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Summary

Previously, we reported that infection of human macrophages with

Mycobacterium tuberculosis (Mtb) results in massive alterations in the

pattern of RNA splicing in the host. The finding gained significance

since alternate spliced variants of a same gene may have substantially

different structure, function, stability, interaction partners, localization,

and so forth, owing to inclusion or exclusion of specific exons. To

establish a proof-of-concept; on how infection-induced RNA splicing

could impact protein functions, here we used RNA-seq data from THP-1

macrophages that were infected with clinical isolate of Mtb. In addition

to re-establishing the fact that Mtb infection may cause strain specific

alterations in RNA splicing, we also developed a new analysis pipeline

resulting in characterization of domain maps of the transcriptome post-

infection. For the sake of simplicity, we restricted our analysis to all the

kinases in the human genome and considered only pfam classified

protein domains and checked their frequency of inclusion or exclusion

due to alternate splicing across the conditions and time points. We

report massive alterations in the domain architecture of most regulated

proteins across the entire kinases highlighting the physiological impor-

tance of such an understanding. This study paves way for more

detailed analysis of different functional classes of proteins and pertur-

bations to their domain architecture as a consequence of mycobacterial

infections. Such analysis would yield unprecedented depth to our

understanding of host-pathogen interaction and allow in a more sys-

tematic manner targeting of host pathways for controlling the infec-

tions. © 2018 The Authors. IUBMB Life published by Wiley Periodicals,

Inc. on behalf of International Union of Biochemistry and Molecular

Biology, 70(9):845–854, 2018
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INTRODUCTION
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb)
continues to constitute a significant fraction of population

suffering from infectious diseases globally. Despite having very
effective treatment regimen available, this pandemic is far from
getting over due to factors like emergence of drug resistant
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strains and co-morbidities like HIV, aging, and malnutrition
(1–4). At least one of the reasons for emergence of drug-
resistance in TB is that so far we continue to follow one-size-
fits-all concept. In the field, Mtb isolates are known to display
wide diversity in their growth patterns, gene expression pat-
terns, metabolism etc. and therefore may show diversity in
their susceptibility to standard-of-care drugs (5–13). In part,
due to factors mentioned above, there has been a surge in
efforts to evolve alternate strategies of targeting Mtb like host-
directed approaches. We previously identified a large number
of host genes, which were important for intracellular survival
of Mtb as well as several diverse clinical isolates within macro-
phages (7, 14). The fundamental premise is that—if we under-
stand the host factors, which play an important role in
intracellular mycobacterial survival—they can be targeted to
achieve bacterial killing irrespective of the drug resistant pro-
file of the pathogen. Several studies in the past have success-
fully identified such host targets and showed its ability to target
both drug sensitive and drug resistant strains of Mtb (7, 14–19).

One of the major host response machinery that gets dra-
matically altered upon mycobacterial infections is gene expres-
sion. This includes immediate early changes in gene expression
as well as long-term shaping of responses by persistent tran-
scriptional reprogramming (9, 20–24). In a recent study we
showed that the impact of mycobacterial infection on host tran-
scriptional machinery is much deeper than understood and that
in infected macrophages, patterns of host RNA splicing was
globally perturbed. More importantly, we showed, that splicing
events were specifically directed towards genes/molecules,
which could play an important role in deciding the host
response to the bacterial infection (25). Alternate splicing of
transcripts could have massive impact on the cellular physiol-
ogy since different spliced variants of a given gene could differ
in their structure, function, stability, interaction pattern and
localization (25, 26). However, there is no systematic study to
establish the magnitude of infection induced alternate splicing
on the functioning of final protein products. Another layer of
complexity is brought in by large variations in the field strains
of Mtb (27–29), which could also vary in the magnitude of per-
turbations of host RNA splicing upon infection. In a proteomic
study previously, it was reported that clinical, drug-resistant
variants of Mtb show markedly different protein expression
profile compared to the laboratory strain H37Rv (30).

In view of the above, in this study, we have used a clinical
isolate of Mtb, which is also a multi-drug resistant (MDR) strain
to identify alterations in host RNA splicing patterns upon infec-
tion in THP-1 macrophages, which was compared with our pre-
vious studies where laboratory strains H37Rv and H37Ra were
used for similar studies. We developed a new analysis pipeline
to perform a domain-level mapping of host kinome as a conse-
quence of infection-induced RNA splicing. We show that infec-
tion induced RNA splicing has substantial impact on domain
representations across the expressed transcripts. This study
therefore highlights newer challenges to developing alternate
host-directed therapeutic strategies.

RESULTS
Transcriptome Profile of Avirulent, Virulent or Clinical
Isolate of Mtb Infected Macrophages
THP-1 macrophages were infected with the clinical isolate
(JAL2287) of Mtb following the protocols as reported earlier for
avirulent (H37Ra) and virulent (H37Rv) Mtb infections (experi-
mental set-up schematically shown in Fig. 1A) (25, 30). For
each sample approximately 180 million paired end reads were
aligned to human reference genome build hg19 using splicing
aware Tophat aligner (31). More than 75% of reads aligned to
hg19 in each sample (Supporting Information Table S2). Out of
the aligned reads �94% aligned to genes, �3% aligned to intro-
nic region and �2.5% aligned to intergenic region. Transcrip-
tome reconstruction was done using cufflink package (32).
Absolute quantification at both gene and transcript level was
performed using FPKM (Fragments Per Kilobase of transcript
per Million mapped reads) units. Differentially regulated genes
and transcripts compared to uninfected control were identified
using cuffdiff package using negative binomial distribution.
Quality control of all aligned files was checked using BAMQC
tool (33). Dispersion analysis and median expression confirmed
that there was no bias in alignment. We compared the gene
expression in JAL2287 infected cells with respect to H37Ra and
H37Rv infected cells as reported earlier (25). The comparative
expression table is shown in Fig. 1B. Overall, the number of
regulated genes increased with time in all samples. We found
more genes commonly regulated between JAL2287 and either
H37Ra or H37Rv (row 7–10, Fig. 1B). Very few genes showed
exactly contrasting expression pattern between JAL2287 and
either H37Ra or H37Rv (row 11–14, Fig. 1B). This trend was
also reflected in the heatmap (Fig. 1C) generated from gene
expression table where most of the clusters were common
across the samples. We found time point specific contrasting
clusters but no global contrasting cluster emerged, suggesting
most of the differentially regulated genes were commonly regu-
lated across the strains.

Functional Analysis of Differentially Regulated Genes
Using differentially regulated genes as targets and non-
differentially regulated genes as background we performed the
functional enrichment analysis and identified significantly over-
represented GO (gene ontology) terms for each sample(34, 35).
Gene ontology analysis allows one to test whether the expres-
sion data is representative of the study. This can be achieved by
looking at the most enriched functional classes and their rele-
vance to the experimental conditions (14, 25). To simplify our
understanding we manually classified genes into seven different
ontological categories, which were also among the most
enriched one in our analysis: cell cycle, trafficking, inflamma-
tion, metabolism, signaling, immune response, and transport.
These ontologies have previously been shown to be associated
with host-pathogen interaction in siRNA screens and microar-
ray experiments (14, 36, 37). Moreover, to understand the
extent of variation due to different infecting strains, we have
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also incorporated data sets from H37Ra and H37Rv infected
cells, as reported previously by us (25). The enrichment of these
GO terms with time and strain of infection is shown in Fig. 2. A
quick look at the pattern of GO enrichment provided peeks into
cellular response machinery to infections. Thus, trafficking was
the one class which showed maximum regulation at early time
points across all three strains, although it persisted for little
longer in the case of H37Ra (Fig. 2). Genes related to cell

signaling showed nearly uniform level of perturbation through-
out the course of infection albeit with subtle time point specific
and strain specific variations. Most other functional classes like
transport, metabolism, inflammation, immune responses and
cell cycle showed time dependent increase in regulation. Inter-
estingly, most of the functional classes in JAL2287 infected cells
showed highest level of regulation except transport class where
JAL2287 infected cells showed minimum regulation (Fig. 2).

FIG 1 RNA-seq analysis of THP-1 macrophages infected with avirulent, virulent or clinical isolate of Mycobacterium tuberculosis.

A. Flow-chart of the RNA-seq experiment. THP-1 macrophages were infected with H37Ra, H37Rv, or JAL2287 for different time

points, total host RNA was isolated and processed for RNA-sequencing.B. Comparative table for differentially expressed genes

between H37Ra, H37Rv, and JAL2287 infected macrophages at gene level quantification (up: two fold increase in expression;

down: two fold decrease in expression; UN: no change in expression)C. Global gene expression profile of THP-1 macrophage

cells upon infection with H37Ra, H37Rv, or JAL2287 at 0, 6, 12, 24, 36, and 48 h post infection.
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Transcript Level Profile and Alternate Splicing
Landscape of Infected Macrophages
Most of the human genes have multiple isoforms and almost
95% of genes undergo alternate splicing (38). We recently
showed that transcript level expression may vary significantly
from corresponding gene level expression under infection (25).
Using Tuxedo pipeline we quantified the transcript level
expression for all the samples of JAL2287 infected cells across
the time points. Heatmap representation of isoform level
expression (Supporting Information Fig. S1) was grossly differ-
ent from that of gene level expression, confirming contrasting
difference between gene and isoform level expression. For
majority of the cases isoform expression showed larger varia-
tion at the later time points. Post-transcriptional regulation like
alternate splicing can be a major reason for such variation in
the isoform expression. Alternate splicing has been classified
in five major events: Exon skipping (SE), mutually exclusive
exons (MXE), retained intron (RI), alternative 30 splice site
(A3SS) and alternative 50 splice site (A5SS). To get a statisti-
cally qualified estimation of alternate splicing we followed
SUPPA computational pipeline (39). Inclusion levels were
determined by generating alternate splicing event list from the
GTF (Gene Transfer Format) file and modeled over transcript
abundance estimation. Differential alternate splicing in a par-
ticular infected sample compared to uninfected sample was
determined by taking a very stringent cut-off of 0.5 by SUPPA.

Switch like events (delta Percent Spliced In score 1 and −1)
were observed where an exon is completely spliced out at a
time point under infection. Across the time points under
JAL2287 infection psi score of uninfected sample (X-axis) was
plotted against psi score of infected sample (Y-axis) (Fig. 3A).
We observed, with time, significant differential alternate splic-
ing, specifically switch-like events increased under JAL2287
infection compared to uninfected, as may be noted by a large
number of red dotes aligned to Y-axis (psi-score of UI close to
zero in uninfected) or X-axis (psi-score of 1 in JAL2287
infected cells, while less than 0.5 in UI (Fig. 3A). At 48 h post-
infection we found maximum number of switch like events. We
applied an unsupervised clustering strategy t-distributed sto-
chastic neighbor-embedding algorithm on the psi score table
and found seven clusters (Supporting Information Fig. S2).
Each clusters corresponds to a type of alternate splicing class.
There are only five types of alternate splicing events that are
well characterized and have been quantified using RNA-seq.
Quantification of complex alternate splicing event and overlap-
ping events is very challenging and needs further investigation.
For the five well classified classes of alternate splicing events,
we counted the number of each of the events across the time
points in JAL2287 infected cells as shown in Fig. 3B. These
numbers were also compared with the corresponding numbers
in H37Ra and H37Rv infected conditions (25). JAL2287 infected
cells overall did not show any outstanding pattern of AS events

FIG 2 Gene Ontology enrichment analysis of differentially expressed genes in H37Ra, H37Rv, or JAL2287 infected THP-1 macrophages.

Significantly enriched gene ontology classes (P-value < 0.001) detected at all-time points were manually classified into seven cat-

egories: cell cycle, trafficking, inflammation, metabolism, signaling, immune response and transport. Color of the circle repre-

sents a particular class and size represents the cumulative enrichment score.
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with respect to what was noted in the case of H37Ra and
H37Rv infected cells (Fig. 3B).

Isoform Features and Alternate Splicing upon
Mycobacterium tuberculosis Infection
We next wanted to understand how changes in splicing pattern
could impact on the cellular functions. In human many isoforms

per gene have been catalogued as predicted transcript
sequences and most of them are functionally uncharacterized.
With GTF file generated after transcript reassembly, we
mapped all the isoforms detected in the reassembly and chose
the longest open reading frame (ORF) for each transcript using
TransDecoder pipeline (40). In brief, coding regions were iden-
tified by minimum length open reading frame and a log

FIG 3 Estimation of alternate splicing in JAL2287 infected THP-1 macrophages.A. Dot plots for isoform specific psi scores between

JAL2287 infected macrophage versus uninfected control plotted for each time point. Each dot represents a single transcript. The

dotted lines mark the regions beyond which transcripts had higher psi-score in JAL2287 infected cells by 0.5 or more with

respect to uninfected cells (red) or in uninfected cells by 0.5 or more with respect to JAL2287 infected cells (blue).

B. Table showing number of significant alternate splicing events where psi-score compared to the uninfected control was higher

than 0.5 across (i) JAL2287 (ii) H37Rv, (iii) H37Ra across all time points is shown here. Numbers for H37Rv and H37Ra are repro-

duced from Kalam et al (25) for comparative analysis. A3SS: alternate 30 splice site, A5SS: alternate 50 splice site, MXE: mutually

exclusive exons, RI: retained introns, SE: skipped exons.
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likelihood scoring estimation per transcript, which was further
subjected to position specific scoring matrix (PSSM) to identify
the correct start codon prediction. These ORF were translated
into peptides and used for domain search and identification
using all 14 Interproscan signatures (41). This analysis resulted
in a dataset of more than 1 million data points. Analyzing the
entire dataset thus generated was very complex and therefore
for further downstream analysis we took only those domains

identified per transcript in pfam database. Moreover, as a
proof-of-concept, to understand the domain level implication of
alternate splicing, we performed further downstream analysis
only on kinases. The motivation behind selecting kinases was
that they are among the most important molecules when it
comes to signal transduction, a key mechanism that gets per-
turbed upon mycobacterial infections. Moreover, kinases are
mostly multidomain proteins where individual domains are

FIG 4 Comparative domain distribution between maximally upregulated versus all isoform in JAL2287 infected THP-1 macrophage.

A. Using interpro signatures domains were identified for each transcript. Frequency of pfam domains was calculated in maxi-

mally upregulated isoform per gene and compared with pfam domain frequency when all the expressed isoforms were consid-

ered. In all isoform condition a single gene will have multiple isoform while in maximally upregulated case there is only one

isoform per gene. These domains frequency were used to calculate the rank in respective class as shown here.B. Dot plot of rank

of domains in all isoform (Y-axis) versus rank in maximally upregulated isoform (X-axis) case. The size of the dot represents the

frequency of that domain in JAL2287 infected sample 48hr post infection.C. List of domains represented in Fig. 4B.
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known to influence enzymatic activity, localization, interactions,
stability etc. Several host kinases in the past have been linked
with intracellular mycobacterial survival including Src, Abl,
PI3K, and so on (14, 42). The entire list of kinases was sub-
classified into two categories (i) most regulated and (ii) all the
transcript expressed. Domains in each group were ranked
based on their abundance (Fig. 4A). Rank of domains in most
regulated at 48 hours post JAL2287 infected cells versus rank
in all isoform was plotted as shown in Fig. 4B. We also calcu-
lated the frequency of each domain, which is reflected as the
size of the dots in Fig. 4B. To our surprise domains like SH3
domain (PF0018), variant SH3 domain (PF07653), PH domain
(PF00169), and bromodomain (PF00439), which were low on
rank in all isoform, were very high when we considered only
the maximally regulated isoforms. Interestingly only 10% of the
entire kinase domain repertoire was represented by the
domains expressed through the most regulated transcripts
(Supporting Information Table S3). Similarly, several most reg-
ulated transcript lacked protein interaction domains like SH2,
SH3, PH domains etc. highlighting the fact that alternate splic-
ing can dramatically shape protein interaction patterns and
thereby their downstream function and physiological conse-
quences (Fig. 4B and C). Interestingly when compared with
H37Ra and H37Rv infected cells, we could observe strain spe-
cific ranking of domains represented by the most dominantly
regulated transcripts (Supporting Information Fig. S3).

DISCUSSION
Macrophage physiology is known to get dramatically perturbed
upon Mycobacterium tuberculosis infection (7, 25). The pertur-
bation mostly defines host responses to the infection and is
directed towards the goal of eliminating the pathogen. The most
specific response signature arises in terms of changes in gene
expression, which not only decides the immediate fate of infec-
tions but also shapes the long-term response of host against the
infection. In the past changes in gene expression were used as
the hallmark of cellular response to infections. Moreover, these
were also extrapolated to understand how changes in gene
expression impacts and shapes the host response to infections.
However, recent understanding that not only gene transcription
but also post-transcriptional regulatory events like RNA splicing
and polyadenylation could get altered upon mycobacterial
infections significantly complicates the simplistic approaches
followed earlier (25). Thus it was shown that a key phagosome
trafficking gene RAB8B, during virulent infections, gets spliced
in a way that results in synthesis of truncated transcript, which
could not form a functional protein (25). Studies in the past
report how exclusion or inclusion of specific exons as a conse-
quence of splicing impacts the functional property of a given
protein and in turn the physiology (26). Several examples of
alternate splicing are reported which are developmental stage
specific and contribute to the requisite function. For example,
IL33 and ST2 were reported to regulate UCP1 splicing in

thermogenic adepocytes which helps during transition from in
utero life to post-natal life (43). In cancer, gain or loss of spe-
cific exons have been linked to gain or loss of function of target
proteins resulting in transformation (44). Thus it is reported
that an alternate spliced variant of ATF2 can drive melanomas
(45). Similarly, loss of exon 2 from NFE2L2 by alternate splicing
can lead to a loss of protein domain and thereby interaction
with KEAP1 resulting in activation of oncogenic pathways (46).
While several systematic studies are available addressing the
role and impact of alternate splicing in the pathogenesis of can-
cer, there is very limited literature on how induced alternate
splicing, like those observed during infection of macrophages
with Mtb could impact the domain architecture and thereby cel-
lular immune responses.

In this study, using RNA-seq data from macrophages
infected with a clinical isolate of Mtb, which was also an MDR
strain, recapitulated our earlier observation that RNA splicing
of host gets altered upon Mtb infection (25). A large number of
expression and splicing events observed in JAL2287 infected
macrophages were also similar to those observed during
H37Ra or H37Rv infected macrophages suggesting there are
infection specific events. Moreover, quite a few events were also
unique to each of these strains, highlighting the strain-specific
responses from the host. Our curiosity to understand how
strain-specific variations in host RNA splicing could alter cellu-
lar response machinery led us to develop the analysis pipeline
where we scanned for the presence or absence of specific pro-
tein domains in different spliced variants expressed during
infection and compared with the corresponding domains when
only the most regulated transcripts for each of the genes were
considered. The idea here was to explore whether via changing
the most dominant transcript of a given gene, could we extrap-
olate possible impact on the host physiology. A domain expres-
sion analysis for the entire human genome resulted in more
than a million data points. To explore the utility of domain level
characterization, as a proof-of-concept, we restricted our anal-
ysis to human kinases and corresponding protein domains iden-
tified through pfam. Significance of host protein kinases in host
signaling and intracellular survival of Mtb is well established
with specific details available of Src, Abl, TBK1 and so on (14,
42). As it turned out, only 10% of the entire kinase domain rep-
ertoire (including serine/threonine and tyrosine kinase
domains) were represented by the most dominantly regulated
transcripts. Moreover, other specific domains like SH2 domain
(for binding with phospho-tyrosine residues), SH3 domains
(binding with—PXXP—motifs) and several other domains for
protein-protein interaction or function were variably repre-
sented due to alternate splicing.

Host-directed therapy against pathogenic diseases includ-
ing tuberculosis has received significant attention in the past
decade (47). One of the major arguments favoring such a mea-
sure is that unlike in the case of antibiotics, these drugs do not
target pathogen directly and therefore should be effective
against existing drug resistant infections. Results in this study
however brings forward the intriguing concept that ‘host-
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directed-therapy’ against tuberculosis, which is expected to be
effective irrespective of drug-resistance profile of the infecting
pathogen (48, 49), may still show variability in the outcomes of
treatment due to following reasons: (i) differences in the infect-
ing strains, which could potentially vary in their potential
secreted proteins profile, different strains could target different
host proteins with varying degree; (ii) since several alternate
splicing events are unique to infecting strains, it is likely that
many key host-pathogen interaction partners are not utilized
across different infections and finally; (iii) different individuals
differ in their alternate splicing response upon mycobacterial
infection, again impacting the host-pathogen interaction part-
ners critical for bacterial survival. Current study therefore con-
stitutes potential first step towards more high resolution
mapping of host-pathogen interaction events, keeping in view
overall changes in splicing pattern, gene expression and secre-
tory machinery of the infecting strain, together resulting into
developing potentially highly personalized treatment regimens
against tuberculosis. However, delineating all these events and
their respective role during mycobacterial infections is expected
to be a massive challenge and would require much more con-
certed effort in future. Interestingly, similar crosstalk between
host and the pathogen at RNA splicing level for other bacterial
and viral pathogens are not yet explored, thereby unraveling a
significant potential for expanding the scope of impact RNA
splicing could have across various infection condition.

In conclusion, we report here massive alteration in the rep-
ertoire of protein domains expressed as a consequence of
mycobacterial infection induced changes in the host transcrip-
tome, which differs between different strains of the infecting
pathogen. A more systematic and multi-disciplinary approach
will be required to establish the entire part-list and their
dynamics, which regulate host responses to mycobacterial
infections.

METHODS
Bacterial Strain, Cell Culture, and Infection
Human monocytic cell line THP-1 was cultured and maintained
in RPMI 1640 supplemented with 10% FBS (Gibco). The THP-1
cells were differentiated into macrophages by treating them
with 32 nM PMA.These were then infected by JAL2287 strain at
1:10 multiplicity of infection (M.O.I.) for 4 h followed by 2 h
treatment with 200 μg/ml Amikacin to clear extracellular bacte-
ria. The cells were then washed and kept in RPMI 1640
with10% FBS. The media was replaced every 24 h.

Total RNA Isolation
The RNA was isolated at 0, 6, 12, 24, 36, and 48 h from
JAL2287 infected THP1 cells using MDI RNA Miniprep kit
(MTRK250) according to manufacturer’s guidelines.

Sequencing and Quality Control
Total RNA was isolated post 0, 6, 12, 24, 36, and 48 h of infec-
tion (single samples per time point) and cDNA libraries were

prepared followed by paired end 101bp sequencing using Illu-
mina HiSeq 2000 technology. Quality control was performed
using FASTQC kit and reads with Phred score less than Q30
were trimmed. More than 85% of the reads passed the Q30 fil-
ter (Supporting Information Table S1) and were considered for
downstream analysis.

RNASeq Read Alignment
Human genome build hg19 was downloaded from Ensemble
(http://asia.ensembl.org). Paired end RNA seq reads from indi-
cated time points were mapped against hg19 using tophat ver-
sion 2.0.9 (http://tophat.cbcb.umd.edu) with following options
‘-p 24 -G Human_ENSEMBL_coding.gtf’ where Human_EN-
SEMBL_Coding.gtf contains the Ensemble coding transcripts in
GTF file format. No novel junctions or novel insertion-deletion
were taken in account by passing the parameter ‘-no-novel-
junc’ and ‘-no-novel-indel’ respectively.

Transcriptome Reassembly and Quantification
The alignment files from tophat were assembled to create a sin-
gle merged transcriptome annotation using cufflinks and cuff-
merge. Gene and isoform level expression were calculated by
using isoform expression method by running cuffdiff (http://
cufflinks.cbcb.umd.edu/) on the merged transcriptome assem-
bly along with the BAM files from TopHat for each sample.

Alternate Splicing Quantification
For alternate splicing quantification we applied SUPPA algo-
rithm (https://github.com/comprna/SUPPA). Known alternate
splicing events were generated from GTF file using ‘genarateE-
vents’ command. Psi score per exon was calculated and then
modelled to isoform level using ‘psiPerIsoform’ command for
each sample. Differentially regulated AS event were identified
by ‘diffSplice’ and cutoff of 0.5 was filtered.

ORF Identification and Domain Characterization
Using in-house scripts all the transcripts were classified into
two groups, most up regulated per gene and all expressed per
gene. From the reassembled transcriptome GTF file all the ORF
were extracted using ‘TransDecoder.LongOrfs’ command from
TransDecoder package (https://github.com/TransDecoder). Fur-
ther correct reading frame were determined using a loglikeli-
hood method. Finally, the start codon were refined using a
PSSM matrix. These ORF were translated to make the final pep-
tides. Using all the 14 interpro signatures in interproscan
(https://www.ebi.ac.uk/interpro/) all the domains were identified
and frequency of each domain per signature was calculated.
The list was reduced to only kinases for further analysis.
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