (n=1). Only the tumors with the largest dimensions were
included in womenwithmultifocal or multicentric breast cancers.
Finally, a total of 282 consecutive women (mean age, 54.4years;
range, 29–85years) were included in our study.

2.2. Ultrasound image acquisition

Preoperative breast US was performed by one of the two board-
certified breast radiologists (KYS and HMS with 5 and 25years
of experience in breast imaging, respectively) using iU22 (Philips
Medical Systems, Bothell, WA) with a 5 to 12MHz linear array
transducer. All breast ultrasound examinations were performed
in real-time with a handheld ultrasound probe, and bilateral
whole-breast scanning was conducted. A standardized scanning
protocol was used for every examination, using the transverse
and sagittal orientations, with the inner aspect of the breast
scanned with the patient in a supine position, and the outer aspect
in supine oblique position, with the patient’s ipsilateral arm
raised above the head. The axilla was routinely scanned before
the breast in our protocol.
Two additional board-certified breast radiologists (KYS and

CJM with 5 and 13years of experience in breast imaging,
respectively) retrospectively reviewed the US images and selected
the most representative image with consensus for each tumor for
CAD analysis. Following image selection, each image was stored
in the DICOM format.

2.3. Pathologic analysis

All patients underwent breast surgery, including breast-conserv-
ing surgery (n=202, 71.6%) or mastectomy (n=80, 28.4%). We
reviewed each patient’s pathological report of the surgical
specimen to identify the invasive tumor size, histologic grade
based on the Elston–Ellis system,[35] histologic types of invasive
cancer, lymph node (LN) status, and IHC analysis findings (i.e.,
ER, PR, and HER2 status, Ki67). For the interpretation of IHC
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analysis, semi-quantitative scorings of the percentage of positive
cells with nuclear staining (range, 0–100%) was used for ER and
PR expression levels. The cutoff value for defining ER and PR
positivity was 1%.[36] IHC analysis results were initially used to
define HER2 expression, and tumors with a score of 3+ were
defined as HER2-positive, and those with a score of 0 or 1+ were
defined as HER2-negative. For cases with a score of 2+ on IHC,
silver-enhanced in situ hybridization for the HER2 gene was
performed to define HER2 expression. The percentage of the
total number of tumor cells with nuclear staining was used to
define the Ki67 index.[37] Breast cancers were divided into 4
subtypes based on the IHC results: luminal A (ER- and/or PR-
positive, HER2-negative, Ki67�20%), luminal B (ER- and/or
PR-positive, either HER2-positive or HER2-negative with Ki67
>20%), HER2-positive (HER2-positive, ER- and PR-negative),
and triple-negative (ER-, PR-, and HER2-negative).[38]
2.4. Analysis of quantitative morphologic scores using
DL-CAD

A commercially available DL-CAD software (S-Detect; Samsung
Medison Co., Seongnam, Korea) for breast USwas used to obtain
quantitative morphological information on mass features, and
the final assessment was performed at a dedicated workstation. It
provides computer-based analysis of tumor morphology using a
novel feature extraction technique and a support vector machine
classifier.[25] The current commercially available version of the
DL-CAD software only displays the final assessments in a
dichotomized form as “possibly benign” or “possibly malignant”
based on the maximum value of each breast imaging-reporting
Figure 1. Analysis of morphologic score of tumor on US using deep learning base
line) was automatically drawn along the border of the tumor in a 46-year-old woman
ROI. The table shows quantitative scores of this tumor obtained from DL-CAD s
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and data system (BI-RADS) descriptor (shape, margin, orienta-
tion, echo pattern, and posterior echogenic features), and does
not present the quantitative morphologic scores. However, with
technical support from Samsung Medison Co. (Seongnam,
Korea), we used the original outputs (quantitative scores) of
the DL-CAD software to analyze the US images. In the algorithm
used, deep learning technology was applied during the generation
of quantitative morphologic scores to build a classifier for BI-
RADS descriptors. A series of layers of simple components
constitute a network, each having their own nonlinear mappings
between the input and output. In contrast to conventional
machine learning, where human experts need to select represen-
tative imaging features, deep learning algorithms do not require
human input. Instead, they determine the manner in which
internal parameters are the best representations of data from
large high-dimensional datasets via learning procedures.[39]

Combining the output for each BI-RADS descriptor with that
of the other network for classifying the region of interest (ROI)
images results in the final decision.[39–41]

Using DL-CAD software, the radiologists indicated the center
of themass, and aROIwas automatically drawn along the border
of the mass. When the mass boundary was inadequately drawn,
manual correction was performed. It automatically generated
quantitative output values in a range between 0 and 1 for mass
shape, orientation, margin, posterior features, and echo pattern
for ROI-based masses on US according to the 5th edition of the
BI-RADS lexicon (Fig. 1). To simplify the analysis, the internal
values of shape, orientation, margin, and echo pattern were
collected and arranged in a dichotomized manner (i.e., shape:
irregular vs not-irregular, margin: circumscribed vs not-circum-
d computer-aided diagnosis (DL-CAD) software. A region of interest (ROI) (red
, and the USmorphologic features were analyzed by the DL-CAD based on the
oftware (∗ pectoralis muscle under the lesion).
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Table 1

Patient and tumor characteristics.

Characteristics Value

Patient characteristics (n=282)
Age, y
Mean± standard deviation 54.4±11
Median, range 54, 29–85

Operation
Breast-conserving surgery 202 (71.6)
Mastectomy 80 (28.4)

Tumor characteristics (n=282)
Invasive tumor size, cm
<1 41 (14.5)
1–2 151 (53.6)
>2 90 (31.9)

Histologic type
Ductal, NOS 236 (83.7)
Lobular 18 (6.4)
Others 28 (9.9)

Histologic grade
I 53 (18.8)
II 90 (31.9)
III 139 (49.3)
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scribed, echogenicity: hypoechoic vs not-hypoechoic, orientation:
parallel vs not-parallel).

2.5. Data and statistical analysis

The quantitative morphological scores obtained using the DL-
CAD software and the histopathological findings of the
subsequent surgical specimens of 282 tumors were reviewed.
We analyzed the correlation between the pathological features
(mass size, tumor histologic grade, LN status, molecular subtype,
etc) and quantitative scores of masses for each lexicon on US. The
tumors were subdivided into 3 groups according to the size of the
mass:<1cm, 1 to 2cm, and>2cm. The quantitative scores of the
masses on US were analyzed according to histopathological
features using Student t test or one-way analysis of variance. In
addition, multiple linear regression analysis with the stepwise
selection method was used to determine the relative influence of
the different histopathological features on the quantitative scores
of masses for each lexicon on US. All statistical analyses were
performed using SPSS statistics version 25 for Windows (SPSS
Inc., Chicago, IL), and a P value <.05 was considered to indicate
a significant difference.
Lymph node status
Negative 174 (61.7)
Positive 108 (38.3)

ER
Negative 62 (22.0)
Positive 220 (78.0)

PR
Negative 90 (31.9)
Positive 192 (68.1)

HER2
Negative 240 (85.1)
Positive 42 (14.9)

Subtype
Luminal A 144 (51.1)
Luminal B 77 (27.3)
HER2-positive 22 (7.8)
Triple-negative 39 (13.8)

Unless otherwise specified, data are presented as the numbers of patients with percentages in
parentheses.
3. Results

3.1. Baseline characteristics

A total of 282 tumors from 282 consecutive women were
included in our study. The mean size of the 282 invasive tumors
was 1.8±1.0 (standard deviation) cm. For the histologic type of
breast cancer, invasive ductal carcinoma, not otherwise specified
(IDC, NOS) was the most common histologic type (n=236,
83.7%), followed by invasive lobular carcinoma (ILC) (n=18,
6.4%). There were 192 (68.1%) pathologic T1-stage tumors and
90 (31.9%) T2-stage tumors. Most cases were LN-negative (n=
174, 61.7%). The IHC results showed that luminal A tumors
were the most common tumors (n=144, 51.1%), followed by
luminal B tumors (n=77, 27.3%), TNBC (n=39, 13.8%), and
HER2-positive tumors (n=22, 7.8%). Patient and tumor
characteristics are listed in Table 1.
ER= estrogen receptor, HER2=human epidermal growth factor receptor, NOS=not otherwise
specified, PR=progesterone receptor.
3.2. US morphological characteristics associated with
histopathologic features

We analyzed the correlations between US quantitative morpho-
logical scores obtained using DL-CAD and pathologic features,
including tumor size, tumor histologic grade, LN status, receptor
status, and tumor subtype. In the univariate analysis, the
irregular shape score on US was higher in tumors with specific
pathologic characteristics, including larger invasive size,
positive LN status, and ER-positive and luminal A subtypes.
Not-circumscribed margin (P< .001) and hypoechogenicity
(P= .003) scores on US correlated with pathologic tumor size,
and not-parallel orientation score on US correlated with
histologic grade (P= .024) (Table 2). The quantitative scores
for margin and echogenicity on US did not differ according to
certain pathologic characteristics, including histologic grade, LN
status, ER, PR, HER2 status, and tumor subtype.Multiple linear
regression analysis revealed that pathologic tumor size was the
only significant independent factor associated with quantitative
US scores for irregular shape (P< .001) and not-circumscribed
margin (P< .001).
4

3.3. US morphological characteristics associated with
pathologic molecular subtypes

Since the pathologic size of the mass was the strongest factor
associated with morphological characteristics on US, we
analyzed the correlation between the quantitative score obtained
using DL-CAD on US and the pathologic molecular subtype in
T1-stage breast cancer to reduce the influence of tumor size on the
analysis. The results of the multiple linear regression analyses are
presented in Table 3. The pathologic molecular subtype
independently correlated with the quantitative US scores of the
irregular shape, not-circumscribed margin, and not-parallel
orientation. Luminal A tumors (Fig. 2) showed higher US scores
for irregular shape than TNBC (Fig. 3) and higher US scores for
not-circumscribed margin and not-parallel orientation than
luminal B tumors or TNBC. However, for tumors >2cm in
size, no significant variables were observed. As the pathologic size
of the invasive tumor increased, the tumor tended to show amore
irregular shape without a circumscribed margin on the US,
regardless of the pathologic molecular subtype (Fig. 4).



Table 2

Correlations between histopathologic features and results of quantitative analysis of invasive breast cancer using DL-CAD.

Shape Margin Echogenicity Orientation

Pathologic feature Irregular P-value Not-circumscribed P-value Hypoechoic P-value Not-parallel P-value

Invasive tumor size, cm <.001 <.001 .003 .506
<1.0 0.32±0.33 0.49±0.43 0.70±0.31 0.39±0.41
1.0–2.0 0.58±0.31 0.77±0.29 0.82±0.26 0.47±0.38
>2.0 0.74±0.29 0.88±0.25 0.87±0.21 0.44±0.35

Histologic grade .529 .404 .054 .024
I (n=53) 0.56±0.34 0.72±0.35 0.74±0.32 0.53±0.39
II (n=90) 0.62±0.34 0.80±0.30 0.82±0.26 0.49±0.39
III (n=139) 0.59±0.33 0.76±0.34 0.84±0.24 0.39±0.36

LN status .001 .097 .146 .939
Negative (n=174) 0.55±0.34 0.74±0.34 0.80±0.27 0.45±0.39
Positive (n=108) 0.66±0.31 0.81±0.31 0.84±0.24 0.45±0.36

ER status .016 .283 .164 .004
Negative (n=62) 0.50±0.34 0.73±0.33 0.86±0.23 0.33±0.34
Positive (n=220) 0.62±0.33 0.78±0.33 0.81±0.27 0.48±0.38

PR status .249 .374 .491 .021
Negative (n=90) 0.56±0.34 0.74±0.34 0.83±0.24 0.37±0.34
Positive (n=192) 0.61±0.33 0.78±0.32 0.81±0.27 0.48±0.39

HER2 status .171 .617 .522 .007
Negative (n=240) 0.61±0.33 0.77±0.33 0.82±0.26 0.47±0.38
Positive (n=42) 0.53±0.33 0.74±0.34 0.79±0.28 0.31±0.32

Subtype .048 .296 .587 .002
Luminal A (n=144) 0.63±0.32 0.80±0.31 0.80±0.27 0.53±0.38
Luminal B (n=77) 0.60±0.33 0.73±0.36 0.82±0.25 0.39±0.36
HER2 (n=22) 0.55±0.30 0.77±0.29 0.85±0.24 0.36±0.32
TNBC (n=39) 0.47±0.36 0.70±0.35 0.86±0.24 0.31±0.35

Data are presented as mean± standard deviation.
DL-CAD=deep learning-based computer-aided diagnostic system, ER= estrogen receptor, HER2=human epidermal growth factor receptor, LN= lymph node, PR=progesterone receptor, TNBC= triple-
negative breast cancer.
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4. Discussion

Our study demonstrated that quantitative morphological
scores obtained using DL-CADwith B-mode breast US correlated
with certain pathologic tumor characteristics, including tumor
size, histologic grade, LN status, and receptor status. Among
Table 3

Multiple linear regression analysis of molecular subtypes of breast
cancer associated with quantitative scores in T1 breast cancer.

Variable B Standard error P-value

Irregular shape score
Subtype
Lum A . . . . . . . . .
Lum B �0.110 0.057 .055
HER2 �0.088 0.088 .316
TNBC �0.307 0.074 <.001

Not-circumscribed margin score
Subtype
Lum A . . . . . . . . .
Lum B �0.145 0.061 .018
HER2 �0.019 0.094 .840
TNBC �0.182 0.080 .024

Not-parallel orientation score
Subtype
Lum A . . . . . . . . .
Lum B �0.250 0.066 <.001
HER2 �0.170 0.102 .096
TNBC �0.302 0.087 .001

HER2=human epidermal growth factor receptor, Lum A= luminal A, Lum B= luminal B, TNBC=
triple-negative breast cancer.

5

T1 stage breast cancers, luminal A tumors exhibited more
irregular features with no parallel orientation on US, whereas
TNBC showed rounder/more oval and parallel orientation
on US.
In current clinical practice, US is a widely used non-invasive

medical imaging technique for breast cancer. Breast cancer is a
highly heterogeneous disease and the tumor subtype determined
by IHC analysis is critical for determining the treatment options
and prognosis.[42,43] However, IHC analysis has certain
limitations. Owing to tumor heterogeneity, the sampling and
analysis of the tumor tissue are uncertain, and visual interpre-
tations are subjective and may lead to misinterpretations.[44,45]

Radiomics is the study identifying the relationship between tumor
characteristics at the cellular or genetic level and morphologic
characteristics on medical images.[33,45–49] It is hypothesized that
comprehensive features of the entire tumor on medical imaging
could reveal predictive associations between the images and
medical outcomes.[50] Breast cancer has been the primary focus of
radiomics research, and in these studies, the luminal subtype
tumor commonly presented as a mass with a poorly circum-
scribed margin on MG and US and showed posterior acoustic
shadowing on US.[51,52] HER2-positive subtype tumors are often
accompanied by calcifications on MG and commonly present as
irregularly shaped masses on US, and washout or fast initial
kinetics onMRI.[51,53] TNBC is often observed as a non-calcified,
relatively circumscribed mass on the MG and a circumscribed
mass with posterior acoustic enhancement on US.[51,54] Quanti-
tative evaluation using whole-tumor histogram-based imaging
features derived from apparent diffusion coefficient maps and
dynamic contrast-enhanced (DCE) MR semi-quantitative maps

http://www.md-journal.com


Figure 2. Breast ultrasound image of a 67-year-old woman showing an 11-mm luminal A subtype, grade II invasive carcinoma, not otherwise specified. On the
grayscale ultrasound image, the region of interest is drawn (in red color) along the border of the mass using the deep learning-based computer-aided diagnostic
system (A). The raw data for quantitative scores are irregular shape, 0.0915; not-circumscribed margin, 0.637; hypoechoic echogenicity, 0.959; and not-parallel
orientation, 0.971. The gross photograph of tumor specimen (white arrow, B) and low-power hematoxylin and eosin (H&E, �7) slide of this tumor (C) revealed the
irregular shape and not-circumscribed margin of this tumor (∗ pectoralis muscle under the lesion).
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or multiparametric MRI have provided useful information for
differentiating TNBC from other subtypes on MRI.[55,56]

Thus far, radiomics research using US has been limited owing
to its operator dependency and subjective interpretation
characteristics. The recent development of DL-CAD enabled
the morphological analysis of breast mass based on the raw data
Figure 3. Breast ultrasound image of a 47-year-old woman with a 15-mm TNBC
grayscale ultrasound image, the region of interest is drawn (in red color) along the
system by DL-CAD (A). The raw data for quantitative scores are irregular shape, 0
parallel orientation, 0.004. The gross photograph of tumor specimen (white arrow
revealed the oval shape and circumscribed margin of this tumor (∗ pectoralis musc
NOS=not otherwise specified.

Figure 4. Breast ultrasound image of a 73-year-old woman with a 27-mm TNBC
grayscale ultrasound image, the region of interest is drawn (in red color) along the b
system DL-CAD. The raw data for quantitative scores are irregular shape, 0.991; n
orientation, 0.423. The gross photograph of tumor specimen (white arrows, B) and
irregular shape and not-circumscribedmargin of this tumor. Since the large size of th
(∗ pectoralis muscle under the lesion). DL-CAD=deep learning-based computer-

6

of quantitative scores for the BI-RADS lexicon. Several studies
have reported that DL-CAD can help improve the diagnostic
performance, especially accuracy and specificity, of breast US for
distinguishing benign from malignant lesions.[24,26,56,57] How-
ever, to the best of our knowledge, no study has analyzed raw
data itself, driven by DL-CAD, to quantify the morphological
subtype, grade III invasive carcinoma, not otherwise specified NOS. On the
border of the mass using the deep learning-based computer-aided diagnostic
.020; not- circumscribed margin, 0.019; hypoechoic echogenicity, 0.990; not-
, B) and low-power hematoxylin and eosin (H&E, �7) slide of this tumor (C)

le under the lesion). DL-CAD=deep learning-based computer-aided diagnosis,

subtype, grade III invasive carcinoma, not otherwise specified NOS. On the
order of the mass by using the deep learning-based computer-aided diagnostic
ot-circumscribed margin, 0.998; hypoechoic echogenicity, 0.957; not-parallel
low-power hematoxylin and eosin (H&E, �7) slide of this tumor (C) revealed the
e tumor, the entire morphology of tumor was not included in the one same slide
aided diagnosis, NOS=not otherwise specified.
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characteristics of breast cancers. Kim et al[58] analyzed the
diagnostic performance of breast US using quantitative variables,
but the quantitative variables in that study were width, height,
height/width ratio, area, and depth. This is the first study focusing
on the correlation between molecular subtype and sonographic
features of breast cancer using quantitative analysis by DL-CAD
with breast US.
Our DL-CAD-based results are consistent with those of

previous studies revealing that luminal subtype tumors tend to
present as a mass with a poorly circumscribed margin, HER2-
positive subtype as an irregular mass with a not-circumscribed
margin, and TNBC as a distinct mass with a circumscribed
margin on US when the tumor size is <2cm.[51] However, an
interesting finding was that as the pathologic size of the invasive
tumor increased, the tumor tended to show a more irregular
shape without a circumscribed margin on the US regardless of the
molecular subtype, which meant that the molecular subtype of
the tumor was significantly correlated with the ultrasonographic
morphological characteristics only when the tumor size was
below the T1 stage. Thus, the imaging phenotypes of breast
cancer should be cautiously interpreted based on tumor size.
Our study had some limitations. First, this was a retrospective

study from a single center with a limited number of cases.We used
representative still images stored in the PACS system instead of
real-time ultrasonographic examinations during image analysis by
DL-CAD; thus, there is the possibility of selection bias and reader
variability in determining the representative images of breast
cancer. Second, non-mass lesions were not included in this study.
Third, ourfindings do not suggest a clinically useful cutoff value by
DL-CAD to assign tumor molecular subtypes using US images.
In conclusion, using DL-CAD, we demonstrated that quanti-

tative analysis of the morphological characteristics of breast
cancers on US correlated with the histopathologic features
and could provide useful information regarding the imaging
phenotypes of breast cancer.
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