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Abstract: Improving farm productivity is essential for increasing farm profitability and meeting the
rapidly growing demand for food that is fuelled by rapid population growth across the world. Farm
productivity can be increased by understanding and forecasting crop performance in a variety of
environmental conditions. Crop recommendation is currently based on data collected in field-based
agricultural studies that capture crop performance under a variety of conditions (e.g., soil quality and
environmental conditions). However, crop performance data collection is currently slow, as such
crop studies are often undertaken in remote and distributed locations, and such data are typically
collected manually. Furthermore, the quality of manually collected crop performance data is very
low, because it does not take into account earlier conditions that have not been observed by the
human operators but is essential to filter out collected data that will lead to invalid conclusions
(e.g., solar radiation readings in the afternoon after even a short rain or overcast in the morning
are invalid, and should not be used in assessing crop performance). Emerging Internet of Things
(IoT) technologies, such as IoT devices (e.g., wireless sensor networks, network-connected weather
stations, cameras, and smart phones) can be used to collate vast amount of environmental and crop
performance data, ranging from time series data from sensors, to spatial data from cameras, to human
observations collected and recorded via mobile smart phone applications. Such data can then be
analysed to filter out invalid data and compute personalised crop recommendations for any specific
farm. In this paper, we present the design of SmartFarmNet, an IoT-based platform that can automate
the collection of environmental, soil, fertilisation, and irrigation data; automatically correlate such
data and filter-out invalid data from the perspective of assessing crop performance; and compute
crop forecasts and personalised crop recommendations for any particular farm. SmartFarmNet
can integrate virtually any IoT device, including commercially available sensors, cameras, weather
stations, etc., and store their data in the cloud for performance analysis and recommendations.
An evaluation of the SmartFarmNet platform and our experiences and lessons learnt in developing
this system concludes the paper. SmartFarmNet is the first and currently largest system in the world
(in terms of the number of sensors attached, crops assessed, and users it supports) that provides crop
performance analysis and recommendations.
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1. Introduction

Improving farm productivity requires crop performance to be understood and forecasted under
a wide variety of environmental, soil, fertilisation, and irrigation conditions. Productivity of a
farm can be enhanced by determining which crop variety has produced the greatest yield under
similar soil, climate, fertilisation, and irrigation conditions. The same data-driven approach to
crop selection can also address climate change, resource constraints (water, labour, and energy
shortages), and societal concerns around issues such as animal welfare, fertilizers, and environment
that often impact agricultural production [1]. According to the United Nations’ Food and Agriculture
Organization [2], food production must increase by 60% by 2050 to be able to feed the growing
population, expected to reach 9 billion. Increased crop productivity is urgently needed, and it is the
cornerstone of any solution for meeting food shortage and farm profitability problems. Smart farming
involves the use of Information Communication Technologies (ICT) and in particular, the Internet of
Things (IoT) and related big data analytics to address these challenges via the electronic monitoring of
crops, as well as related environmental, soil, fertilisation, and irrigation conditions. Such monitoring
data can be then be analysed to identify which crops and specific crop varieties can best meet the
productivity targets of any particular farm around the world. Crop variety identification involves
the use of plant phenomics (an area of biology concerned with the measurement of phenomes—the
physical and biochemical traits of organisms—as they change in response to genetic mutation and
environmental influences [3]). Therefore, smart farming permits the assoication of crop data (i.e., crop
performance, environmental, soil, irrigation, and fertilisation data) and related data analysis results
with specific crop varieties (i.e., plant genes and phenotypes). The association of information will
revolutionize the way food is produced globally..

To observe the growth of the crop under varying real-world conditions (e.g., soil quality,
environmental conditions, etc.), typical crop studies involve phenotyping to understand the key
factors (e.g., the pH levels of soil, the rate of Nitrogen depletion) affecting growth. Such studies
are conducted in natural outdoor environmental conditions and locations where plants are growing,
by varying irrigation and the application of fertilizers/additives. Internet of Things (IoT) technologies
can lower the cost and increase the scale of such studies via the collection of related time series data
from sensor networks, spatial data from imaging sensors, and human observations recorded via mobile
smart phone applications [4]. For example, IoT devices can help to capture the pH levels of soils
and the rate of Nitrogen depletion as time-series data, and share it among interested researchers and
growers for further analysis.

Point solutions for smart farming currently exist , but they can only utilise a small number of
specific IoT devices (e.g., a specific model of soil humidity sensor), and provide no support for data
analysis or sharing. Using such existing solutions also requires a significant effort in order to integrate
and correlate the data obtained from different IoT devices , e.g., data from a fertilizer sprayer on a tractor
(made by one manufacturer) with the data obtained from soil moisture sensors (made by a different
manufacturer). Existing solutions are not designed around a bring-your-own IoT sensor principle that
will allow the use of new IoT devices without modification, and permit such solutions to keep up with
the rapid development of cheaper and better IoT sensors. Furthermore, none of the existing solutions
are designed for comprehensive and scalable analysis, recommendation/visualisation, or sharing of
crop performance data among farmers, growers, biologists, government, and commercial organisations
that support farming operations and produce relevant products.

In this paper, we present SmartFarmNet, an IoT platform for smart farming applications that
provides the following:

1. Allows a bring-your-own IoT sensor principle , i.e., permits effortless integration and use of
virtually any IoT device, including commercially available sensors, cameras, weather stations,
etc. This reduces sensor installation and maintenance costs, while providing for easy upgrade to
newer and more advanced sensors.

2. Supports scalable data analytics that can continuously process large crop performance data.
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3. Offers do-it-yourself tools that allow plant biologists and farmers/growers to analyze and
visualize plant performance data.

SmartFarmNet was developed by a multi-disciplinary Australian team that included crop
biologists, computer scientists, growers, and farmers. SmartFarmNet is largest system in the world
(in terms of the number of sensors attached, crops assessed, and users it supports) that provides crop
performance analysis and recommendations. It is also the first system to provide the features (1)–(3)
above, which are the main innovations presented in this paper. Moreover, SmartFarmNet provides
tools for fast and scalable data that can cope with the enormous velocity of data (Big Data) generated
from hundreds of thousands of IoT sensors.

The rest of the paper is organised as follows. In section 2, we present a smart farming use case.
Section 3 presents the current state-of-the-art, and discusses the challenges in developing IoT-based
solutions for smart farming. Section 4 presents the architecture of the SmartFarmNet platform and
highlights its key features. Section 5 covers the software implementation of the platform. Section 6
presents evaluation results, while Section 7 outlines lessons learned. Section 8 concludes the paper.

2. A Use Case and Related Challenges for Smart Farming

Phenonet [5] is an agricultural phenotyping field laboratory, involving a variety of crop studies
that are being conducted using state-of-the-art IoT technologies [6], including sensor networks, IP
cameras, mobile smartphones, and related data analytics. These enable near real-time capture of crop
data for assessing and predicting crop performance (both short-term and long-term) for any given
environmental, soil, fertilisation, and irrigation conditions, including weather conditions, plant canopy
temperature, soil moisture, soil quality and salinity, fertiliser usage, and irrigation. Phenonet is helping
plant biologist and growers achieve the following: (1) identify the influence of different conditions on a
variety of crops in real-world outdoor farm environments; (2) understand water resource consumption
in order to manage it effectively; (3) study the impact of various fertilizers; (4) get real-time data to
forecast crop performance; and (5) share data and results. To better explain Phenonet, we provide
additional details about sample studies conducted in Phenonet. One of these studies aim to evaluate
the effect of sheep grazing on crop re-growth by looking at root activity, water use, rate of crop
growth, and crop yield. In this study, soil moisture sensors deployed at multiple depths and canopy
temperature sensors are used to track the crop roots’ extraction of water from the soil throughout the
growing season. This information is then used to measure and assess root activity and crop growth.

Figure 1 presents an overview of this Phenonet study that is conducted on a block of land that
is divided into hundreds of plot. A plot is an intersection of a row and a column in a block of land
and hosts a specific treatment to the crop being studied. For example, each plot may host a different
application of fertilizers or host the application of the same fertilizer at different times. This Phenonet
study requires support for real-time collection and delivery of data to biologists, who then share
their insights with growers and farmers, as well as related scientific organisations. Some of the main
challenges in supporting such studies and also normal farming activities include the following:

• Capturing the large volume of heterogeneous data produced by a variety of IoT sensors (and
possibly manual measurements), and doing this for a large number and variety of activities
involving different studies as well as crops.

• Supporting the integration and use of almost any IoT device, including all commercially available
sensors, camera, weather stations, etc., as this will achieve a bring-your-own sensor model of
operations that will allow farmers, growers, and scientists to take advantage of cheaper/more
capable IoT sensors, as well as individual preferences and budgets.

• Integrating heterogeneous data from such a great variety of IoT devices and also historical crop
performance data produced by past studies (such data and results are typically available in CSV
files that make it harder to use, analyse, explore, and share).

• Providing crop performance data analysis software and related tools for do-it-yourself search,
analysis and visualisation of collected data across multiple studies.
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• Sharing sensors, data, analysis tools, results, and data visualizations.

Figure 1. Overview of Phenonet.

3. Related Work and Challenges is Building IoT-Based Platforms for Smart Farming

Relational database systems (e.g., mysql [7]) have been the historic choice for storing data from the
sensors for later retrieval, analysis, and visualisation. However, the performance of these systems can
be compromised by large streams of time-series data, and they do not address most of the challenges
outlined in the Section 2.

To meet such challenges vendors such as John Deere [8], IBM [9], and SensorCloud [10] currently
explore or provide proprietary solutions that support specific sensors. However, vendor-specific
solutions provide limited or no interoperability with other devices in the IoT ecosystem. Vendor lock-in
is also a serious issue.

A plethora of IoT middleware platforms has recently appeared in the marketplace. Examples
include UBIDOTS [11], Xively [12], Thing Speak [13] Open.Sen.se [14], and SensorCloud [10] and
more recently, Amazon IoT [15] and IBM IoT [16] platforms. These IoT middleware platforms aim to
simplify the injection of data from all kinds of sources (physical devices, human input, online data, etc.)
using a common Application Programming Interface (API) . All such platforms typically provide basic
functionalities for filtering and aggregating the data, as well as specification of events based on input
data. Although the IoT platforms in this category (e.g., those based on IBM (Bluemix) and Amazon
(EC2)) provide tools for data ingestion, storage, and computation via message passing interfaces
utilising message queues and publish/subscribe mechanisms, the benefits of these IoT platforms in
smart agriculture is yet to be determined. In contrast to such lack of track record in this area, the
SmartFarmNet platform we introduce in this paper (as well as its earlier variants and components) has
been deployed across Australia and it has been successfully used in collecting and analysing data from
tens of thousands of sensors deployed in remote field locations. Furthermore, the outcomes presented
in this paper are results and experiences gained obtained from four years of real-world deployments.

The category of open source IoT platforms includes the IoTCloud architecture [17] project
that originated from the Community Grids laboratory in Indiana University, USA. The IoTCloud
architecture provides APIs for sensors to publish data to the cloud and for clients to subscribe to such
data. IoTCloud takes advantage of a publish–subscribe architecture to support scalable ingestion
and querying of sensor data. However, it lacks bring-your-own support for IoT devices, and does
not provide fast, scalable analysis of sensor data. Other platforms in this category include the Data
Turbine [18] and Apache Storm [19]. These IoT platforms focus only on the data ingestion layer.
In particular, these middleware systems act as a black box through which applications and devices
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exchange data. The SmartFarmNet platform provides a bring-you-own IoT device integration
capability that includes virtually any IoT device that may be provided by any user (e.g., farmer,
grower, or scientist). In particular, SmartFarmNet currently provides more than 30 wrappers for most
commercial (e.g., libelium [20] and experimental (e.g., arduino [21], tMotes [22], etc.) sensor platforms.

IoT platforms that can utilise IoT devices provided independently by a third party must provide
for sensor discovery [23] (i.e., ability to search sensor metadata). Although there has been extensive
work in providing metadata management for sensory data [24,25], no IoT platform currently fully
supports sensor discovery. For instance, projects such as SensorMap [26] have visualised live sensor
data on a map, allowing users to find sensors based on the sensor location. SmartFarmNet takes
advantage of semantic web principles (such as Linked Open Data and Semantic Sensor Ontology
(SSN) [27]) to search for and share sensor information in a way that can be read automatically
by computers.

Existing IoT-platforms are not designed to support near-real-time data ingestion, quick analysis,
and visualisation of large volumes of sensor data. One of the key features of the SmartFarmNet
platform is in its ability to deal with the high velocity of sensor data (time-series) by providing
solutions for fast and scalable data analytics and retrieval. The do-it-yourself principles-driven
user-interface allows complex data workflows to be built, composed, and executed without a need for
programming. SmartFarmNet also provides a web-based virtual laboratory environment for biologists,
farmers, and scientists to manage large volumes of crop sensor data while supporting rapid responses
to queries, real-time user interaction, and the ability to share data from studies performed by multiple
researchers. A comparative analysis of current IoT platforms and the proposed SmartFarmNet platform
is presented in Table 1.

Table 1. Comparison of SmartFarmNet with other Internet of Things (IoT) platforms. EC2: Elastic
Cloud Computing.

Platform Sensor Discovery Bring-Your-Own IoT Device Scalable Data Analysis
Sharing Sensor, Data,
and Analysis Results
(Virtual Lab)

UBIDOTS Not Supported
Yes, but requires
considerable efforts to
develop new interfaces

No No. Only provides
API for raw data access

Xively

Partial support with no
specific approach for
metadata
description/management

Yes, but requires
considerable efforts to
develop new interfaces

No No. Only provides API
for raw data access

SensorCloud Not Supported

Supports only
vendor-specific sensors
(some support for CSV file
data)

Partial Partial

IBM Bluemix Not Supported
Yes, but requires
considerable efforts to
develop new interfaces

Partial with additional
development required

Partial by using existing
bluemix infrastructure
as a service platform

Amazon IoT Not Supported
Yes, but requires
considerable efforts to
develop new interfaces

Partial, with additional
development required

Partial by using existing
EC2 infrastructure as a
service platform

IoTCloud Not Supported
Yes, but requires
considerable efforts to
develop new interfaces

No No

Apache
Storm Not Supported

Yes, but requires
considerable efforts to
develop new interfaces

No No

SmartFarmNet Supported via Semantic
Web Technologies

Yes with in-built support for
30+ commercial and
experimental sensors

Yes, real-time data
analytics functions are
built in

Yes, easy to use
e-commerce-like use
interaction model
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4. The SmartFarmNet IoT Platform for Smart Farming

4.1. SmartFarmNet’s Data Model

The data model used by the SmartFarmNet platform is depicted in Figure 2. A user is a logical
entity representing a project, a research group, or any other entity that owns data from a study.
Experiments are crop studies, and each experiment has only one owner user. Tests are comprised
of a collection of nodes, but each node can belong to multiple crop studies. A node can also have a
location with it, such as latitude and longitude. A node is a group of data streams (from virtually any
IoT device or even virtual sensors, e.g., CSV files from past studies). A stream is a time series data
from an experiment with a unit of measurement. Metadata can be attached to every hierarchical layer
of the data model. The following policies are enforced by the data model.

• Any user can have zero or more studies.
• Any study can have zero or more nodes.
• Any node can have zero or more streams. Each node can also have latitude, longitude, and

altitude values.
• Any stream is a set of (timestamp, value) pairs. Each stream has one unit of measurement.

The layout of a typical crop study (referred to as “experiment” in the data model) is illustrated
in Figure 2. Such studies involve a particular area (one or more plots) in a field. Any farm can be
divided into plots, and the granularity of the analysis supported by SmartFarmNet is currently 9–10
square meters. The plots are mapped to the node level that represents the sensor network platform
(hosting all related communication and processing capabilities). Physical sensors observing a physical
phenomenon (e.g., gypsum block sensors measuring soil moisture at multiple depths) are connected
to corresponding streams. A measurement of soil moisture at a particular depth is mapped to a
data stream associated with a node. In summary, the data streams map to the physical or virtual
sensors that monitor a phenomenon, while nodes and experiments/studies are used for grouping
streams at different levels. The metadata associated with nodes and streams at each level are critical for
providing contextual information. In Phenonet, metadata at the experiment/study level may include
the year when the study was conducted, the date the crop was sown, a description of the objectives
of the study, and even descriptions about study site (e.g., the soil type). At the node level, the most
important metadata fields are the plants’ genotype and its relative location within the plot (in most
cases, a row/column notation is used). Treatments applied to individual plants can also be appended
as metadata at the node level. The most relevant metadata at the stream level for Phenonet are the
depth, the sensor type, and the sensor serial number, while sensor information such as the date of
calibration or setting of the sensor can also be critical.

Figure 2. SmartFarmNet’s data model.
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4.2. Bring-Your-Own Sensors Support via the Semantic Sensor Network Ontology

Providing bring-your-own sensors support involves the use of Semantic Sensor Network (SSN)
ontology to represent the underlying IoT devices and the data generated by such devices. The SSN
ontology was developed by World Wide Web Consortium (W3C) Semantic Sensor Networks Incubator
Group [27], and provides a schema that describes sensors, observation, data attributes, and other
related concepts. The SSN ontology is widely used, and has been utilised in a significant number of
Semantic Web and IoT projects, including SmartFarmNet. Linked Data is also used to relate and bind
SSN concepts across multiple sensor platforms. The four main principles [28] of linked data include:
(1) using unique Uniform Resource Identifier (URIs) to represent each IoT thing; (2) providing HTTP
interfaces to access the URIs (descriptions); (3) offering information related to URIs via the Resource
Description Framework (RDF) [29]; and (4) linking URIs. The linked data approach allows sensor
descriptions and sensor data to be linked with corresponding domain-specific knowledge.

The SmartFarmNet ontology (Figure 3) is an extended version of the SSN ontology that describes
the SmartFarmNet data model we presented in Section 4.1. The ontology provides the means to map
the data model to sensor descriptions. For example, a soil moisture sensor X is deployed in a plot
Y, which grows a crop Z. Sensor X and its data are described using the SSN ontology. This ontology
includes the physical and technical nature of the installed sensor network, such as what physical
platform the sensor is on, and location of the sensor. The description of the plot Y and crop Z is based
on the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) Ultra-Light upper
ontology [30].

Figure 3. The SmartFarmNet ontology (phen denotes the phenonet ontology namespace, dul denotes
the DOLCE+DnS Ultralite ontology namespace and ssn denotes the SSN namespace).

The SmartFarmNet Ontology describes the plots, the crops and the corresponding treatments
applied to the crops. For example, consider crops with a particular genotype (e.g., revenue) that
are sown in plots belonging to a study. This crop is subjected to different treatment (e.g., irrigation).
The sensors deployed in the plots are governed by a geo-location observation system either at the
plot level, or at the level of some sub-feature of the plot (e.g., a layer of soil within the plot), or as the
entire site of the study (e.g., temperature and humidity covering the whole study site). The sampling
feature links the sensors to corresponding plots, and from the plot to the combination of genotype,
treatments, and events (such as sowing dates, etc). Features can be related such as a soil layer can
be from an individual plot or from several plots linked together into a study site. The ability to
connect features means that measurements of larger phenomena (such as the site weather) can be
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associated to individual plots and plants. The ontology allows data to be mapped to the semantics of
the SmartFarmNet, enabling on-the-fly automatic annotation of sensor data streams.

4.3. Scalable Data Analysis of Sensor Data in SmartFarmNet

SmartFarmNet provides near real-time response to queries over time-series data streams from
sensors. Just like in the SensorDB [4] platform we developed earlier, the SmartFarmNet platform uses
an internal data structure called micro summarisation to build a summary of statistical features for
incoming sensor data streams. Furthermore, SmartFarmNet internally uses aggregation windows.
There are several collection windows defined, including 1-min window, 15-min window, 1-h window,
1-day window, 1-month window, 1-year window, and a start-of-time window. Each aggregation
window maintains the following information about the data points it holds: the number of data points
in each window, the minimum and maximum values, and the average and standard deviation of the
data points inside the window.

SmartFarmNet uses a combination of non SQL (NoSQL) and Semantic data stores to manage
user data, sensor data, aggregated data, and caching of commonly used information. The storage
layer behind each aggregation window is allocated based on query access patterns. Using this
approach, we can optimize micro-summary computations for different scenarios. For instance, if a
data item at the 1-h aggregation window is accessed more frequently than the 1-min aggregation
window, SmartFarmNet can be configured to store and cache data in that collection window in faster
storage, such as in memory storage or a solid state disk drive. The data stream processing model of
SmartFarmNet is presented in Figure 4. The platform provides three levels of data storage: (1) Short
Term Cache; (2) Moving Summaries; and (3) Static Summaries. The summaries computed over the
moving aggregate window are termed “moving summaries”, and are updated with new incoming
data streams. The static summaries are provided for data streams whose data does not change rapidly
over time, hence not requiring frequent re-computation of summaries. Finally, the short-term cache
is used to store raw data in order to improve the response time of raw data requests. The resource
allocation strategy uses the combination of the query and the performance of each storage to determine
where to store incoming data streams. The unique feature of the platform is its elasticity. A stateless
process thread works on the queue (at the left of Figure 4) to process each individual sensor data
stream. Therefore, we can achieve a high degree of distributed and parallel processing that can utilise
available computing resources very efficiently. The stream maintains the stream identifiers that link it
to the moving micro-summaries of all related streams computed over days, weeks, months, and years.

Figure 4. SmartFarmNet—scalable data analysis of sensor data.

4.4. SmartFarmNet Architecture

Figure 5 depicts the architecture of the SmartFarmNet platform. SmartFarmNet provides
support for bring-your-own sensor, i.e., the ability to integrate and describe virtually any IoT device,
including sensors, mobile smart phones, cameras, farming equipment, etc. The data generated
from such IoT devices are initially processed on local SmartFarmNet gateways. The SmartFarmNet
gateways communicate with both the sensors and the SmartFarmNet Platform running in the
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cloud. The SmartFarmNet gateways also allow processing of sensor data closer to the source,
enabling improved usage of communication bandwidth between remote sites and the cloud platform.
The SmartFarmNet platform on the cloud is responsible for storage and performing real-time analysis
on incoming sensor data streams. It also provides do-it-yourself-driven interfaces for user queries,
and for interactive visualisation and sharing of sensor data and analysis results. The distribution
model used by SmartFarmNet enables sensor data collected in one study to be used in other
studies (e.g., temperature data gathered from a crop study can be re-purposed to study the movement
of locust, based on weather conditions). In the following itemized list we provide a description of
various components of the SmartFarmNet platform specifically designed and developed to address
the challenges identified in Section 2.

Figure 5. SmartFarmNet architecture. DIY: do-it-yourself; RDF: resource description framework;
API: Application programming interface.

• SmartFarmNet gateway: This collects, filters, and collates data streams from virtually any IoT
device. The SmartFarmNet gateway uses the OpenIoT X-GSN component [31] for data ingestion.
The component communicates with sensors using wrappers. A wrapper is an interface that allows
the gateway to pull/push data from/to the underlying IoT device. The SmartFarmNet platform
currently has inbuilt support for data ingestion from more than thirty IoT device platforms,
including Arduino, Netatmo, Libelium WaspMotes, Remote, IP-Cameras (to name a few). It also
provides support for virtual sensors such as CSV files. The data from the IoT devices are
annotated on-the-fly with metadata describing the IoT device and the data is encoded using
the SmartFarmNet ontology described in Section 4.2. In Section 5, we will introduce the sensor
schema editor that is used to describe all employed sensors via a graphical user interface. This
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graphical interface hides the complexities of dealing with ontologies from the user, and also
provides support for the uploading of historical data. The gateway can be deployed across
multiple sensor sites/locations, and data could potentially be aggregated at an intermediate
location (via SmartFarmNet gateways) or in the cloud. The annotated data from the IoT devices
are represented using the resource description framework (RDF) and stored in the cloud store.
A sample RDF stream computed from the description of a sensor is presented in the listing below.
This listing involves a Canopy Temperature sensor deployed in plot 4001, which is part of the
study kirkegaard-and-danish.

<rdf : Descr ip t ion rdf : about =" ht tp :// sensordb . c s i r o . au/phenonet/sensor/
arducrop /20140611−1962−0012">
<ssn : onPlatform rdf : resource =" ht tp :// sensordb . c s i r o . au/
phenonet/experiment/kirkegaard−and−danish/p l o t /4001
/platform/phen077"/>
<ssn : inDeployment rdf : resource =" ht tp :// sensordb .
c s i r o . au/phenonet/deployment/ s i t e /ges−creek−range /20140611−1962−0000"/>
<ssn : ofFeature rdf : resource =" ht tp :// sensordb . c s i r o . au/phenonet/experiment
/kirkegaard−and−danish/p l o t /4001/ s f "/>
<r d f s : l a b e l rdf : datatype =" ht tp ://www
. w3 . org /2001/XMLSchema# s t r i n g ">Canopy Temp</r d f s : l a b e l >
<rdf : type rdf :
resource =" ht tp :// sensordb . c s i r o . au/ontology/phenonet#ArduCrop"/>
</rdf : Descr ipt ion >

• Cloud Store: This enables the storage and management of data streams generated by the
SmartFarmNet gateway. The cloud store uses the linked sensor middleware-light (LSM-Light)
component of OpenIoT [31]. The cloud infrastructure stores all of the relevant sensor annotations
(descriptions and metadata), the ontology, functional data related to user accounts, and
permissions to enforce privacy and security. SmartFarmNet uses a semantic data store (a No-SQL
graph database) to store the sensor data in RDF format. It internally implements publish/subscribe
queues to handle large streams of sensor data stemming from virtual and physical sensors. The
components provide APIs to perform the basic create, read, update and delete (CRUD) operations
over the sensor data, and is responsible for transforming the data generated by the IoT devices
into RDF triples using the SmartFarmNet ontologies.

• Sensor Explorer: This responsible for sensor discovery function, a novel feature of the
SmartFarmNet platform. The detection feature uses ontology matching, allowing data collected
to be re-used/re-purposed (i.e., re-purpose data gathered from one study for another study).
For example, using the SmartFarmNet ontology, a semantic reasoner can discover data sources
(IoT devices) that measure canopy temperature data deployed in plots that have had a specific
nitrogen fertilizer treatment applied (study property). The discovery process provides much more
features than a simple filtering operation by using semantic matching and reasoning methods.
The sensor explorer uses the Scheduler and Service Delivery and Utility Manager of OpenIoT [31]
for sensor and data discovery.

5. SmartFarmNet Platform Implementation

As mentioned before, the SmartFarmNet platform is built on the widely used open source platform
for Internet of Things, namely OpenIoT [31], available for free download [31]. Table 2 presents the
implementation details of the platform. The entire platform is deployed in a JBOSS [32] application
container, while the support for real-time scalable data analytics is built independently using Redis,
an in-memory data store.
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Table 2. SmartFarmNet platform—implementation details. LSM-Light: linked sensor
middleware-light.

Components Implementation Details

SmartFarmNet gateway (X-GSN) JAVA-based semantic sensor stream processor. Arduino and
ArduCrop sensor wrappers to interface with IoT devices

Cloud Data Store (LSM-Light) LSM-Light developed using JAVA and Open Virtuoso triple store.

Sensor Explorer Java applications deployed in JBOSS

Reasoner Service Apache Jena supported by SmartFarmNet OWL ontology

User Interfaces Do-it-yourself tools developed in Java Server Faces (JSF)

Data Analytics Redis [33]

5.1. Do-It-Yourself User Interfaces

5.1.1. Sensor Schema Editor

SmartFarmNet is designed with the Bring-Your-Own sensor principle and supports virtually any
IoT provided by any vendor. The Sensor Schema Editor (SSE) enables users to describe and register
a sensor with ease and consistency. This process hides the complexities of editing OWL files (used
to represent ontologies) from the users. The Sensor Schema Editor provides annotations to sensors
and sensor-related data, using the underlying ontology and Linked Data principles. The interface
automates the generation of RDF descriptions for sensor node information submitted by the users.
Internally, the editor performs dynamic extension of the ontology by making the newly-added concepts
readily available via the user interface. Figure 6 presents a screenshot of the sensor schema editor used
to define a sensor.

Figure 6. Sensor Schema Editor (SSE).
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5.1.2. Sensor Data Visualisation

The SmartFarmNet platform user interface (UI) allows end-users to explore and analyse
agricultural study data with zero-programming efforts. The UI hides the complexities of semantics
and ontological representations from the user by presenting concepts that the user is familiar with and
understands (e.g., plots, studies, sensor device, barcode, etc.), as defined in the data model and the
ontology. The UI is depicted in Figure 7, and has the following features:

1. Resource Discovery: The user interface allows a user to search for sensors based on domain-based
criteria, including genotype, crop treatment, and the barcodes used to identify studies, as well
as sensor-based criteria, such as specific platform or location dynamically obtained from the
ontology (discovery based on location and genotype i.e. Revenue is presented in the left side of
Figure 7).

2. Query Composition: The provide search interface presents a list of sensors matching the discovery
criteria provided by a user (depicted in the bottom part of Figure 7). The user can then compose a
query targeted to the selected sensors. Internally, this makes a request to the Sensor Explorer and
the real-time statistical analysis components.

3. Service Visualisation: This visualizes the fetched data using a one of the provided visualisation
outputs, such as the time-series graph illustrated in the top part of Figure 7.

Figure 7. Sensor data discovery and exploration.

6. SmartFarmNet Evaluation

An essential design requirement of the SmartFarmNet platform is to be able to scale, store, process,
and several hundreds and thousands of IoT sensors. The volume of data generated by the IoT sensor
is not an issue. However, the velocity at which the data is produced is very high and results in
billions of sensor data points. The objective of this evaluation is to evaluate the scalability of the
SmartFarmNet platform. In particular, we evaluate the proposed real-time statistical analysis feature
of the SmartFarmNet platform used to deliver sub-second query response latency while handling
high-velocity data streams.

For evaluating the scalability of the platform, we used real data collected from a Phenonet
field study called "Kirkegaard and Danish". This study evaluates the effect of sheep grazing on crop
re-growth by looking at root activity, water use, crop growth rate, and crop yield. We used soil moisture
sensors deployed at multiple depths (e.g., from 10 cm to 2 m) below the soil surface. These sensors
provide a high-dimensional view of the extraction of water from the soil by the roots throughout the
crop growing season. This information is then used to obtain an indirect measurement of root activity,
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which in turn can be used to control crop growth to increase yield and reduce fertiliser and water
usage. The data for the studies was collected in real-time from 50 soil-moisture sensors, resulting in
50 streams of around 10,000 data points each.

SmartFarmNet platform uses SPARQL—a semantic query language similar to SQL —to query the
sensor data. A sample (partial) SPARQL query is presented below. This query retrieves all data from
sensors that measure soil moisture defined as <http://purl.oclc.org/NET/ssnxlcf/cfproperty#soil_suction_
aCsaturation>. The FILTER statement of SPARQL is used to restrict the results from those sensors that
are in the plot covered by the Kirkegaard and Danish study. The SPARQL query is an example of
how semantic web concepts used effectively to query not only over the data (soil moisture sensor),
but also the domain knowledge (studies, plots, etc.). The server used to evaluate the performance
of our platform is an Amazon Elastic Cloud Computing (EC2) infrastructure [34] with the following
hardware configuration: 8GB RAM, 2 vCPU (Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz).

s e l e c t ? sensor , ? values from <graphname> where {
? sensor ssn : type ? type .
? type ssn : observes <http :// purl . o c l c . orgINET/ s s n x l c f /cfproper ty #
s o i l _ s u c t i o n aCsaturat ion >
? sensor ssn : ofFeature ? samples
? sensor ssn : Observation ? observat ion
? observat ion ssn : ObservationValue ? values
? samples phenonet : samples ? p l o t
? crop phenonet : t r e a t e d /phenonet : treatmentType
? treatment
FILTER ( bound ( ? treatment ) && ( ? treatment =
<http :// sensordb . c s i r o . au/id/treatment_type/grazed_high_n > ) )
}

6.1. Query Access Performance Latency

The query access performance latency is a good indicator of the system’s ability to support
a high-velocity data stream while delivering sub-second query response. This is achieved by the
real-time statistical analysis feature that uses the micro summarisation approach (presented in
Section 4.3 ). First, we establish a baseline performance of the platform without using the real-time
statistical analysis feature. We then compare the outcome of the benchmark against evaluations
conducted using the real-time statistical analysis feature. The real-time statistical analysis feature
allows the platform to respond to user queries by looking for pre-computed statistical data from the
various smart summarisation data stores (cache, static, and moving). Depending on the frequency
of the query, the platform makes a decision to move micro summaries from one storage to another.
This feature is currently implemented via a configuration file. However, in the future, we aim to extend
the platform with a smart caching approach that can make autonomous decisions based on query
patterns. In this evaluation, we used two settings; namely: 1 sensor (contributing 500,000 data points
that are combined in a single stream) and 50 parallel sensor streams (each constituting a stream of
10,000 data points). This evaluation setting will impact the performance of the system, as different
data stores are maintained per stream. The IoT devices (sensors) in this evaluation produce data every
5 min. The user query aims to retrieve average soil moisture over a specific time window. The window
was varied from 1-min to 1-month to observe the response time and validate the performance of the
smart summarisation approach. The outcome of the evaluations is presented in Figures 8–10.

http://purl.oclc.org/NET/ssnxlcf/cfproperty#soil_suction_aCsaturation
http://purl.oclc.org/NET/ssnxlcf/cfproperty#soil_suction_aCsaturation
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Figure 8. Query access latency—single sensor stream.

Figure 9. Query access latency—multiple sensor stream.

Figure 10. Query access latency with real-time statistical analysis—multiple sensor stream.

Figures 8 and 9 provide the query response time for the SmartFarmNet platform without the
real-time analysis feature. It is evidentthat the query response time is linear and increases as the
number of sensor data points/data streams increases. Each query operation involved fetching a large
section of data across 50 data streams using semantic matching, i.e., searching the semantic cloud
data store (LSM-Light) for a sensor that produces soil moisture data as opposed to a string search
(e.g., SQL like a keyword). Figure 10 presents the query response time to retrieve the sensor data with
the real-time statistical analysis feature. As can be noticed, the performance of SmartFarmNet with
the real-time analysis is two-fold better than without real-time analytics. By taking advantage of the
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pre-compute stream summaries that are updated when a new data point arrives or when the time
window changes, SmartFarmNet is capable of providing near real-time query response. For complex
queries (such as data from multiple days), different micro summaries, such as hourly, daily, weekly,
and monthly are used for quick computation. For example, to compute the average for the last four
hours and thirty minutes, the hourly average for 4-h along with the raw data obtained for the last
30-min is used. The results show that the increasing velocity of sensor data streams has little or no
impact on the performance of the system. This is a key feature of the SmartFarmNet system, making it
more scalable than current IoT platforms. This evaluation also demonstrates the suitability of semantic
web technologies for storing, analysing, and visualising internet-scale IoT data.

6.2. Evaluation of Micro Summary Computation

SmartFarmNet’s real-time analysis feature depends on maintaining an updated micro summary
for incoming sensor data streams. In order to estimate the performance of this process, we calculated
the computation time to manage and sustain the data structure that keeps track of stream summaries
for the 500,000 sensor data points (from 50 sensors) used in the evaluation. The computational process
to maintain the data structure is complex, as it requires updating of the stream summaries across two
dimensions (namely, each time-window and each stream) continuously. In this evaluation, we aim
to establish the maximum time required for summary computation using existing data. Hence, in
this evaluation, we assess the SmartFarmNet platform on the task of generating all summaries for
the 500,000 data points from 50 sensor streams. Particularly in this assessment, we calculate the
total time required to compute summaries for different window sizes. We used the same hardware
configuration and sensor sensing frequency as in the previous evaluation. Table 3 presents the
outcome of this assessment. As indicated by the results, the maximum time to compute the summary
is 25 s (for computing monthly summaries). However, in reality, the summaries are calculated
incrementally (i.e., as new data is available in the platform, the summaries are updated). This result
indicates the maximum time it could take to recompute the summary in case of system failure. As
presented in Section 5.1.1, the raw data from each sensor stream is always persisted to storage, hence
reducing the chance of data loss.

Table 3. SmartFarmNet platform—real-time analysis computation time.

Summarisation Processing Time Total
Hourly 6620 milliseconds
Daily 9971 milliseconds

Weekly 10,926 milliseconds
Monthly 24,543 milliseconds

7. Lessons Learnt

To a great extent, the platform design addressed the unique challenges in building commercial
scale IoT systems, identified in Section 3. Below is a summary of our experience and lessons learnt
from building a system for smart farming.

Support for virtually any IoT device: The key challenge that we faced in developing the
SmartFarmNet platform was managing the plethora of Internet of Things devices, ranging from
wireless sensor networks to mobile smart phones to cameras, etc. Our solution was to focus on
developing common interfaces (API) and consistent representation of sensors and their data using
semantic web technologies and thus moving away from the traditional packaged hardware/software
solutions. By using a consistent way of representing data and providing different means to ingest
data into the system (from API to wrappers built in Java, Python, R, etc.), we were able to interoperate
between IoT hardware silos.
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Provide rapid analysis of data in real-time: One fundamental challenge that underpinned most IoT
platforms was in their ability to perform fast analysis of data over a large number of sensor data
streams. By employing real-time statistical data analysis, the SmartFarmNet platform was able to
achieve this objective. The platform incorporates a scalable methodology, delivering near real-time
query response time as compared to traditional SQL-based systems [4].

Integration with Semantic Web: By using the semantic web technologies such as ontologies and
linked open data, we were able to 1) use currently available semantic web standards, allowing the
system to exchange data with other IoT services in the internet; and 2) enforce standards in IoT
application development that is currently not prevalent in most existing solutions. Using the semantic
web technologies also enabled the platform to be easily extended to new domains, such as aquaculture,
cotton growing, etc. In certain cases, SmartFarmNet was also used as a diagnostic tool to understand
the performance of the underlying sensor network and detect failures using a pre-computed error
estimate for each sensor.

Do-it-yourself approach for visualisation and analysis of data: The design objective of
SmartFarmNet was to empower its users by providing standard tools combined with a flexible
and powerful API. By employing a do-it-yourself approach, SmartFarmNet has reached a wider set of
users and enabled them to collect crop performance data with any sensor(s). The ability for a farmer to
explore and analyse crop growth data using simple selection based on familiar concepts such as crop
phenotype, treatment, etc., was very useful in breaking many barriers to the SmartFarmNet uptake.

8. Conclusions

In this paper, we presented SmartFarmNet, a pioneering effort in building a scalable sensor
data acquisition, analysis, and visualisation platform for smart farming applications, based on the
Internet of Things. We presented the architectural design of the platform that aims to support virtually
any IoT devices, allow rapid ingestion and visualisation of IoT data using zero-programming effort
(do-it-yourself principles), and provide a virtual laboratory environment for visualisation and sharing
of study data. The proposed SmartFarmNet uses a unique and novel real-time statistical analysis
approach that enables near real-time responses to user queries (validating the platform’s ability to
scale in order to handle high-velocity data streams). Through evaluation using actual farming data,
we validated the elasticity and scalability of the platform.
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