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A B S T R A C T

Primary hepatic carcinoma, comprising hepatocellular carcinoma (HCC), intrahepatic chol-
angiocarcinoma (ICC), and combined hepatocellular cholangiocarcinoma (cHCC-CCA), ranks 
among the most common malignancies worldwide. The heterogeneity of tumors is a primary 
factor impeding the efficacy of treatments for primary hepatic carcinoma. Immunohistochemical 
markers may play a potential role in characterizing this heterogeneity, providing significant 
guidance for prognostic analysis and the development of personalized treatment plans for the 
patients with primary hepatic carcinoma. Currently, primary hepatic carcinoma immunohisto-
chemical analysis primarily relies on invasive techniques such as surgical pathology and tissue 
biopsy. Consequently, the non-invasive preoperative acquisition of primary hepatic carcinoma 
immunohistochemistry has emerged as a focal point of research. As an emerging non-invasive 
diagnostic technique, radiomics possesses the potential to extensively characterize tumor het-
erogeneity. It can predict immunohistochemical markers associated with hepatocellular carci-
noma preoperatively, demonstrating significant auxiliary utility in clinical guidance. This article 
summarizes the progress in using radiomics to predict immunohistochemical markers in primary 
hepatic carcinoma, addresses the challenges faced in this field of study, and anticipates its future 
application prospects.

1. Introduction

Primary hepatic carcinoma, encompassing hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and other rare 
types, is recognized as the sixth most prevalent tumor globally and the third leading cause of cancer mortality [1]. In contrast to other 
cancers such as breast, colorectal, and lung cancers, liver cancer presents with notably limited treatment options. These treatments, 
ranging from surgical interventions to non-surgical approaches like targeted therapies and immune checkpoint inhibitors, often fall 
short of expected outcomes. Studies suggest that the substantial heterogeneity of primary hepatic carcinoma is a primary factor in its 
continued elusiveness [2]. This heterogeneity is primarily manifested through the development of cell clusters within the tumor, 
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exhibiting diverse molecular characteristics and functional differences throughout tumor genesis and evolution. Currently, both tumor 
cells and their tumor microenvironment (TME) are acknowledged for their heterogeneity [3,4]. Recognizing and identifying this 
heterogeneity in primary hepatic carcinoma, to determine the population best suited for targeted or immunotherapy, is imperative for 
the execution of personalized, precision treatment approaches.

In 1941, Coons and colleagues pioneered the use of immunofluorescence for detecting cellular antigens in tissue sections, inau-
gurating a novel perspective in understanding diseases at the tissue and molecular levels [5]. This technique, integrating immunology 
with histochemistry, enables the detection of proteins altered by genetic amplifications, mutations, deletions, translocations, as well as 
alterations mediated by bacteria and viruses, thus deducing molecular genetic abnormalities within cells [6]. Consequently, immu-
nohistochemistry has become a pivotal bridge among various disciplines, including molecular pathology, basic and clinical medicine, 
and surgery, providing essential auxiliary information for the diagnosis and classification of numerous diseases, especially tumors [7]. 
In primary hepatic carcinoma, immunohistochemical markers are not only crucial for identifying the origin of tumors and assessing 
cellular differentiation but also for providing potential insights into treatment responses, thus becoming reliable therapeutic targets. 
These markers hold significant value in guiding clinical treatment and evaluating prognoses [8], representing an indispensable 
element in both clinical practice and scientific research in the forthcoming era of personalized medicine [9].

Currently, the detection of immunohistochemical markers predominantly relies on invasive procedures such as surgical pathology 
or tissue biopsy. However, due to the heterogeneity of tumors, analyzing local tissue samples may not represent the overall condition of 
the tumor, and some patients may have contraindications to surgery or biopsy. Therefore, exploring early, non-invasive methods that 
can reflect the overall tumor immunohistochemistry is of significant clinical relevance for the personalized treatment and prognostic 
assessment of primary hepatic carcinoma. In recent years, the role of medical imaging has rapidly evolved from being primarily a 
diagnostic tool to a bridge linking various medical disciplines, playing a pivotal role in the context of precision medicine [10,11]. 
Radiomics has emerged in response, forming a novel interdisciplinary research field that integrates medical imaging, computer sci-
ence, statistics, and artificial intelligence technologies. Extensive studies have shown [12–14] that radiomics, through validated image 
analysis methods, can predict the biological behavior and biochemical features of diseases across multiple imaging modalities such as 
ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). This 
methodology is vital for diagnosing and classifying diseases at the tissue and even cellular levels, and further evaluating treatment 
responses and prognosis, thus significantly contributing to the advancement of precision medicine. The concept of radiomics was first 
introduced by Dutch scholar Lambin et al., in 2012, primarily focusing on the extraction of a large number of high-throughput features 
from medical images for deeper analysis of imaging data. The process includes several key steps: image acquisition, segmentation, 
feature extraction, selection, and model development and evaluation. Together, these steps enable radiomics to effectively quantify the 
heterogeneity of tumor tissues in medical imaging [15]. The Rad-score, a core concept in radiomics, simplifies the complex, 
high-dimensional features extracted from images-such as morphology, texture, and intensity-into a quantifiable score using statistical 
or machine learning methods [16].

In this review, the current research progress in predicting immunohistochemical markers of primary hepatic carcinoma using 
radiomic methods is showcased. The significance of immunohistochemical markers for the precision treatment of liver cancer patients 
is elucidated, emphasizing the risks, challenges, and opportunities that radiomics will encounter in the era of personalized precision 
medicine.

2. HCC

2.1. Ki67

Ki67 is a protein predominantly located in the nucleolar region, exhibiting high expression in most proliferative malignant cells, 
thereby serving as a common marker for cell proliferation in various malignancies [17]. Several studies have indicated that elevated 
levels of Ki67 expression may be associated with a higher risk of recurrence and shorter survival rates, making it a significant marker of 
clinical deterioration and poor prognosis in HCC [18–20]. Although some research suggests that Ki67 can act as an independent 
prognostic indicator to assist clinicians in evaluating patient outcomes [18], its variations and regulatory mechanisms in HCC remain 
to be elucidated. The application of radiomics to predict Ki67 expression in hepatocellular carcinoma has garnered considerable in-
terest among researchers; however, the clinical translation of these studies warrants further contemplation.

Multiple studies [21–24] have explored the potential of US-based radiomics in predicting Ki67 expression in HCC. A prospective 
study by Dong et al. [22] included 101 HCC patients, performing feature selection on Kupffer phase images from Sonazoid 
contrast-enhanced US and developing a multivariable logistic regression model. The model achieved an area under the curve (AUC) of 
0.873 in the training group and 0.768 in the testing group, indicating that the radiomics model based on enhanced US images has 
potential for predicting Ki67 expression and histological staging in HCC patients. Qian et al. [24] analyzed preoperative grayscale US 
images from 118 HCC patients, delineating 2 cm regions both inside and surrounding the tumor as regions of interest. They constructed 
intratumoral, peritumoral, and combined models, finding that the fusion model, which integrated the most effective intratumoral and 
peritumoral features, exhibited the best predictive performance with an AUC of 0.870, demonstrating that additional information from 
surrounding tissues aids in better capturing tumor biology and heterogeneity. In CT-based radiomics studies [25–27], Zhao et al. [26] 
investigated 208 HCC patients from two institutions, employing multiphasic contrast-enhanced CT images along with clinical data to 
establish three predictive models: a clinical-radiological (CR) model, a rad-score (R) model, and a clinical-radiological-radiomics 
(CRR) model. The CRR model displayed the highest diagnostic efficacy; however, no significant difference in AUC was found be-
tween the CRR and CR models in internal and external validation cohorts, suggesting that additional radiomic features may not be 
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necessary for predicting Ki67 expression in HCC. Several studies have also focused on MRI radiomics related to Ki67 in hepatocellular 
carcinoma [28–33]. Hu et al. [32] utilized Magnetic Resonance Elastography (MRE) to measure the added value of viscoelasticity in 
predicting Ki67 expression and were the first to integrate deep learning methods, developing a Deep Learning Combined with 
Radiomics (DLCR) model. This study modeled preoperative conventional MRI from 108 HCC patients, incorporating MRE-derived 
shear wave velocity (c-map) and phase angle (φ-map) images into the DLCR model. The findings revealed that the c-map and 
φ-map significantly enhanced the performance of the DLCR model, highlighting the importance of MRE-based viscoelasticity in 
predicting Ki67 in HCC tumors.

Table 1 summarizes the studies in the literature to date that have evaluated the use of radiomics to preoperatively predict HCC 
Ki67.

2.2. CK19

Cytokeratin 19 (CK19) is a low molecular weight intermediate filament of the cytoskeleton [34] and serves as a marker for early 
hepatocytes, hepatic progenitor cells, and cholangiocytes. Typically, CK19 is not expressed or is expressed at low levels in normal 
hepatocytes, while approximately 10–30 % of HCC cases exhibit CK19 positivity [35]. CK19-positive HCC is associated with aggressive 
behavior and adverse outcomes, including poorer overall survival and early tumor recurrence following liver resection and trans-
plantation [36]. However, there are currently no approved drugs specifically targeting CK19-positive HCC. Recent experiments have 
indicated that CK19-positive HCC cells exhibit a unique response to regorafenib treatment, suggesting it may become an effective 
therapeutic option for these patients [37].

Zhang et al. [38] conducted a multicenter study to predict CK19 expression in HCC patients, demonstrating that the trained clinical 
model performed quite well (AUC = 0.917). The predictive performance of the combined model significantly improved with the 
addition of US data, achieving an impressive AUC of 0.995. Several MRI-based studies [39–44] have also reported remarkably high 
predictive performance for CK19. Notably, Wang et al. [44] extracted radiomic features from preoperative multiphase MRI images of 
227 patients pathologically confirmed to have HCC, and developed a combined model incorporating alpha-fetoprotein (AFP) levels 
and tumor edge enhancement characteristics, which yielded a high AUC. This study also observed that CK19-positive HCC patients had 
higher AFP levels and more pronounced arterial phase enhancement at the tumor margins. Related literature suggests that these 
findings are associated with the poorer differentiation, rapid progression, and unfavorable prognosis of CK19-positive HCC [45]. Chen 
et al. [40] utilized enhanced MRI images from 141 HCC patients collected from two institutions, outlining the tumor’s 3D image for 
feature extraction and analysis. The model achieved sensitivity, specificity, and accuracy values of 0.800, 0.766, and 0.775, respec-
tively. The study also recorded patients’ recurrence-free survival (RFS) and compared MRI changes before and after recurrence, 
identifying intratumoral hemorrhage and peritumoral low signals during the hepatobiliary phase as independent risk factors for HCC 
recurrence. A radiomic nomogram predicting RFS in HCC patients was established, with a C-index of 0.707, which could assist cli-
nicians in implementing appropriate interventions before disease progression.

2.3. PD-1/PD-L1, PD-L2

Programmed cell death protein 1 (PD-1) is a surface receptor predominantly expressed on T cells. Its primary function is to 
attenuate T cell activity, preventing autoimmune reactions against normal tissues and maintaining immune tolerance by binding to 
PD-L1 or PD-L2 ligands on the surface of healthy cells. PD-L1 serves as the main ligand for PD-1; when PD-L1 binds to PD-1, it can 
inhibit T cell activity and reduce the immune attack on cancer cells [46]. This mechanism has prompted several clinical studies, such as 
the IMbrave150 trial [47], where the combination of atezolizumab and bevacizumab demonstrated encouraging antitumor activity 
and safety; and the KEYNOTE-240 trial [48], which explored the efficacy of pembrolizumab in patients with advanced hepatocellular 
carcinoma. Some research indicates that upregulation of PD-L2 may serve as a compensatory mechanism when PD-L1 function is 
inhibited [49]. The expression of PD-L2 may provide insights beyond PD-L1, suggesting it could be a promising biomarker for 
anti-PD-1 targeted therapies.

Wang et al. [50] investigated the feasibility of predicting PD-1 expression in HCC patients using preoperative radiofrequency US. By 
analyzing multifactorial US features from 40 patients, including direct energy attenuation, spectral skewness, and Rician distribution 
characteristics, they identified radiomic features associated with PD-1, achieving a prediction accuracy of 92.5 % and an AUC of 94.23 
%. Although the results are promising, Wang’s study is a feasibility study lacking external validation, which raises concerns about the 
robustness of the model and the generalizability of the conclusions. Yao et al. [51] reported an AUC of 0.97 for US multimodal 
radiomics in predicting PD-1. Additionally, multiple studies [52–55] have demonstrated the potential of MRI in predicting 
immune-related proteins (PD-1, PD-L1, and PD-L2) in HCC patients. Tao et al. [52] extracted radiomic features from MRI images of 108 
HCC patients to develop an MRI-based predictive model, which yielded an AUC of 0.871 for predicting PD-L2 expression. Hectors et al. 
[55] not only assessed the association between MRI imaging features and immune analysis and genomic characteristics in HCC patients 
but also analyzed the relationships between radiomic, histopathological, and genomic features with early recurrence after liver 
resection. Despite limitations related to small sample sizes and lack of external validation, this groundbreaking study correlates tumor 
imaging, histopathology, genomics, and early recurrence, providing a multidimensional perspective for targeting therapies in HCC, 
particularly regarding the role of immune microenvironment modulation in liver cancer treatment, as evidenced by results from trials 
such as CheckMate 040 [56] and IMbrave150 [47].
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Table 1 
Radiomics studies of Ki67 in HCC.

Ref. Country N Type Imaging 
modality

Marker Segmentation ROI/ 
VOI

Independent predictors 
along

Main result Validation

Zhang et al. [21],2024 China (multi 
center)

Training:177. 
ValidationI:77. 
ValidationII:56

HCC US Ki67 Manual, 
Intra-tumoral

ROI AFP along with 
multiple other 
clinical parameters

AUC:0.870 (training), 
0.872 (Validation I), 
0.856 (Validation II)

Internal +
external

Dong et al. [22],2022 
(prospective)

China Training:71. 
Validation:30

HCC US Ki67 Manual, 
Intra-tumoral

ROI No AUC:0.873(training), 
0.768(validation)

Internal

Zhang et al. [23],2023 China (multi 
center)

Training:168. 
ValidationI:43. 
ValidationII:33

HCC US Ki67 Manual, 
Intra-tumoral

ROI AFP along with 
multiple other 
clinical parameters

AUC:0.986 (training), 
0.871 (Validation I), 
0.742 (Validation II)

Internal +
external

Qian et al. [24],2023 China Training:82. 
Validation:36

HCC US Ki67 Manual, 
Intra-tumoral and 
peritumoral

ROI No AUC:0.870（0.751–0.989） Internal

Wu et al. [25],2022 China Training:120. 
Validation:52

HCC CT Ki67 Manual, 
Intra-tumoral

VOI AFP, 
Edmondson grades

AUC:0.884(training), 
0.819(validation)

Internal

Zhao et al. [26],2023 China (two 
center)

Training:120. 
ValidationI:51. 
ValidationII:37

HCC CT Ki67 Manual, 
Intra-tumoral

VOI AFP, non-rim APHE, 
PVTT, TTPVI

AUC: 0.903(training), 
0.848(validation)

Internal +
external

Wu et al. [27],2020 China 74 HCC CT Ki67 Manual, 
Intra-tumoral

ROI No Contrast and correlation were 
considered independent 
risk factors of Ki67

No

Li et al. [28],2019 
(prospective)

China 83 HCC MRI Ki67 Manual, 
Intra-tumoral

ROI AFP, 
Edmondson grades

Misclassification rates:9.64%– 
15.66 %

No

Fan et al. [29],2021 China Training:103. 
Validation:48

HCC MRI Ki67 Manual, 
Intra-tumoral

VOI AFP AUC:0.922(training), 
0.863(validation)

Internal

Yan et al. [30],2023 China Training:180. 
Validation:78

HCC MRI Ki67 Manual, 
Intra-tumoral

ROI AFP, tumor size, growth 
type, 
peritumoral 
enhancement

AUC:0.876(training), 
0.809(validation)

Internal

Yan et al. [31],2023 China Training:77. 
Validation:33

HCC MRI Ki67 Manual, 
Intra-tumoral

ROI AFP, age, rad score AUC:0.901(training), 
0.781(validation)

Internal

Hu et al. [32],2022 China Training:87. 
ValidationI:21. 
ValidationII:43

HCC MRI Ki67 Manual, 
Intra-tumoral

ROI AFP AUC：0.90 ± 0.03 (ValidationI), 
0.83 ± 0.03(ValidationII)

Internal +
external

Ye et al. [33],2019 
(prospective)

China 89 HCC MRI Ki67 Manual, 
Intra-tumoral

VOI AFP, BCLC-stage, 
capsule integrity, 
tumor margin, 
enhancing capsule

AIC：73.65, 
C-index:0.936

No

Note: HCC: Hepatocellular carcinoma; US: Ultrasound; CT: Computed tomography; MRI: Magnetic resonance imaging; ROI: Region of interest; VOI: Volume of interest; AFP: Alpha-fetoprotein; PVTT: 
Portal vein tumor thrombosis; PPTVI: Tumor thrombus portal vein invasion; BCLC-stage: Barcelona clinic liver cancer staging system; AUC: Area under the curve; AIC: Akaike information criterion; C- 
index: Concordance index.
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2.4. GPC-3

The p53 protein is encoded by the TP53 gene, and the Cancer Genome Atlas (TCGA) database indicates that mutations in this tumor 
suppressor gene are among the most common genetic alterations in various human malignancies, including liver cancer [57]. Chronic 
inflammation caused by HBV infection leads to genomic instability in hepatocytes, increasing the incidence of TP53 mutations. 
Common types of TP53 mutations include missense mutations and truncating mutations. Missense mutations can result in abnormal 
p53 protein function, while truncating mutations typically lead to protein loss, both of which enhance the incidence of HCC [58]. 
Although research has focused on incorporating mutant p53 as a viable therapeutic target in clinical oncology, the realization of 
targeted therapies against p53 remains a challenging endeavor [59].

Wu et al. [60] investigated and analyzed portal venous phase images from preoperative enhanced CT scans of 63 HCC patients. 
They constructed first-order features using histograms and second-order features using gray-level co-occurrence matrices. Addition-
ally, the researchers assessed the degree and intensity of staining in postoperative pathological sections to semi-quantitatively evaluate 
the immunoreactivity of liver cancer tissues to p53 detection agents. The p53 immunoreactivity was scored on a scale of 0–4, based on 
the percentage of p53-positive tumor cells relative to the total number of tumor cells in the sections. Analysis revealed that image 
features such as smoothness, contrast, correlation, homogeneity, and entropy could predict the p53 mutation status, with AUC values 
ranging from 0.621 to 0.792. Among these, correlation and entropy exhibited the highest AUC values, suggesting they may be critical 
factors in distinguishing between p53-positive and p53-negative cases.

2.5. P53

Glypican-3 (GPC-3) is a member of the heparan sulfate proteoglycan family and is overexpressed in most cases of HCC, while its 
expression is minimal or absent in normal liver tissue (including cirrhotic tissue) [61]. It has become one of the most popular targets for 
HCC therapy in recent years. Antibody-drug conjugates (ADCs) targeting GPC-3 aim to selectively kill GPC-3-positive cancer cells by 
linking antibodies to cytotoxic drugs, demonstrating promising efficacy in clinical trials [62]. Additionally, GPC-3-specific CAR T-cell 
therapy, which utilizes genetically engineered T cells to target and attack GPC-3-expressing HCC cells, is currently being evaluated in 
several clinical trials to further assess its efficacy, optimal treatment regimens, and potential side effects [63].

Currently, studies on radiomic prediction of GPC-3 [41,64–67] primarily focus on using MRI images as the initial data, with AUC 
values ranging from 0.844 to 0.943, indicating that predicting GPC-3 levels in HCC patients using MRI is feasible and effective. Except 
for Geng et al. [41], which is based on SWI images from non-enhanced MRI, the remaining studies [64–67] utilize enhanced MRI 
images. Among these, Han et al. [64] explored the value of multiphase enhanced MRI in identifying GPC-3-positive HCC. The re-
searchers analyzed the three-dimensional imaging features of tumors from preoperative enhanced MRI of 126 HCC patients, estab-
lishing an optimal radiomic model using various algorithms, including Minimum Redundancy Maximum Relevance (MRMR) and 
recursive feature elimination. They then combined this model with AFP to create a fusion model, visualized as a nomogram, which 
ultimately showed AUC values of 0.844 in the training set and 0.862 in the validation set.

2.6. PI3K

Phosphoinositide 3-kinase (PI3K) is an integral part of the PI3K-AKT-mTOR pathway and is ubiquitously present in human tissues, 
serving as a critical regulator of various intracellular functions including cell growth, protein synthesis, cell cycle regulation, and cell 
movement. Based on structure and substrate specificity, PI3Ks are classified into Class I, Class II, and Class III, with Class I PI3Ks being 
the most frequently implicated in human diseases. Aberrant activation of the PI3K pathway is associated with various diseases, 
particularly cancer. In many types of tumors, the PI3K pathway promotes cancer cell proliferation and survival due to gene mutations 
or overactivation [68]. The PI3K signaling pathway is not only a key mechanism in the development and progression of liver cancer but 
has also become a significant focus in liver cancer research and treatment. Studies [69] have shown that the mechanism of action of 
Sorafenib, a therapeutic agent used in liver cancer, is closely associated with the PI3K-AKT pathway.

Liao and colleagues [70] developed an imaging-genomic model combining next-generation sequencing with enhanced CT. They 
conducted genetic sequencing on surgical samples from 86 patients diagnosed with HCC (training group) and 46 patients included in 
TCGA database (external validation group) to identify mutations in the PI3K gene. Radiologists qualitatively observed and recorded 
apparent characteristics from their preoperative enhanced CT images during the plain, arterial, and portal venous phases. These 
characteristics included tumor size, blood supply vessel thrombosis, delayed central enhancement, "capsule" appearance, necrosis or 
severe ischemia, peritumoral bile duct dilation, and hepatic capsule retraction. Simultaneously, the entire liver, tumor region, and 
peritumoral areas (including peritumoral 5 mm, 10 mm, and 20 mm) were delineated as the Region of Interest (ROI), from which over 
2600 features were extracted. Feature selection was performed using factor analysis, logistic regression analysis, LASSO regression 
analysis, and random forest analysis, resulting in the construction of 8 radiomics models. After computation, the model based on the 
10 mm peritumoral area in arterial phase images demonstrated the best predictive performance, with an AUC of 0.733.

2.7. VEGF

Vascular endothelial growth factor (VEGF) is a signaling protein that promotes angiogenesis and plays a critical role in normal 
physiological processes such as wound healing and embryonic development. Previous studies [71] have shown that excessive 
expression of VEGF aids tumors in forming new blood vessels, thereby facilitating their growth and metastasis. In hypervascular 
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tumors like HCC, inhibiting blood vessel growth is an important strategy in cancer treatment. Transarterial chemoembolization (TACE) 
essentially serves as a mechanical "anti-angiogenic" therapy. Bevacizumab targets and inhibits VEGF by blocking its binding to re-
ceptors, thereby obstructing tumor angiogenesis and reducing the blood supply to the tumor [72]. In the IMbrave150 trial, the 
combination of bevacizumab and atezolizumab significantly improved patient survival, establishing it as a standard first-line treat-
ment for unresectable hepatocellular carcinoma [47].

Fan et al. [73] conducted a retrospective study involving 202 patients with pathologically confirmed HCC, randomly assigning 
them to a training set (n = 142) and a testing set (n = 60). MRI enhanced multiphase images were used for radiomic feature extraction, 
yielding a total of 1906 features. The top 14 key features were selected using the F-test. Ultimately, a fusion model was developed 
incorporating AFP, edge irregularity, and the neutrophil-to-lymphocyte ratio (NLR). Testing revealed AUC values of 0.936 for the 
training group and 0.836 for the testing group. These results suggest that radiomic approaches hold promise in assisting clinicians in 
selecting more suitable immunotherapies for patients, potentially improving treatment efficacy and overall survival rates.

Table 2 summarizes the studies in the literature to date that have evaluated the use of radiomics to preoperatively predict HCC 
CK19, PD-1/PD-L1, PD-L2, P53, PC-3, PI3K, the phosphorylation of β-arrestin1 and VEGF.

3. ICC

ICC is a malignant tumor originating from the epithelial cells of the intrahepatic bile ducts and is recognized as the second leading 
cause of primary liver cancer incidence and mortality worldwide, with increasing rates in recent years [74]. Unlike perihilar and 
extrahepatic cholangiocarcinoma, patients with ICC typically present with few early symptoms, often leading to late-stage or meta-
static disease that exceeds surgical resection criteria, resulting in poor prognosis. Only 20%–30 % of patients are suitable for curative 
resection. For those with locally unresectable or distant metastatic ICC, systemic therapy may slow disease progression. Over the past 
two decades, the combination of gemcitabine and cisplatin has been considered the most effective first-line therapy. Recently, two 
large randomized trials evaluated the effects of adding immune checkpoint inhibitors (ICIs) to standard chemotherapy in patients with 
advanced cholangiocarcinoma [75,76]. Both the TOPAZ-1 and KEYNOTE-966 trials demonstrated slight improvements in overall 
survival (OS) and progression-free survival (PFS) without increasing toxicity [77]. The following is a review of studies utilizing 
radiomic approaches to predict immunohistochemical markers in ICC.

Peng et al. [78] extracted 1076 quantitative feature parameters from preoperative grayscale US images of 128 ICC patients to 
develop a model predicting multiple pathological indicators of ICC. The AUCs for Ki-67 and CK7 in the testing and validation sets were 
0.804 and 0.848, and 0.750 and 0.789, respectively. Qian et al. [79] analyzed preoperative enhanced MRI texture images from 178 ICC 
patients and established a fusion model based on three independent features: HBV status, arterial edge enhancement, and enhance-
ment pattern, demonstrating excellent predictive performance for Ki-67 expression. Zhang’s research team [80] utilized MRI com-
bined with deep learning to predict PD-1/PD-L1 expression in ICC patients. By tracking overall survival (OS), the researchers found 
that PD-1/PD-L1 positive patients had worse prognoses compared to negative patients. They developed an OS prediction model 
combining imaging, clinical factors, and pathology, which stratified ICC patients into high-risk and low-risk groups, predicting 1-year, 
3-year, and 5-year survival rates. In another study based on enhanced MRI, Zhang et al. [81] categorized 78 ICC patients into in-
flammatory and non-inflammatory immune phenotypes based on CD8+ T cell density. They analyzed their multiphase enhanced MRI 
images and recorded OS, finding that a predictive model based on three wavelet features and one 3D feature exhibited the best 
performance with an AUC of 0.919. Additionally, the researchers noted that inflammatory immune phenotypes had better prognoses 
than non-inflammatory phenotypes. Studies [82] have indicated that ICIs can relieve suppression on CD8+ T cells, enhancing their 
ability to attack tumors; generally, a higher quantity of CD8+ T cells in the tumor microenvironment correlates with improved out-
comes of immune checkpoint blockade therapy, thereby enhancing patient survival.

4. cHCC-CCA

Combined hepatocellular cholangiocarcinoma (cHCC-CCA) is a rare tumor that exhibits both hepatocellular and biliary differen-
tiation, accounting for less than 5 % of all primary liver cancers, making it significantly less common than HCC and ICC [83,84]. Since 
the first case of cHCC-CCA was reported in 1903, the definition of this entity and its related terminology have continually evolved. The 
2019 WHO classification of digestive system tumors emphasized that the diagnosis of cHCC-CCA should primarily rely on morpho-
logical assessment using routine staining, supplemented by additional immunohistochemical staining to refine subtype identification. 
Despite the increasing clarity in the definition of mixed hepatocellular cholangiocarcinoma and its distinction from other entities, its 
rarity, complex histological characteristics, and high intra-tumoral heterogeneity continue to pose diagnostic challenges for radiol-
ogists and pathologists. Vascular invasion and lymph node metastasis are more common in cHCC-CCA compared to HCC, and its 
overall prognosis is generally poorer, resembling that of ICC [85].

Currently, research on radiomics in cHCC-CCA is still in relatively early stages; however, some preliminary studies have attempted 
to enhance the diagnosis, classification, and prognostic assessment of this rare tumor through radiomic analysis. In a study utilizing 
enhanced MRI to preoperatively predict the cholangiocyte phenotype of hepatocellular carcinoma and assess postoperative prognosis, 
Chen et al. [86] aimed to predict the co-expression of CK19 and Glypican-3 in liver tumors. The researchers conducted rigorous 
pathological evaluations and immunohistochemical staining on patients pathologically confirmed to have solitary HCC, defining 
tumors with concurrent HepPar-1, GPC-3, or GS positivity alongside CK7 and/or CK19 positivity (≥15 %) as cholangiocyte phenotype 
HCC. They analyzed the enhanced MR images of all cases and established a logistic regression model to predict cholangiocyte 
phenotype HCC, achieving area under the curve (AUC) values of 0.76 in the training set and 0.73 in the independent validation set. 
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Table 2 
Radiomics studies of CK19、PD-1/PD-L1、PD-L2、P53、GPC-3、PI3K、the phosphorylation of β-arrestin1 and VEGF in HCC.

Ref. Country N Type Imaging 
modality

Marker Segmentation ROI/ 
VOI

Independent predictors along Main result Validation

Zhang et al. [38], 
2022

China (three 
center)

Training:143. 
ValidationI:36. 
ValidationII:35.

HCC US CK19 Manual, 
Intra-tumoral

ROI AFP along with multiple other 
clinical parameters

AUC: 0.995(training), 
0.867(validation I), 
0.862(validation II)

Internal +
external

Zhang et al. [39], 
2023

China (two 
center)

Training:168. 
ValidationI:72. 
ValidationII:71

HCC MRI CK19 Manual, 
Intra-tumoral

VOI Radiomics score, AFP, gender, 
arterial rim 
enhancement

AUC:0.914(training), 
0.855(validation I), 
0.795(validation II)

Internal +
external

Chen et al. [40], 
2021

China (two 
center)

Training:102. 
ValidationI:19. 
ValidationII:20

HCC MRI CK19 Manual, 
Intra-tumoral

VOI AFP AUC:0.833(training), 
0.614(validation I)， 
0.750(validation II)

Internal +
external

Geng et al. [41], 
2021

China 53 HCC MRI CK19 Manual, 
Intra-tumoral

ROI No AUC:0.905 No

Yang et al. [42], 
2021

China (multi 
center)

Training:143. 
ValidationI:75. 
ValidationII:39.

HCC MRI CK19 Manual, 
Intra-tumoral

VOI No AUC:0.857(training), 
0.726(validation I), 
0.790(validation II)

Internal +
external

Wang et al. [43], 
2020

China Training:159. 
Validation:68

HCC MRI CK19 Unknow, 
Intra-tumoral

VOI AFP, arterial rim enhancement 
pattern, irregular tumor margin, 
fusion radiomics signature

AUC:0.951(training), 
0.822(validation)

Internal

Wang et al. [44], 
2019

China 86 HCC MRI CK19 Manual, 
Intra-tumoral

ROI AFP, arterial rim enhancement, 
StdSeparation3D texture character

AUC:0.844 No

Wang et al. [50], 
2022

China 40 HCC US PD-1 Manual, 
Intra-tumoral

ROI No AUC:0.9423 No

Yao et al. [51],2018 
(prospective)

China 47 HCC US PD-1 Manual, 
Intra-tumoral

ROI No AUC:0.97 No

Tao et al. [52],2023 China 108 HCC MRI PD-L2 Manual, 
Intra-tumoral

VOI No AUC:0.955(training), 
0.871(validation)

Internal

Gong et al. [54], 
2023

China Training:74. 
Validation:34

HCC MRI PD-1/ 
PD-L1

Manual, 
Intra-tumoral

VOI The presence of satellite nodules AUC: 
PD-1:0.946(training), 
0.815(validation); 
PD-L1:0.898(training), 
0.779(validation)

Internal

Tian et al. [53],2021 China Training:83. 
Validation:20

HCC MRI PD-L1 Manual, 
Intra-tumoral

VOI No AUC: 0.897 ± 0.084 Internal

Hectors et al. [55], 
2020

America 48 HCC MRI PD-L1 Manual, 
Intra-tumoral

ROI No R: 0.41–0.47， 
P < 0.029

No

Geng et al. [41], 
2021

China 53 HCC MRI GPC-3 Manual, 
Intra-tumoral

ROI No AUC:0.905 No

Han et al. [64],2023 China Training:88. 
Validation:38

HCC MRI GPC-3 Manual, 
Intra-tumoral

VOI AFP AUC:0.844(training), 
0.862(validation)

Internal

Zhang et al. [65], 
2023

China Training:137. 
Validation:49

HCC MRI GPC-3 Manual, 
Intra-tumoral

VOI Radiomics score, age, AFP, 
non-smooth tumor margin

AUC:0.888(training), 
0.800(validation)

Internal

Chong et al. [66], 
2023

China Training:207. 
Validation:52

HCC MRI GPC-3 Manual, 
Intra-tumoral

VOI AFP, homogenous T2 signal, 
hypointensity on hepatobiliary 
phase

AUC:0.931(training), 
0.943(validation)

Internal

Gu et al. [67],2020 China Training:195. 
Validation:98

HCC MRI GPC-3 Manual, 
Intra-tumoral

VOI AFP AUC:0.926(training), 
0.914(validation)

Internal

Wu et al. [60],2019 China 63 HCC CT P53 Unknow, 
Intra-tumoral

ROI No ASM, contrast, correlation, 
IDM, and entropy were 

No

(continued on next page)
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Table 2 (continued )

Ref. Country N Type Imaging 
modality 

Marker Segmentation ROI/ 
VOI 

Independent predictors along Main result Validation

predictive of P53 mutation, 
AUC:0.621–0.792

Liao et al. [70],2022 China (two 
center)

Training:86. 
Validation:46

HCC CT PI3K Manual, 
Intra-tumoral and 
peritumoral

VOI No AUC:0.74(training), 
0.73(validation)

external

Fan et al. [73],2020 China Training:142. 
Validation:60

HCC MRI VEGF Manual, 
Intra-tumoral

ROI AFP, irregular tumor margin AUC:0.936(training), 
0.836(validation)

Internal

Note: HCC: Hepatocellular carcinoma; US: Ultrasound; CT: Computed tomography; MRI: Magnetic resonance imaging; ROI: Region of interest; VOI: Volume of interest; CK19: Cytokeratin 19; PD-1: 
Programmed cell death protein 1; PD-L1: Programmed death-ligand 1; PD-L2: Programmed death-ligand 2; GPC-3: Glypican-3; P53:Tumor protein 53; PI3K:Phosphatidylinositol-3 kinase; VEGF: 
Vascular endothelial growth factor; AFP: Alpha-fetoprotein; ALT: Alanine aminotransferase; AUC: Area under the curve; R: Pearson correlation coefficient; P: P-value; ASM: Angular second moment; IDM: 
Inverse difference moment.
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Table 3 
Radiomics studies in ICC and cHCC-CCA.

Ref. Country N Type Imaging 
modality

Marker Segmentation ROI/ 
VOI

Independent predictors along Main result Validation

Peng et al. [78],2020 China Training:90. 
Validation:38

ICC US Ki67 Manual, 
Intra-tumoral

ROI No AUC:0.804 
(training, 
0.848 
(validation)

Internal

Peng et al. [78],2020 China Training:89. 
Validation:39

ICC US Ck7 Manual, 
Intra-tumoral

ROI No AUC:0.750 
(training), 
0.789 
(validation)

Internal

Peng et al. [78],2020 China Training:89. 
Validation:39

ICC US VEGF Manual, 
Intra-tumoral

ROI No AUC:0.760 
(training), 
0.864 
(validation)

Internal

Qian et al. [79],2023 
(retrospective-prospective)

China Training:124. 
ValidationI:54. 
ValidationII:49

ICC MRI Ki67 Manual, 
Intra-tumoral

VOI HBV, arterial rim enhancement, 
enhancement pattern

AUC:0.860 
(training), 
0.843 
(validation I), 
0.815 
(validation II)

Internal

Zhang et al. [81],2021 China 78 ICC MRI CD8+ Manual, 
Intra-tumoral

VOI No AUC：0.919 No

Zhang et al. [80],2020 China 98 ICC MRI PD-1/ 
PD-L1

Manual, 
Intra-tumoral

VOI PD-1: pathology, imaging classification, 
enhancement, intratumour vascularity; 
PD-L1: No

AUC:0.897(PD- 
1), 
0.890(PD-L1)

Internal

Chen et al. [86],2023 China Training:232. 
Validation:102

cHCC- 
CCA

MRI CK19+
GPC-3

Manual, 
Intra-tumoral

ROI No AUC:0.760 
(training), 
0.730 
(validation)

Internal

Note: ICC: Intrahepatic cholangiocarcinoma; cHCC-CCA: Combined hepatocellular cholangiocarcinoma; US: Ultrasound; MRI: Magnetic resonance imaging; CK7: Cytokeratin 7; CK19: Cytokeratin 19; 
GPC-3: Glypican-3; VEGF: Vascular endothelial growth factor; CD8: Cluster of differentiation 8; PD-1: Programmed cell death protein 1; PD-L1: Programmed death-ligand 1; ROI: Region of interest; VOI: 
Volume of interest; HBV: Hepatitis B virus; AUC: Area under the curve.
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Additionally, regular follow-up of patients with cholangiocyte phenotype HCC post-liver resection revealed lower recurrence-free 
survival (RFS) and overall survival (OS) rates.

Table 3 summarizes the studies in the literature to date that have evaluated the use of radiomics to preoperatively predict ICC and 
cHCC-CCA immunohistochemical markers.

4.1. Challenge

Despite current advancements in radiomics for predicting HCC immunohistochemistry markers, indicating significant potential in 
this field, several challenges impede its development and wider acceptance. Non-standardization in image acquisition, subjectivity in 
defining regions of interest, and inappropriate use of statistical methods have raised concerns about the reproducibility of radiomic 
studies. These issues often lead to an increased risk of false-positive outcomes in external validation, making the reproducibility of 
radiomics a major bottleneck in its progression [87]. Furthermore, prominent biomarkers discussed in the review, such as Ki67 and 
VEGF, are not routinely used in the pathological assessment of primary liver cancer, and their clinical validity remains to be estab-
lished. The evaluation of these biomarkers is primarily conducted by pathologists, whereas radiomics studies are predominantly led by 
radiologists, who may overlook crucial issues affecting results, such as the reproducibility of immunostaining and the threshold values 
for different biomarkers. The majority of these studies are retrospective and single-centered, necessitating further validation through 
multicentric, large-scale, and prospective trials. Lastly, for clinical application of radiomics in predicting HCC immunohistochemical 
markers, there is a pressing need for standardized management of large-scale imaging data and the development of specialized 
software to support these endeavors.

4.2. Outlook

Both radiology and immunohistochemistry technologies utilize visual analysis to generate auxiliary information guiding patient 
diagnosis. Combining these two approaches in disease diagnosis can enhance diagnostic accuracy and enable more refined sub- 
classification of diseases. Additionally, leveraging radiology to infer immunohistochemical characteristics optimizes the use of im-
aging resources. This not only reduces unnecessary repeat examinations but also facilitates telemedicine and resource sharing. 
Furthermore, immunohistochemistry helps in identifying conditions on the tumor cell surface or within the tumor microenvironment, 
often serving as a basis for subsequent immunotherapy. The radiomics approach undoubtedly accelerates the application of immu-
nohistochemistry in selecting immunotherapy regimens for patients with primary hepatic carcinoma. Personalized treatment based on 
predicted immunohistochemical outcomes may improve patient prognosis and extend survival, significantly contributing to the 
advancement of precision medicine.

5. Conclusion

Radiomics has achieved certain milestones in predicting immunohistochemical markers of primary hepatic carcinoma, yet it still 
confronts numerous challenges, such as reproducibility in radiomic analysis. Unquestionably, the application of radiomics in fore-
casting immunohistochemical markers for primary hepatic carcinoma not only provides robust support for personalized treatment 
options for patients but also inevitably propels the advancement of precision medicine.

CRediT authorship contribution statement

Yunqing Yin: Writing – original draft, Visualization, Validation, Investigation, Data curation. Wei Zhang: Supervision, Formal 
analysis, Conceptualization. Yanhui Chen: Investigation, Data curation. Yanfang Zhang: Writing – review & editing, Validation, 
Supervision. Xinying Shen: Writing – review & editing, Supervision, Data curation.

Ethics approval and consent to participate

Not applicable.

Financial support

No.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

This project was supported by Shenzhen Science and Technology Program (JCYJ20210324112611031) and Key Technologies for 

Y. Yin et al.                                                                                                                                                                                                             Heliyon 10 (2024) e40588 

10 



Precision Surgical Planning and Real-Time Guidance Software in Human-Computer Interaction (2020B010165004).

References

[1] R.L. Siegel, A.N. Giaquinto, A. Jemal, Cancer statistics, 2024, CA A Cancer J. Clin. 74 (1) (2024) 12–49.
[2] N. McGranahan, C. Swanton, Clonal heterogeneity and tumor evolution: past, present, and the future, Cell 168 (4) (2017) 613–628.
[3] D.-C. Lin, A. Mayakonda, H.Q. Dinh, P. Huang, L. Lin, X. Liu, L.-W. Ding, J. Wang, B.P. Berman, E.-W. Song, et al., Genomic and epigenomic heterogeneity of 

hepatocellular carcinoma, Cancer Res. 77 (9) (2017) 2255–2265.
[4] I. Dagogo-Jack, A.T. Shaw, Tumour heterogeneity and resistance to cancer therapies, Nat. Rev. Clin. Oncol. 15 (2) (2018) 81–94.
[5] A.H. Coons, H.J. Creech, R.N. Jones, Immunological properties of an antibody containing a fluorescent group, Exp. Biol. Med. 47 (2) (1941) 200–202.
[6] P.E. Swanson, Foundations of immunohistochemistry. A practical review, Am. J. Clin. Pathol. 90 (3) (1988) 333–339.
[7] J. Teruya-Feldstein, The immunohistochemistry laboratory: looking at molecules and preparing for tomorrow, Arch. Pathol. Lab Med. 134 (11) (2010) 

1659–1665.
[8] Z.E. Chen, F. Lin, Application of immunohistochemistry in gastrointestinal and liver neoplasms: new markers and evolving practice, Arch. Pathol. Lab Med. 139 

(1) (2015) 14–23.
[9] S. Magaki, S.A. Hojat, B. Wei, A. So, W.H. Yong, An introduction to the performance of immunohistochemistry, Methods Mol. Biol. 1897 (2019) 289–298.

[10] P. Lambin, R.T.H. Leijenaar, T.M. Deist, J. Peerlings, E.E.C. de Jong, J. van Timmeren, S. Sanduleanu, R.T.H.M. Larue, A.J.G. Even, A. Jochems, et al., 
Radiomics: the bridge between medical imaging and personalized medicine, Nat. Rev. Clin. Oncol. 14 (12) (2017) 749–762.

[11] L. Hood, S.H. Friend, Predictive, personalized, preventive, participatory (P4) cancer medicine, Nat. Rev. Clin. Oncol. 8 (3) (2011) 184–187.
[12] H. Li, Y. Zhu, E.S. Burnside, E. Huang, K. Drukker, K.A. Hoadley, C. Fan, S.D. Conzen, M. Zuley, J.M. Net, et al., Quantitative MRI radiomics in the prediction of 

molecular classifications of breast cancer subtypes in the TCGA/TCIA data set, NPJ Breast Cancer 2 (2016), 16012-16012.
[13] T.P. Coroller, P. Grossmann, Y. Hou, E. Rios Velazquez, R.T.H. Leijenaar, G. Hermann, P. Lambin, B. Haibe-Kains, R.H. Mak, H.J.W.L. Aerts, CT-based radiomic 

signature predicts distant metastasis in lung adenocarcinoma, Radiother. Oncol. 114 (3) (2015) 345–350.
[14] J. Miranda, N. Horvat, G.M. Fonseca, JdAB. Araujo-Filho, M.C. Fernandes, C. Charbel, J. Chakraborty, F.F. Coelho, C.H. Nomura, P. Herman, Current status and 

future perspectives of radiomics in hepatocellular carcinoma, World J. Gastroenterol. 29 (1) (2023) 43–60.
[15] V. Kumar, Y. Gu, S. Basu, A. Berglund, S.A. Eschrich, M.B. Schabath, K. Forster, H.J.W.L. Aerts, A. Dekker, D. Fenstermacher, et al., Radiomics: the process and 

the challenges, Magn. Reson. Imaging 30 (9) (2012) 1234–1248.
[16] I. Isupov, M.D.F. McInnes, S.J. Hamstra, G. Doherty, A. Gupta, S. Peddle, Z. Jibri, K. Rakhra, R.M. Hibbert, Development of RAD-score: a tool to assess the 

procedural competence of diagnostic radiology residents, AJR Am. J. Roentgenol. 208 (4) (2017) 820–826.
[17] L.T. Li, G. Jiang, Q. Chen, J.N. Zheng, Ki67 is a promising molecular target in the diagnosis of cancer, Mol. Med. Rep. 11 (3) (2015) 1566–1572 (review).
[18] W. Shi, J. Hu, S. Zhu, X. Shen, X. Zhang, C. Yang, H. Gao, H. Zhang, Expression of MTA2 and Ki-67 in hepatocellular carcinoma and their correlation with 

prognosis, Int. J. Clin. Exp. Pathol. 8 (10) (2015) 13083–13089.
[19] J. Cui, B.-W. Dong, P. Liang, X.-L. Yu, D.-J. Yu, Effect of c-myc, Ki-67, MMP-2 and VEGF expression on prognosis of hepatocellular carcinoma patients 

undergoing tumor resection, World J. Gastroenterol. 10 (10) (2004) 1533–1536.
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