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Abstract

High-quality T 1 -weighted (T 1 w) and diffusion tensor imaging (DTI) brain templates 

that are representative of the individuals under study enhance the accuracy of template-based 

neuroimaging investigations, and when they are also located in a common space they facilitate 

optimal integration of information on brain morphometry and diffusion characteristics. However, 

such multimodal templates have not been constructed for the brain of older adults. The purpose 

of this work was threefold: (A) to introduce an iterative method for construction of multimodal 

T 1 w and DTI templates that aims at maximizing the quality of each template separately as well 

as the spatial matching between templates, (B) to use this method to develop T 1 w and DTI 

templates of the older adult brain in a common space, and (C) to evaluate the performance of the 

method across iterations and compare it to the performance of state-of-the-art approaches based 

on multichannel registration. It was demonstrated that more iterations of the proposed method 

enhanced the characteristics and spatial matching of the resulting T 1 w and DTI templates. 

This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
*Corresponding author. arfanakis@iit.edu (K. Arfanakis). 

Declaration of Competing Interest
The authors have no conflict of interest to report.

Credit authorship contribution statement
Yingjuan Wu: Conceptualization, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – 
original draft, Writing – review & editing. Abdur Raquib Ridwan: Methodology, Software, Validation, Writing – review & 
editing. Mohammad Rakeen Niaz: Methodology, Software, Validation, Writing – review & editing. Xiaoxiao Qi: Methodology. 
Shengwei Zhang: Methodology. Alzheimer’s Disease Neuroimaging Initiative: Data curation. David A. Bennett: Data curation, 
Funding acquisition, Resources. Konstantinos Arfanakis: Conceptualization, Data curation, Formal analysis, Funding acquisition, 
Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing – original draft, 
Writing – review & editing.

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.neuroimage.2022.119417.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2022 October 15.

Published in final edited form as:
Neuroimage. 2022 October 15; 260: 119417. doi:10.1016/j.neuroimage.2022.119417.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu
http://adnllonlusc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_Listpdf
http://adnllonlusc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_Listpdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2022.119417


The templates of the older adult brain generated by the final iteration of the proposed method 

provided better delineation of brain structures, higher discriminability between tissues, and higher 

image sharpness near the cortex compared to templates generated with approaches employing 

multichannel registration. In addition, the spatial matching between the T 1 w and DTI templates 

constructed by the proposed method approximated the template alignment achieved with methods 

employing multichannel registration. Finally, when using the templates generated by the proposed 

method as references for spatial normalization of older adult T 1 w and DTI data, both the intra-

modality inter-subject normalization precision and the inter-modality spatial matching were higher 

in most metrics than those achieved with templates constructed with other methods. Overall, the 

present work brought new insights into multimodal template construction, generated much-needed 

high quality T 1 w and DTI templates of the older adult brain in a common space, and conducted a 

thorough, quantitative evaluation of available multimodal template construction methods.
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1. Introduction

High-quality T 1 -weighted (T 1 w) and diffusion tensor imaging (DTI) brain templates that 

are representative of the individuals under study have an important role in neuroimaging 

investigations (Avants et al., 2010b; Fonov et al., 2011; Joshi et al., 2004; Mazziotta 

et al., 2001; Zhang and Arfanakis, 2018). When these templates are also located in a 

common space they form a multimodal set of templates that facilitates optimal integration 

of information on brain morphometry and diffusion characteristics across individuals 

(Kochunov et al., 2007; Avants et al., 2010a; Kim et al., 2015; Sasamoto et al., 2014; 

Sydykova et al., 2007), allows voxel-wise multivariate statistical analyses (Avants et al., 

2008a), and provides the foundation for constructing additional structural, functional, and 

connectivity templates and labels to form a comprehensive digital brain atlas (Toga et al., 

2006). To date, several pairs of T 1 w and DTI templates of varying quality and located 

in the same or approximately the same space have been developed for different age groups 

(Hsu et al., 2015; Mori et al., 2008; Rohlfing et al., 2010; Zhang et al., 2011). However, 

no multimodal T 1 w and DTI templates have been constructed exclusively from older 

adult data. It is well known that due to age-related brain changes, manifested in T 1 w 

and DTI images as tissue atrophy, enlarged ventricles, widened sulci, lesions, increased 

mean diffusivity, reduced diffusion anisotropy and other signal changes (Blatter et al., 1995; 

Cabeen et al., 2017; Courchesne et al., 2000; Dickie et al., 2016; Ge et al., 2002; Good et 

al., 2001; Liu et al., 2003; Scahill et al., 2003; C. D. Smith et al., 2007; Madden et al., 2004; 

Pfefferbaum and Sullivan, 2003; Salat et al., 2005; Sullivan et al., 2006, 2010), use of young 

adult T 1 w and DTI templates in studies of older adults increases spatial mismatch across 

individuals, and reduces the sensitivity and accuracy of analyses (Fonov et al., 2011; Good 

et al., 2001; Ridwan et al., 2021; Senjem et al., 2005; Van Hecke et al., 2011; Yoon et al., 

2009). There is therefore a need for multimodal T 1 w and DTI templates of the older adult 

brain.
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A number of approaches have been used previously to construct multimodal T 1 w and 

DTI templates, and these approaches can be grouped into those that construct templates: 

a) in series e.g. first T 1 w and then DTI, or the opposite, and b) in parallel. In the first 

category, previous work constructed a T 1 w template from data on multiple individuals 

and applied the resulting transformations to diffusion tensor-derived data which were then 

averaged to build corresponding templates (e.g. fractional anisotropy and mean diffusivity 

templates) (Rohlfing et al., 2010). This approach ensured excellent matching between the 

resulting T 1 w and DTI templates. However, an important limitation was that the spatial 

transformations that match T 1 w data across multiple individuals do not ensure optimal 

matching of DTI data from the same individuals, because in T 1 w images most of the 

contrast is located at the cortex and subcortical structures and there is limited information 

to guide registration in the white matter where most of the DTI contrast is located, 

thereby lowering the quality of the DTI template (Zhang and Arfanakis, 2018). Similarly, 

other work registered average diffusion-weighted images from multiple individuals to the 

previously constructed ICBM-152 T 1 w template (Mazziotta et al., 1995) and applied 

those transformations to the diffusion tensor data, which were then averaged to construct a 

DTI template in ICBM-152 space (Mori et al., 2008). Again, the main limitation was that 

spatial matching of DTI data across individuals was not optimized, reducing the quality 

of the DTI template (Peng et al., 2009). Hsu et al., 2015, recognized this limitation and 

following T 1 w-based alignment of diffusion imaging data to ICBM-152 space (Mazziotta 

et al., 1995) and construction of a temporary diffusion spectrum imaging (DSI) template, 

performed additional DSI-based registrations to improve DSI matching across individuals 

and generated an improved DSI template. However, one limitation of this approach was 

that since the DSI-based registrations occurred after the T 1 w registrations had been 

completed, the space of the final DSI template may have deviated slightly from the space 

of the T 1 w template. Another limitation was that the two templates were based on data 

from different groups of people having different characteristics which may have limited 

the spatial matching across templates, and even in regions with apparently good matching, 

the combination of T 1 w and DSI characteristics may not be representative of the human 

brain. In brief, previous work constructing multimodal T 1 w and DTI templates in series 

was able to either optimize template matching across modalities and template quality for 

only one modality at the cost of low template quality for the other modality, or to optimize 

template quality for both modalities separately at the cost of reduced template matching 

across modalities.

To address the above limitations, multimodal templates can be constructed in parallel using 

multichannel registration (Arthofer et al., 2021; Avants et al., 2008a; Guimond et al., 

2002; Irfanoglu et al., 2016; Lange et al., 2020b; Li and Verma, 2011; Park et al., 2003). 

Multi-channel registration estimates a joint deformation that aims to optimize inter-subject 

spatial matching for all modalities, thereby ensuring both high template quality and excellent 

template matching across modalities. However, although this approach may work well when 

building multimodal T 1 w and T 2 w templates which have similar features, most of the 

contrast in T 1 w images is in gray matter while most of the contrast in DTI is in white 

matter, and therefore T 1 w information may be distracting when attempting to optimize 

inter-subject matching of DTI features, and the opposite (the severity of this problem also 
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depends on the registration algorithm). We argue that the requirement for simultaneous 

optimization of inter-subject spatial matching in both T 1 w and DTI data may lead to less 

precise spatial matching of the features of interest in each modality compared to considering 

each modality separately, thereby compromising the quality of both templates.

The purpose of this work was threefold: (A) to introduce an iterative method for multimodal 

T 1 w and DTI template construction that aims at maximizing the quality of each template 

as well as the spatial matching between templates by alternating optimization between 

modalities and applying all transformations to both modalities, (B) to use this method 

to develop T 1 w and DTI templates of the older adult brain in a common space as 

part of an ongoing project to develop a comprehensive older adult brain atlas named 

Multichannel Illinois Institute of Technology & Rush university Aging (MIITRA) atlas, 

and (C) to evaluate the performance of the method across iterations and compare it to the 

performance of state-of-the-art approaches based on multichannel registration. The proposed 

method for multimodal T 1 w and DTI template construction uses state-of-the-art single 

modality registration in data from multiple individuals to maximize the quality of one 

template and applies the resulting transformations to data from both modalities, then uses 

single modality registration to maximize the quality of the other template and applies the 

resulting transformations to data from both modalities, and repeats these steps iteratively, 

combining the transformations from each step to minimize interpolations. Each iteration 

aims at maximizing the quality of each of the two templates in series, and multiple iterations 

aim at enhancing the spatial matching between the two templates. The proposed method was 

used to develop T 1 w and DTI templates of the older adult brain in a common space. The 

performance of the proposed method was evaluated across iterations and was also compared 

to that of approaches using multichannel registration in terms of template quality, spatial 

matching across templates, and spatial normalization of older adult data.

2. Methods

2.1. Participants and data acquisition

Two older adult brain MRI datasets were used in this work. Dataset 1 was used for 

constructing multimodal T 1 w and DTI templates. Dataset 1 consisted of structural T 1 

w and diffusion data from 202 non-demented older adults (50% male; 65.2–94.9 years 

age range; mean±sd age=80.56±8.14 years of age; 161 with no cognitive impairment and 

41 with mild cognitive impairment) participating in the Rush Memory and Aging Project 

(MAP) (Bennett et al., 2018). All participants provided written informed consent according 

to procedures approved by the institutional committee for the protection of human subjects. 

Previous work has shown that this number of participants is sufficiently large to generate 

an unbiased and robust brain template (Ridwan et al., 2021; Yang et al., 2020). All data 

were collected on a 3T Siemens (158 persons) and a 3T Philips MRI scanner (44 persons). 

T 1 w images were acquired using a 3D magnetization prepared rapid acquisition gradient 

echo (MPRAGE) sequence with the following parameters: for 3T Siemens, TR=2300 ms, 

TE=2.98 ms, TI=900 ms, flip-angle=9°, field of view=256 mm x 256 mm, 176 sagittal 

slices, acquired voxel size=1 × 1 × 1 mm3 , and an acceleration factor of 2; for 3T Philips, 

TR=8 ms, TE=3.7 ms, TI=955 ms, flip-angle=8°, field of view=240 mm x 228 mm, 181 
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sagittal slices, acquired voxel size=1 × 1 × 1 mm3 , and an acceleration factor of 2. The 

diffusion data were acquired using a spin-echo-planar diffusion-weighted imaging sequence 

with the following parameters: for 3T Siemens, TR=8100 ms, TE=85 ms, field of view=224 

mm x 224 mm, 65 axial slices, voxel size=2 × 2 × 2 mm3 , b = 1000s/mm2 for 40 diffusion 

directions, and six b = 0 s/mm2 images; for 3T Philips, TR=10,701 ms, TE=55 ms, and all 

other parameters were the same.

Dataset 2 was used for assessing spatial normalization precision when using the templates 

generated by the different methods as reference. Dataset 2 consisted of T 1 w and DTI 

data from 202 non-demented older adults (50% male; 65–93.2 years age range; mean±sd 

age=78.3±6.02 years of age; 122 with no cognitive impairment and 80 with mild cognitive 

impairment) participating in the Alzheimer’s Disease Neuroimaging Initiative 3 (ADNI3) 

(http://adni.loni.usc.edu). ADNI was launched as a public-private partnership in 2003, led 

by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to 

test whether serial MRI, positron emission tomography (PET), other biological markers, and 

clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment and early Alzheimer’s disease. All data in Dataset 2 were 

collected on 3T Siemens (146 persons) and 3T Philips (56 persons) MRI scanners. T 1 w 

images were obtained using 3D MPRAGE sequences with the following parameters: for 3T 

Siemens, TR=2300 ms, TE=2.98 ms, TI=900 ms, flip-angle=9°, field of view=256 mm x 

240 mm, 208 slices, acquired voxel size=1 × 1 × 1 mm3 , and an acceleration factor of 2; for 

3T Philips, TR=6.5 ms, TE=2.9 ms, TI=900 ms, flip-angle=9°, field of view=256 mm x 256 

mm, 211 slices, acquired voxel size=1 × 1 × 1 mm3 , and an acceleration factor of 2. DTI 

data were acquired using spin-echo-planar diffusion-weighted sequences with the following 

parameters: for Siemens Skyra E11 (101 persons), TR=9600 ms, TE=82.0 ms, field of 

view=232 mm x 232 mm, 80 axial slices, voxel size =2 × 2 × 2 mm3 , b = 1000s/mm2 for 

48 diffusion directions, and seven b = 0 s/mm2 images; for Siemens 20VB17 (45 persons): 

TR= 12,400 ms, TE=95 ms, field of view=232 mm x 232 mm, 80 axial slices, voxel size=2 

× 2 × 2 mm3 , b = 1000s/mm2 for 30 diffusion directions and one b = 0 s/mm2 image; for 

Philips (56 persons), TR=9916 ms, TE=86 ms, field of view=256 mm x256 mm, 80 axial 

slices, voxel size=2 × 2 × 2 mm3 , b = 1000s/mm2 for 32 diffusion directions, and 9 b = 0 

s/mm2 images.

2.2. Image processing

T 1 w images in Datasets 1 and 2 were skull-stripped using a multi-atlas skull-stripping 

method with a set of 100 atlases (Doshi et al., 2013; Heckemann et al., 2015). The 

brain images were segmented into white matter, gray matter, and cerebrospinal fluid using 

CAT12 (Farokhian et al., 2017), and the three masks were used as priors for N4 bias 

field inhomogeneity correction (Tustison et al., 2010). The resulting image intensities 

were normalized with z-score normalization using the mean and standard deviation of the 

intensities inside the combined gray and white matter masks. The gray matter in the T 1 w 

images of Dataset 2 were also segmented into the Desikan-Killiany regions using FreeSurfer 

(Fischl, 2012; McCarthy et al., 2015).
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Diffusion-weighted images in both Datasets 1 and 2 were corrected for motion, eddy-

currents and EPI distortions, and the B-matrix was re-oriented using the DIFFPREP tool of 

TORTOISE (Irfanoglu et al., 2017; Pierpaoli et al., 2010; Rohde et al., 2004). The diffusion 

tensors were then estimated in each brain voxel using the DIFFCALC tool of TORTOISE 

and the RESTORE nonlinear fitting option (Chang et al., 2005, 2012). FA maps were 

generated from the diffusion tensors.

Prior to template construction, two preprocessing steps were performed for every participant 

i (i = 1…N, N = 202) in Dataset 1. First, the diffusion tensors of participant i, denoted as 

DT Ii, were registered to that participant’s T 1 w data, denoted as T1i, to correct any motion 

occurring between sequences. To accomplish that, the corrected images with no diffusion 

weighting, b0i, were affinely registered to T1i using ANTs (Avants et al., 2009, 2011) (affine 

registration was preferred over rigid body registration because in some cases the former 

was shown to provide slightly better alignment of DTI and T 1 w data than the latter) with 

mutual information as the cost function, and the resulting transformation φb0i T1i was 

applied to DT Ii. Next, the T1i data were aligned with MNI space through a rigid transform 

φT1i M N I. The DT Ii data were also transformed to MNI space using the combination of 

the two transforms, φb0i T1i ∘ φT1i M N I, to minimize interpolations. The co-registered 

and MNI-aligned T 1 w and DTI data of Dataset 1 were used in template construction as 

described next.

2.3. Proposed method for constructing multimodal T 1 w and DTI templates

The proposed method performs spatial normalization across participants based on T 1 w 

or on DTI data in an alternating fashion, applies all transformations to data from both 

modalities, and repeats this process for multiple iterations. More specifically, each iteration 

includes two steps (Fig. 1). In step 1, spatial normalization is driven by T 1 w information, 

a T 1 w template is generated, and the resulting transformations are also applied to the 

DTI data (a DTI template is not generated in this step). In step 2, spatial normalization 

is driven by DTI information that has already been spatially transformed in step 1, a DTI 

template is generated, and the resulting transformations are also applied to the T 1 w data (a 

T 1 w template is not generated in this step). Steps 1 and 2 are then repeated for multiple 

iterations, and the transformations from all steps and iterations are combined so that each 

image is interpolated only once throughout the whole process. Overall, a) each iteration aims 

at maximizing the quality of each of the two templates separately, recognizing that data from 

the two modalities contain very different features, and b) multiple iterations in which the 

same transformations are applied to both modalities aim to enhance the spatial matching 

between the two templates. The proposed approach is described in more detail below.

In step 1, T 1 w-based inter-subject spatial normalization was performed according to 

the procedure outlined by Ridwan et al. (2021) which uses the symmetric group-wise 

normalization (SyGN) method (Avants et al., 2010b) (Fig. 1). Mutual information and 

cross-correlation were used as the cost functions for linear and deformable registration 

respectively (Ridwan et al., 2021; Niaz et al., 2022). The resulting rigid, affine, and 

non-linear transformations for participant i were concatenated into a single transform φT1i
1
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(superscript 1 indicates the first iteration), and the combined transform (φT1i M N I ∘ φT1i
1 )

was applied to the raw T1i data to bring them to common space with a single interpolation. 

A T 1 w template was then generated from the spatially normalized data using weighted 

averaging where the weight, wi(x), for participant i in voxel x was given by a Gaussian 

kernel (Niaz et al., 2022):

wi(x) = 1
σ(x) 2πe−

Si(x) − med(x) 2

2σ(x)2 , (1)

where Si(x) is the signal of participant i at voxel x and med(x) and σ(x) are the median and 

standard deviation of the population at voxel x. This weighted averaging is based on the 

widely used kappa-sigma clipping average method (Jörsäter, 1993; Lalys et al., 2010) and 

helps reduce the effects of residual misregistration on the template. The combined transform 

φb0i T1i ∘ φT1i M N I ∘ φT1i
1  was then applied to the DT Ii data to bring them to common 

space with a single interpolation, and the results were used in step 2 (Fig. 1).

In step 2, DTI-based inter-subject spatial normalization was performed using the non-linear 

registration component of DR-TAMAS (dtireg_create_template.sh) (Irfanoglu et al., 2016) 

on the DTI data that were already transformed in step 1 (Fig. 1). Both deviatoric tensor 

similarity (Zhang et al., 2007) and trace similarity metrics were used in the cost function 

(Irfanoglu et al., 2016). The resulting transformation for participant i in step 2, iteration 1, 

was denoted as φDT Ii
1 . This was concatenated with previous transforms and the combined 

transform, φb0i T1i ∘ φT1i M N I ∘ φT1i
1 ∘ φDT Ii

1  was applied to the DT Ii data to bring 

them to the new common space with a single interpolation. A DTI template was generated 

from the spatially normalized data using weighted averaging of the diffusion tensors across 

participants following the DR-TAMAS formula for the weights (Irfanoglu et al., 2016 

Appendix A.4.). Next, the combined transform φT1i M N I ∘ φT1i
1 ∘ φDT Ii

1  was applied to 

the raw T1i data and the results were used in step 1 of the next iteration (Fig. 1).

Steps 1 and 2 were repeated in multiple iterations, M, until the Pearson cross-correlation 

similarity index (PCC) across homologous templates from successive iterations was higher 

than 0.999 (for both T 1 w and DTI templates) (Fig. 1). In the last iteration, the combined 

transform:

φT1i
total = φT1i M N I ∘ φT1i

1 ∘ φDT Ii
1 ∘ … ∘ φT1i

M − 1 ∘ φDT Ii
M − 1 ∘ φT1i

M , (2)

was applied to the raw T1i data to bring them to the final space with a single interpolation, 

and a final T 1 w template was constructed with weighted averaging of signals across 

participants. Skull and other head structures were added to the final T 1 w template using 

the strategy by Rohlfing et al. (Rohlfing et al., 2012; Ridwan et al., 2021; Niaz et al., 

2022). However, the brain-only template was considered in the rest of this work. The DT 
Ii data were also brought to the final space with a single interpolation using the combined 

transform:
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φDT Ii
total = φb0i T1i ∘ φT1i M N I ∘ φT1i

1 ∘ φDT Ii
1 ∘ … ∘ φT1i

M − 1 ∘ φDT Ii
M − 1 ∘ φT1i

M

∘ φDT Ii
M , (3)

and a final DTI template was constructed with weighted averaging of the diffusion tensors 

across participants. It should be noted here that in the final iteration, M, the DT Ii data 

experience the transformation φDT Ii
M  which is not applied to the T1i data (see Eqs. (2) 

and 3). We argue that after a few iterations where all transformations are applied to both 

modalities, any misalignment between templates introduced by this final transformation is 

negligible.

2.4. Evaluation of the proposed method across iterations

To investigate the role of multiple iterations in the proposed method, we evaluated in each 

iteration a) the precision of spatial normalization across data used for template construction, 

b) the characteristics of the templates, and c) the spatial matching between the T 1 w and 

DTI templates.

The precision of spatial normalization of T 1 w data from Dataset 1 was assessed in each 

iteration by means of the pairwise normalized cross-correlation (PNCC) (Ferreira et al., 

2014; Wang et al., 2004):

PNCCij = 1
N ×

∑x = 1
N Si x − μi × Sj x − μj

σi × σj
, (4)

where Si(x) and Sj (x) are the signals of participants i and j at voxel x, μi, σi and μj, σj are 

the mean and standard deviation of the intensities of all the voxels of subjects i and j, and 

N is the total number of voxels. The average PNCC over all pairs of spatially normalized T 

1 w images of Dataset 1 (202×201/2 = 20,301 pairs) was compared across iterations using 

one-way ANOVA followed by the Tukey-Kramer post-hoc test. Differences were considered 

significant at p<0.05.

The precision of spatial normalization of DTI data from Dataset 1 was assessed in each 

iteration by means of the pairwise Euclidean distance of tensors (DTED) (Alexander and 

Gee, 2000; Zhang et al., 2011; Wang et al., 2021):

DT ED = trace( Di − Dj
2), (5)

where D i and D j are diffusion tensors of participants i and j in the same voxel. The average 

DTED over all pairs of spatially normalized DTI data of Dataset 1 (202×201/2 = 20,301 

pairs) was calculated in each voxel, and cumulative distributions of the average DTED in 

white matter (white matter was defined through K-means clustering of mean FA maps) were 

compared across iterations using the one-sided two-sample Kolmogorov-Smirnov (KS) test. 

Differences were considered significant at p<0.05.

Wu et al. Page 8

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



According to the proposed method, T 1 w and DTI data from individual participants undergo 

the same spatial transformations in all iterations other than the last. Therefore, we assessed 

the final spatial matching between T 1 w and DTI data of Dataset 1 when terminating 

the proposed method at different iterations. For that purpose, the white matter mask of 

participant i (generated in Section 2.2) was transformed to both the final T 1 w space and 

the final DTI space using the transformations φT1i
total (Eq.2) and φT1t

total ∘ φDT Ii
M , respectively, 

and the overlap between the two versions of the white matter mask was assessed using the 

Jaccard index (JI):

J Ii = Mi ∩ Ni
Mi ∪ Ni

, (6)

where Mi ∩ Ni and Mi ∪ Ni are the intersection and union of the two versions of the 

white matter mask of subject i. The average JI over all participants of Dataset 1 was 

compared across iterations using one-way ANOVA followed by the Tukey-Kramer post-hoc 

test. Differences were considered significant at p<0.05.

The T 1 w templates generated at different iterations were compared visually as well as 

quantitatively in terms of tissue contrast and image sharpness. Tissue contrast was assessed 

by means of the Fisher score (FS) (Duda et al., 2012; Misaki et al., 2015):

F S = μW M − μGM
σW M

2 + σGM
2 , (7)

where μW M, σW M and μG M, σG M are the mean and standard deviation of signals in 

white matter and gray matter voxels. To define which voxels of a template belonged to 

white or gray matter, tissue masks of the individual participants (generated in Section 2.2) 

were transformed to template space and were combined using the same transformations 

and weights applied to the corresponding T 1 w data for template construction, and tissue 

probability maps were generated in template space and then thresholded to produce white 

and gray matter masks. The FS between gray matter and cerebrospinal fluid was also 

calculated following the same approach. Additionally, the sharpness of the T 1 w templates 

from different iterations was assessed by means of the normalized power spectra along the 

inferior-superior (IS), left-right (LR) and anterior-posterior (AP) axes separately (Zhang et 

al., 2011; Ridwan et al., 2021; Niaz et al., 2022).

The DTI templates generated at different iterations were compared visually as well as 

quantitatively in terms of fractional anisotropy (FA) values in white matter and sharpness 

of FA maps. Template FA values were projected onto the white matter skeleton (S. M. 

Smith et al., 2006; Keihaninejad et al., 2012) of the IIT Human Brain Atlas (v.5.0) 

(Zhang and Arfanakis, 2018) and cumulative distributions of white matter FA values were 

compared across iterations using the one-sided two-sample Kolmogorov-Smirnov (KS) test 

(differences were considered significant at p<0.05). The sharpness of FA templates from 
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different iterations was assessed by means of the normalized power spectra along the IS, LR 

and AP axes separately (Zhang and Arfanakis, 2018; Zhang et al., 2011).

The spatial matching between the T 1 w and DTI templates generated at different iterations 

was evaluated by visual inspection and also quantitatively by means of the overlap of white 

matter masks and the overlap of gray matter masks corresponding to the T 1 w and DTI 

templates. More specifically, white matter masks of the individual participants (generated in 

Section 2.2) were transformed to T 1 w template space and DTI template space and were 

combined into white matter probability maps using the same spatial transformations and the 

same weights applied to the corresponding T 1 w and DTI data for template construction. 

The white matter probability maps of the T 1 w and DTI templates were then thresholded 

to generate corresponding white matter masks and the overlap between the two white matter 

masks was assessed using the Jaccard index (Eq.6). The same approach was used to assess 

the overlap of gray matter masks corresponding to the T 1 w and DTI templates.

2.5. Comparison of the proposed method to other multimodal template construction 
methods

The performance of the proposed method for multimodal T 1 w and DTI template 

construction was compared to that of three approaches that employ multichannel 

registration. The first one, based on T 1 w and full tensor information, is available in 

DR-TAMAS (dtireg_create_template_with_structurals) (Irfanoglu et al., 2016), and will be 

referred to as MC-DRTAMAS. MC-DRTAMAS uses tensor deviatoric similarity and tensor 

trace similarity metrics to guide tensor registration and a cross-correlation metric for T 1 

w registration, generates separate displacement fields for each metric, assigns weights to 

the different displacements and combines them. The weights used here were: 1 for tensor 

deviatoric similarity, 1 for tensor trace similarity, and 2 for T 1 w cross correlation, so 

that the overall weights for the two modalities were equal. The second one, based on T 

1 w and FA information, is available in ANTs (antsMultivariateTemplateConstruction.sh) 

(Avants et al., 2011) and will be referred to as MC-ANTS. MC-ANTS uses mutual 

information as the cost function for rigid and affine registration and cross-correlation 

for deformable registration in both channels. The third one, based on T 1 w and full 

tensor information, utilizes the MMORF tool (run_template_construction.py) (Lange et al., 

2020a; https://git.fmrib.ox.ac.uk/cart/mm-template-construction) and will be referred to as 

MC-MMORF. MC-MMORF uses cubic B-spline elastic transformation with mean squared 

error as the cost function for T 1 w registration and mean squared Frobenius norm for DTI 

registration, and uses log-Euclidean averaging to generate the DTI template (Lange et al., 

2020b; Roumazeilles et al., 2021). MC-DRTAMAS, MC-ANTS and MC-MMORF were 

applied to the co-registered and MNI-aligned T 1 w and DTI data of Dataset 1 (Section 

2.2) to generate multimodal T 1 w and DTI templates. Transformations were combined 

to minimize interpolations as in the proposed method. The templates generated by the 

proposed method were compared to those constructed by MC-DRTAMAS, MC-ANTS and 

MC-MMORF in terms of a) template characteristics, b) spatial matching between T 1 w 

and DTI templates, and c) intra-modality and inter-modality spatial normalization precision 

when used as references for spatial normalization of external older adult data.

Wu et al. Page 10

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://git.fmrib.ox.ac.uk/cart/mm-template-construction


The T 1 w and DTI templates generated with the different methods were compared by 

visual inspection as well as quantitatively. More specifically, T 1 w templates were compared 

in terms of tissue contrast, image sharpness and standard deviation (calculated across the 

spatially normalized images used in the construction of the templates), and DTI templates 

were compared in terms of FA values in white matter, sharpness of FA maps and standard 

deviation, using the methods described in Section 2.4. The spatial matching between T 

1 w and DTI templates was compared quantitatively by means of the overlap of white 

matter masks and the overlap of gray matter masks (as in Section 2.4), as well as by visual 

inspection of the overlay of the white-gray matter interface defined in T 1 w templates on the 

corresponding FA templates.

The performance of T 1 w and DTI templates when used as references for 

spatial normalization of data from Dataset 2 was compared across multimodal 

template construction methods by assessing the intra-modality and inter-modality spatial 

normalization precision. More specifically, T 1 w and DTI data from Dataset 2 were 

registered to each T 1 w template using ANTs and to each DTI template using DR-TAMAS, 

respectively. Symmetric normalization (SyN) diffeomorphic transformation ( Avants et 

al., 2008b) was applied in all ANTs and DR-TAMAS registrations (Klein et al., 2009). 

To compare the intra-modality inter-subject spatial normalization precision across T 1 w 

templates, the resulting T 1 w-based transformations were applied to the corresponding gray 

matter masks of Dataset 2 and the average pairwise JI over all participants (202×201/2 

= 20,301 pairs) was compared across templates using one-way ANOVA followed by 

the Tukey-Kramer post-hoc test. To compare the intra-modality inter-subject spatial 

normalization precision across DTI templates, the average DTED over all pairs of spatially 

normalized DTI data of Dataset 2 (202×201/2 = 20,301 pairs) was calculated in each 

voxel, and cumulative distributions of the average DTED in white matter (defined through 

K-means clustering of FA templates) were compared across templates using the one-sided 

two-sample Kolmogorov-Smirnov (KS) test. To compare the inter-modality spatial matching 

across template construction methods, the white matter, gray matter and cerebrospinal 

fluid masks of participants from Dataset 2 were transformed to both the T 1 w template 

space (using the T 1 w-based transformations) and the DTI template space (using the 

tensor-based transformations) and the average JI between the two versions of the masks 

over all participants of Dataset 2 was compared across template construction methods using 

one-way ANOVA followed by the Tukey-Kramer post-hoc test. Differences were considered 

significant at p<0.05.

3. Results

3.1. Evaluation of the proposed method across iterations

With more iterations of the proposed method, the average PNCC over all pairs of spatially 

normalized T 1 w images of Dataset 1 increased (p<0.05 in all cases) (Fig. 2A), the standard 

deviation of PNCC decreased, and the relative number of white matter voxels with low 

DTED increased (p<10−10) (Fig. 2B), indicating improving spatial matching of the T 1 w 

and DTI data used in template construction. In addition, the average JI between WM masks 

transformed by T 1 w and DTI transformations increased with more iterations (p<10−10 
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between iterations 1 and 2), indicating an improving inter-modality matching (Fig. 2C). 

The amount of improvement decreased with more iterations (Fig. 2). T 1 w templates 

generated with more iterations showed a clearer delineation of brain structures (Fig. 3A) and 

higher discriminability between tissues (Fig. 3B), particularly near the cortex. The average 

energy in the normalized power spectra was similar across iterations for all axes (Fig. 3C), 

indicating similar image sharpness in the T 1 w templates across iterations. DTI templates 

generated with more iterations had FA maps that, near the cortex, provided better delineation 

of white matter structures (Fig. 4A), had higher image sharpness (Fig. 4B) and higher 

FA values in a relatively higher number of white matter voxels (p<10−10 when comparing 

iterations 1 and 4) (Fig. 4C). There were no significant differences in the subcortical area of 

DTI templates across iterations (Fig. 4D,E). The contours of white matter features seen in 

the FA maps of DTI templates highly conformed to the gyral-sulcal patterns and subcortical 

features of the T 1 w templates according to visual inspection, indicating good spatial 

matching between T 1 w and DTI templates (Fig. 5A). Furthermore, the overlap of tissue 

masks corresponding to the T 1 w and DTI templates as quantified by the Jaccard index 

increased for more iterations and reached a value of JI=0.966 for white matter overlap and 

JI=0.95 for gray matter overlap after 4 iterations, where JI=1 is the maximum. The iterative 

process of the proposed method converged at 4 iterations. The final templates (Fig. 6) are 

available for download at www.nitrc.org/projects/miitra (version 1.5).

3.2. Comparison of the proposed method to other multimodal template construction 
methods

The T 1 w and DTI templates generated from Dataset 1 using the different methods were 

compared by visual inspection as well as quantitatively. Features in the cortex, in subcortical 

structures (e.g. caudolenticular gray bridges), and in the cerebellum were better delineated 

in the T 1 w template generated by the proposed method compared to other methods (Fig. 

7A). The standard deviation of the T 1 w template generated by the proposed method was 

lower than that of other methods, especially near the cortex (Fig. 7B). The discriminability 

between tissues measured by the Fisher score was higher in the T 1 w template constructed 

by the proposed method near the cortex (Fig. 7C) as well as in the subcortical area between 

gray and white matter (Fig. 7D). The discriminability between gray matter and cerebrospinal 

fluid in the subcortical area was higher in the T 1 w template built with MC-MMORF (Fig. 

7D). In addition, the T 1 w template of the proposed method exhibited higher energy in the 

normalized power spectra for all axes near the cortex (Fig. 7E), while the T 1 w template of 

MC-MMORF exhibited slightly higher energy in the subcortical area (Fig. 7F), suggesting 

higher image sharpness near the cortex in the T 1 w template built with the proposed method 

and slightly higher image sharpness in the subcortical area in the T 1 w template built 

with MC-MMORF. Visual inspection of FA maps of the DTI templates constructed by the 

different methods showed that white matter features near the cortex were better delineated in 

the template constructed using the proposed method (Fig. 8A). The standard deviation of the 

FA template generated by the proposed method was lower than that of other methods (Fig. 

8B). Near the cortex, FA image sharpness in the template built with the proposed method 

was similar to or higher than that of other templates (Fig. 8C), while in the subcortical 

area FA image sharpness was higher in the template built with MC-MMORF (Fig. 8E). 

FA values were higher in a relatively higher number of white matter voxels throughout 
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the brain in the templates constructed by MC-MMORF, followed by the proposed method, 

compared to other methods (p<10−10) (Fig. 8D,F). The contours of white matter obtained for 

the different template construction methods by thresholding the corresponding white matter 

tissue probability maps were overlaid on the corresponding FA maps and visual inspection 

showed good alignment of white matter information across T 1 w and DTI templates for all 

methods (Appendix).

The performance of T 1 w and DTI templates when used as references for spatial 

normalization of data from Dataset 2 was compared across multimodal template 

construction methods. In terms of the T 1 w intra-modality inter-subject spatial 

normalization precision, the template constructed with the proposed method allowed higher 

average pairwise JI of gray matter masks from Dataset 2 in the cerebral cortex, and similar 

but still higher average pairwise JI in cerebellar cortex compared to the other methods 

(p<0.05), indicating higher inter-subject T 1 w spatial normalization precision especially in 

the cerebral cortex when using the template of the proposed method as reference (Fig. 9). 

The template constructed using MC-MMORF allowed higher average pairwise JI of gray 

matter masks in the subcortical gray matter (p<0.05), indicating higher spatial normalization 

precision in subcortical gray matter when using the MC-MMORF template as reference 

(Fig. 9). In terms of the DTI intra-modality inter-subject spatial normalization precision for 

Dataset 2, the template constructed with the proposed method resulted in a higher number of 

white matter voxels with lower DTED near the cortex (p<10−3) (Fig. 10A), and similar but 

still higher number of white matter voxels with lower DTED in the subcortical area (p<0.01) 

(Fig. 10B) compared to templates constructed with the other methods, suggesting higher 

inter-subject DTI spatial normalization precision for Dataset 2 especially near the cortex 

when using the DTI template of the proposed method as reference. Lastly, the T 1 w and DTI 

templates of the proposed method allowed the highest inter-modality spatial matching of 

gray matter and cerebrospinal fluid masks from Dataset 2, and the MC-MMORF templates 

allowed the highest inter-modality spatial matching of white matter masks from Dataset 2, 

as shown by the higher average JI between masks of Dataset 2 that experienced T 1 w-based 

transformations and those that experienced tensor-based transformations (p<0.05) (Fig. 11).

4. Discussion

The present work (A) introduced an iterative method for multimodal T 1 w and DTI 

template construction, (B) used this method to develop T 1 w and DTI templates of the 

older adult brain in a common space, and (C) evaluated the performance of the method 

across iterations and compared it to the performance of state-of-the-art approaches based 

on multichannel registration. It was demonstrated that more iterations of the proposed 

method enhanced the characteristics of the resulting T 1 w and DTI templates as well 

as the spatial matching between these templates. The templates of the older adult brain 

generated by the final iteration of the proposed method provided better delineation of 

brain structures, higher discriminability between tissues, and higher image sharpness near 

the cortex compared to templates generated with approaches that employ multichannel 

registration. In addition, the spatial matching between the T 1 w and DTI templates 

constructed by the proposed method approximated the template alignment achieved with 

methods employing multichannel registration. Finally, when using the templates generated 
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by the proposed method as references for spatial normalization of older adult T 1 w and 

DTI data from the independent Dataset 2, both the intra-modality inter-subject normalization 

precision and the inter-modality spatial matching were higher in most evaluations than 

those achieved with templates constructed with other methods. Overall, the present work 

brought new insights into multimodal template construction, generated much-needed high 

quality T 1 w and DTI templates of the older adult brain in a common space (available 

for download at www.nitrc.org/projects/miitra; version 1.5), and conducted a thorough, 

quantitative evaluation of available multimodal template construction methods.

4.1. Evaluation of the proposed method across iterations

The quality of the T 1 w and DTI templates as well as the spatial matching between these 

templates was shown to improve with more iterations of the proposed method and appeared 

to stabilize at 4 iterations. These findings were because spatial matching among data used 

in template construction (Dataset 1) also improved across iterations. Alternating between 

T 1 w-driven and DTI-driven spatial normalization during template construction may have 

allowed the two modalities to work synergistically in reducing misregistrations. It has been 

shown that T 1 w-based registration using most currently available tools introduces high 

frequency deformation in the white matter where T 1 w images have low contrast (Lange et 

al., 2020a). Subsequent DTI-based registration may address this limitation in white matter 

and in neighboring structures. In addition, T 1 w-based registration may help improve 

spatial matching near the cortex and at tissue interfaces where DTI data may have less 

contrast. Thus, alternating between T 1 w-driven and DTI-driven spatial normalization in 

the proposed method may have improved spatial matching among data used in template 

construction and thereby improved the quality of the T 1 w and DTI templates. The spatial 

matching between T 1 w and DTI templates also improved with more iterations. Even 

though in the final iteration of the proposed method the DTI data experience one additional 

transformation that is not applied to the T 1 w data, multiple iterations where the two 

modalities work synergistically to find a common space and all transformations are applied 

to data from both modalities not only improved spatial matching among data used in 

template construction, but also gradually increased the alignment of the resulting T 1 w and 

DTI templates.

4.2. Comparison of the proposed method to other multimodal template construction 
methods

The final T 1 w and DTI templates generated with the proposed method exhibited overall 

higher image quality, especially near the cortex, than those constructed using methods 

based on multichannel registration and the same raw data. This was probably due to more 

precise intra-modality spatial matching of data from individual participants (Dataset 1) when 

using single channel instead of multichannel registration. Multichannel registration aims at 

optimizing inter-subject spatial matching for all modalities, but due to the very different 

contrast in T 1 w and DTI data, T 1 w information may be distracting when attempting to 

optimize inter-subject matching of DTI features, and the opposite. Therefore, multichannel 

registration may have resulted in less precise spatial matching of the features of interest 

in each modality compared to considering each modality separately, thereby compromising 
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the quality of both templates. The proposed method overcomes this limitation by aiming at 

maximizing inter-subject spatial matching for each modality separately.

Among all evaluations of template quality, the proposed method was slightly outperformed 

only in the following two. In the subcortical area, the T 1 w template built with MC-

MMORF exhibited slightly higher discriminability between gray matter and cerebrospinal 

fluid than other templates. This may be because MMORF produces fewer local volume 

changes and shape distortions within subcortical white matter compared to ANTs 

registration (Lange et al., 2020a). However, probably due to the same reason, the 

caudolenticular gray bridges which are fine structures in the subcortical area were not visible 

in the T 1 w template of MC-MMORF and were only visible with the proposed method 

(Fig. 7A). Also in the subcortical area, the FA map of the DTI template constructed by 

MC-MMORF exhibited higher image sharpness than other templates. This was probably due 

to the higher FA values in white matter of the MC-MMORF template, which in turn might 

be due to log-Euclidean averaging of diffusion tensors used by MC-MMORF (Lange et al., 

2020b; Roumazeilles et al., 2021; https://git.fmrib.ox.ac.uk/cart/mm-template-construction). 

Previous studies have suggested that the log-Euclidean metric (Arsigny et al., 2006) leads to 

a substantial bias especially for high FA tensors, and thus the FA values in the MC-MMORF 

template might be overestimated (Pasternak et al., 2010, 2012).

Visual inspection demonstrated that all template construction methods provided equally 

good alignment between T 1 w and DTI templates. Quantitatively, methods based on 

multichannel registration achieve excellent alignment of T 1 w and DTI templates by default 

because the same transformations are applied to data from both modalities during template 

construction. The proposed method also applies the same transformations to data from both 

modalities up until the final step of the final iteration, at which point the DTI data experience 

one additional transformation that is not applied to the T 1 w data. Yet, it was shown that 

the last iteration of the proposed method (iteration 4) achieved Jaccard indices between the 

white matter masks and between the gray matter masks of T 1 w and DTI templates of 

approximately 0.97 and 0.95 respectively, while methods based on multichannel registration 

had a Jaccard index of 1 by default. The above suggests that the proposed method provides 

higher quality templates at the cost of only a slight (not noticeable) mismatch between the 

two templates.

When used as a reference for spatial normalization of data from the independent Dataset 

2, the T 1 w template generated with the proposed method allowed higher intra-modality 

inter-subject spatial normalization precision in the cerebral and cerebellar cortices. The DTI 

template of the proposed method also allowed higher overall intra-modality inter-subject 

spatial normalization precision compared to DTI templates constructed with other methods. 

Furthermore, inter-modality spatial matching in gray matter and in CSF was the highest 

when using the T 1 w and DTI templates of the proposed method. These findings were 

primarily due to the enhanced image quality of the templates constructed with the proposed 

method. Sharper templates preserving fine details and allowing better delineation of brain 

structures have been shown to provide higher spatial normalization precision, and this has 

a direct impact on the sensitivity and specificity of template-based neuroimaging studies 

(Hsu et al., 2015; Ridwan et al., 2021; Zhang and Arfanakis, 2018). The MC-MMORF 
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T 1 w template allowed higher intra-modality inter-subject spatial normalization precision 

only in the subcortical gray matter, and highest inter-modality matching in the white matter, 

possibly due to the limited shape deformations in the subcortical area when using MMORF.

4.3. Caveats

In addition to the multiple strengths of the proposed multimodal T 1 w and DTI template 

construction method and the analysis presented above, this work also has a few limitations. 

The proposed template construction method is more computationally intensive and time 

consuming compared to other approaches. However, this limitation is not of concern since 

standardized templates are constructed once and used in multiple studies, and therefore the 

cost in computational resources and processing time associated with the proposed method 

is unimportant. In addition, the present work employed state-of-the-art image registration 

and template construction methods and data of typical quality from older adults in the 

65–95 years age-range. Future work should also consider other registration algorithms as 

well as data with different image quality and from different age-ranges. It is not possible 

to explore all combinations here, but we believe our choice to use state-of-the-art methods 

and data of typical quality is scientifically justified and of highest interest. Additionally, 

the focus of the present work was multimodal T 1 w and DTI templates. Developing 

templates for other pairs of modalities e.g. T 2 w and DTI, or extending the proposed 

method to more than two modalities, constitute interesting research questions requiring 

extensive investigation that is beyond the scope of this work. Finally, we recently presented 

a method for constructing a T 1 w template of the older adult brain with submillimeter 

resolution and showed that, compared to 1 mm T 1 w templates, the high-resolution 

template provided higher inter-subject spatial normalization precision and enabled detection 

of smaller inter-group morphometric differences for older adult data (Niaz et al., 2022). 

Therefore, studies requiring only a T 1 w template may benefit from using the previously 

constructed high-resolution template compared to the 1 mm template constructed here (note 

that the two templates are also located in a slightly different space). In future work, we will 

incorporate the method we presented in Niaz et al., 2022, to develop multimodal T 1 w and 

DTI templates at submillimeter resolution.

4.4. Adapting the proposed method for registration of an individual’s T 1 w and DTI data 
to the templates generated in this work

The iterative approach for multimodal T 1 w and DTI template construction can be adapted 

for registration of T 1 w and DTI data from individual older adults to the templates 

constructed in this work. The approach is similar to that described in Section 2.3 with 

the difference that there is no group-wise normalization, no weighted averaging of signals, 

and no template building or updating, since data from a single individual are registered 

to standardized templates. More specifically, in step 1, T 1 w data of an individual older 

adult are registered to the T 1 w MIITRA template and the resulting transformation is 

also applied to the DTI data of the individual (assuming the T 1 w and DTI data of the 

individual are originally in the same space). In step 2, DTI data of the same individual 

older adult are registered to the DTI MIITRA template and the resulting transformation 

is also applied to the T 1 w data of the individual. Steps 1 and 2 are then repeated for 

multiple iterations, and the transformations from all steps and iterations are combined so 
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that each image is interpolated only once throughout the whole process. A script named 

reg_to_MIITRA_T1_and_DTI.sh that executes this iterative registration of an individual’s 

T 1 w and DTI data to the templates constructed in this work is available for download at 

www.nitrc.org/projects/miitra.

5. Conclusion

The present work introduced an iterative method for multimodal T 1 w and DTI template 

construction and generated templates of the older adult brain that were shown to provide 

better delineation of brain structures, higher discriminability between tissues, and higher 

image sharpness near the cortex compared to templates generated with state-of-the-art 

approaches based on multichannel registration. Furthermore, the spatial matching between 

the T 1 w and DTI templates constructed by the proposed method approximated the 

template alignment achieved by default with methods employing multichannel registration. 

The higher image quality of the templates generated by the proposed method facilitated 

higher precision of intra-modality inter-subject normalization of an independent older adult 

dataset as well as higher inter-modality spatial matching, which are well-known to directly 

impact the sensitivity and specificity of template-based neuroimaging studies. Overall, the 

present work brought new insights into multimodal template construction and generated 

much-needed high quality T 1 w and DTI templates of the older adult brain in a common 

space (available for download as part of the MIITRA atlas at www.nitrc.org/projects/miitra; 

version 1.5).
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Acknowledgements

The authors would like to thank the participants and staff of the Rush University Memory and Aging Project and 
Alzheimer’s Disease Neuroimaging Initiative.

Funding

This study was supported by National Institutes of Health grants R01AG052200, P30AG010161, R01AG17917, 
P30AG072975, and R01AG015819.

In addition, part of the data collection and sharing for this project was funded by the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI 
(Department of Defense award number W81XWH-12–2–0012). ADNI is funded by the National Institute on 
Aging, the National Institute of Biomedical Imaging and Bioengineering, and generous contributions from 
the following: AbbVie; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; 
BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai; Elan Pharmaceuticals, 
Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche and its affiliated company Genentech, Inc.; 
Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; 
Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., 
Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals 
Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. 
The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private 
sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org/). The 
grantee organization is the Northern California Institute for Research and Education, and the study is coordinated 
by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are 
disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Wu et al. Page 17

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nitrc.org/projects/miitra
http://www.nitrc.org/projects/miitra
http://data.crossref.org/fundingdata/funder/10.13039/100000002
http://dx.doi.org/10.13039/100000049
http://dx.doi.org/10.13039/100000049
http://www.fnih.org/


Data and template availability statement

The data used in this work can be assessed by submitting a request to www.radc.rush.edu. 

All templates are available for download at www.nitrc.org/projects/miitra (version 1.5).

References

Alexander DC, Gee JC, 2000. Elastic matching of diffusion tensor images. Comput. Vision Image 
Understand 77 (2), 233–250.

Arsigny V, Fillard P, Pennec X, Ayache N, 2006. Log Euclidean metrics for fast and simple calculus on 
diffusion tensors. Magn. Reson. Med 56, 411–421. [PubMed: 16788917] 

Arthofer C, Smith SM, Jenkinson M, Andersson J, Lange F, 2021. Multimodal MRI template 
construction from UK Biobank: oxford-MM-0. Presented at the Organisation for Human Brain 
Mapping (OHBM).

Avants B, Duda JT, Kim J, Zhang H, Pluta J, Gee JC, Whyte J, 2008a. Multivariate analysis of 
structural and diffusion imaging in traumatic brain injury. Acad. Radiol 15 (11), 1360–1375. 
doi:10.1016/j.acra.2008.07.007. [PubMed: 18995188] 

Avants BB, Cook PA, Ungar L, Gee JC, Grossman M, 2010a. Dementia induces correlated reductions 
in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse 
canonical correlation analysis. Neuroimage 50 (3), 1004–1016. [PubMed: 20083207] 

Avants BB, Epstein CL, Grossman M, Gee JC, 2008b. Symmetric diffeomorphic image registration 
with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. 
Image Anal 12 (1), 26–41. [PubMed: 17659998] 

Avants BB, Tustison NJ, Song G, 2009. Advanced normalization tools (ANTS). Insight J. 2 (365), 
1–35. Retrieved from https://www.insight-journal.org/browse/publication/681 .

Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC, 2011. A reproducible evaluation of 
ANTs similarity metric performance in brain image registration. Neuroimage 54 (3), 2033–2044. 
[PubMed: 20851191] 

Avants BB, Yushkevich P, Pluta J, Minkoff D, Korczykowski M, Detre J, Gee JC, 2010b. The optimal 
template effect in hippocampus studies of diseased populations. Neuroimage 49 (3), 2457–2466. 
[PubMed: 19818860] 

Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA, 2018. Religious orders 
study and rush memory and aging project. J. Alzheimer’s Dis 64 (s1), S161–S189. [PubMed: 
29865057] 

Blatter DD, Bigler ED, Gale SD, Johnson SC, Anderson CV, Burnett BM, Parker N, Kurth S, Horn 
SD, 1995. Quantitative volumetric analysis of brain MR: normative database spanning 5 decades 
of life. AJNR Am. J. Neuroradiol 16 (2), 241–251. [PubMed: 7726068] 

Cabeen RP, Bastin ME, Laidlaw DH, 2017. A Comparative evaluation of voxel-based spatial mapping 
in diffusion tensor imaging. Neuroimage 146, 100–112. [PubMed: 27847347] 

Chang L-C, Jones DK, Pierpaoli C, 2005. RESTORE: robust estimation of tensors by outlier rejection. 
Magnet. Resonance Med 53 (5), 1088–1095.

Chang L-C, Walker L, Pierpaoli C, 2012. Informed RESTORE: a method for robust estimation of 
diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts. 
Magnet. Resonance Med 68 (5), 1654–1663.

Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, Harwood M, Hinds S, Press 
GA, 2000. Normal brain development and aging: quantitative analysis at in vivo MR imaging in 
healthy volunteers. Radiology 216 (3), 672–682. [PubMed: 10966694] 

Dickie DA, Karama S, Ritchie SJ, Cox SR, Sakka E, Royle NA, Aribisala BS, Hernández MV, 
Maniega SM, Pattie A, Corley J, Starr JM, Bastin ME, Evans AC, Deary IJ, Wardlaw JM, 2016. 
Progression of white matter disease and cortical thinning are not related in older community-
dwelling subjects. Stroke 47 (2), 410–416. [PubMed: 26696646] 

Doshi J, Erus G, Ou Y, Gaonkar B, Davatzikos C, 2013. Multi-atlas skull-stripping. Acad. Radiol 20 
(12), 1566–1576. [PubMed: 24200484] 

Wu et al. Page 18

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.radc.rush.edu/
http://www.nitrc.org/projects/miitra
https://www.insight-journal.org/browse/publication/681


Duda RO, Hart PE, Stork DG, 2012. Pattern Classification. John Wiley and Sons.

Farokhian F, Beheshti I, Sone D, Matsuda H, 2017. Comparing CAT12 and VBM8 for detecting brain 
morphological abnormalities in temporal lobe epilepsy. Front. Neurol 10.3389/fneur.2017.00428/
full.

Ferreira JR, Oliveira MC, Freitas AL, 2014. Performance Evaluation of Medical Image Similarity 
Analysis in a Heterogeneous Architecture. In: 2014 IEEE 27th International Symposium on 
Computer-Based Medical Systems, pp. 159–164.

Fischl B, 2012. FreeSurfer. Neuroimage 62 (2), 774–781. [PubMed: 22248573] 

Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, 2011. Unbiased average 
age-appropriate atlases for pediatric studies. Neuroimage 54 (1), 313–327. [PubMed: 20656036] 

Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL, 2002. Age-related total gray matter 
and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR 
Am. J. Neuroradiol 23 (8), 1327–1333. [PubMed: 12223373] 

Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS, 2001. A voxel-based 
morphometric study of ageing in 465 normal adult human brains. Neuroimage 14 (1 Pt 1), 21–36. 
[PubMed: 11525331] 

Guimond A, Guttmann CRG, Warfield SK, Westin C, 2002. Deformable registration of DT-MRI 
data based on transformation invariant tensor characteristics. In: Proceedings IEEE International 
Symposium on Biomedical Imaging, pp. 761–764.

Heckemann RA, Ledig C, Gray KR, Aljabar P, Rueckert D, Hajnal JV, Hammers A, 2015. Correction: 
brain extraction using label propagation and group agreement: pincram. PLoS One 10 (8), 
e0135746. [PubMed: 26267800] 

Hsu Y-C, Lo Y-C, Chen Y-J, Wedeen VJ, Isaac Tseng W-Y, 2015. NTU-D-SI-122: a diffusion 
spectrum imaging template with high anatomical matching to the ICBM-152 space: a DSI 
Template in the ICBM-152 Space. Hum. Brain Mapp 36 (9), 3528–3541. [PubMed: 26095830] 

Irfanoglu MO, Nayak A, Jenkins J, Hutchinson EB, Sadeghi N, Thomas CP, Pierpaoli C, 2016. 
DR-TAMAS: diffeomorphic registration for tensor accurate alignment of anatomical structures. 
Neuroimage 132, 439–454. [PubMed: 26931817] 

Irfanoglu MO, Nayak A, Jenkins J, Pierpaoli C, 2017. TORTOISE v3: improvements and new features 
of the NIH diffusion MRI processing pipeline. In: Proceedings of the 25th Annual Meeting of 
ISMRM Presented at the International Society for Magnetic Resonance in Medicine.

Jörsäter S, 1993. Methods in astronomical image processing with special applications to the reduction 
of CCD data. Central Activity in Galaxies. Lecture Notes in Physics, 413 Sandqvist A, Ray TP. 
Springer, Berlin, Heidelberg doi:10.1007/3-540-56371-7_24.

Joshi S, Davis B, Jomier M, Gerig G, 2004. Unbiased diffeomorphic atlas construction for 
computational anatomy. Neuroimage 23 (Suppl 1), S151–S160. [PubMed: 15501084] 

Keihaninejad S, Ryan NS, Malone IB, Modat M, Cash D, Ridgway GR, Zhang H, Fox NC, 
Ourselin S, 2012. The importance of group-wise registration in tract based spatial statistics study 
of neurodegeneration: a simulation study in Alzheimer’s disease. PLoS One 7 (11), e45996. 
[PubMed: 23139736] 

Kim S-G, Jung WH, Kim SN, Jang JH, Kwon JS, 2015. Alterations of gray and white matter networks 
in patients with obsessive-compulsive disorder: a multimodal fusion analysis of structural MRI and 
DTI using mCCA+jICA. PLoS One 10 (6), e0127118. [PubMed: 26038825] 

Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang M-C, Christensen GE, Collins 
DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, 
Woods RP, Mann JJ, Parsey RV, 2009. Evaluation of 14 nonlinear deformation algorithms applied 
to human brain MRI registration. Neuroimage 46 (3), 786–802. [PubMed: 19195496] 

Kochunov P, Thompson PM, Lancaster JL, Bartzokis G, Smith S, Coyle T, Royall DR, Laird A, Fox 
PT, 2007. Relationship between white matter fractional anisotropy and other indices of cerebral 
health in normal aging: tract-based spatial statistics study of aging. Neuroimage 35 (2), 478–487. 
[PubMed: 17292629] 

Lalys F, Haegelen C, Ferre JC, El-Ganaoui O, Jannin P, 2010. Construction and assessment of a 3-T 
MRI brain template. Neuroimage 49, 345–354. doi:10.1016/j.neuroimage.2009.08.007. [PubMed: 
19682582] 

Wu et al. Page 19

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lange FJ, Ashburner J, Smith SM, Andersson JLR, 2020a. A symmetric prior for the regularisation 
of elastic deformations: improved anatomical plausibility in nonlinear image registration. 
Neuroimage 219, 116962. doi:10.1016/j.neuroimage.2020.116962. [PubMed: 32497785] 

Lange FJ, Smith SM, Bertelsen MF, Khrapichev AA, Manger PR, Mars RB, Andersson JLR, 
2020b. Multimodal MRI template creation in the ring-tailed lemur and rhesus macaque. 
Biomedical Image Registration. WBIR 2020. Lecture Notes in Computer Science, 12120 špiclin Ž, 
McClelland J, Kybic J, Goksel O. Springer, Cham doi:10.1007/978-3-030-50120-4_14.

Liu RSN, Lemieux L, Bell GS, Sisodiya SM, Shorvon SD, Sander JWAS, Duncan JS, 2003. A 
longitudinal study of brain morphometrics using quantitative magnetic resonance imaging and 
difference image analysis. Neuroimage 20 (1), 22–33. [PubMed: 14527567] 

Li Y, Verma R, 2011. Multichannel image registration by feature-based information fusion. IEEE 
Trans. Med. Imaging 30 (3), 707–720. [PubMed: 21097379] 

Madden DJ, Whiting WL, Huettel SA, White LE, MacFall JR, Provenzale JM, 2004. Diffusion tensor 
imaging of adult age differences in cerebral white matter: relation to response time. Neuroimage 
21 (3), 1174–1181. [PubMed: 15006684] 

Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J, 1995. A probabilistic atlas of the human 
brain: theory and rationale for its development. The International Consortium for Brain Mapping 
(ICBM). Neuroimage 2 (2), 89–101. doi:10.1006/nimg.1995.1012. [PubMed: 9343592] 

Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, … Mazoyer B, 2001. A probabilistic atlas 
and reference system for the human brain: international consortium for brain mapping (ICBM). 
Philos. Trans. R. Soc. Lond., B, Biol. Sci 356 (1412), 1293–1322. doi:10.1098/rstb.2001.0915. 
[PubMed: 11545704] 

McCarthy CS, Ramprashad A, Thompson C, Botti J-A, Coman IL, Kates WR, 2015. A comparison 
of FreeSurfer-generated data with and without manual intervention. Front. Neurosci 9, 379. 
[PubMed: 26539075] 

Misaki M, Savitz J, Zotev V, Phillips R, Yuan H, Young KD, Drevets WC, Bodurka J, 2015. 
Contrast enhancement by combining T1- and T2-weighted structural brain MR Images: contrast 
Enhancement with T1w and T2w MRI. Magnet. Resonance Med 74 (6), 1609–1620.

Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, 
Toga AW, Pike GB, Neto PR, Evans A, Zhang J, Huang H, Miller MI, van Zijl P, Mazziotta 
J, 2008. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. 
Neuroimage 40 (2), 570–582. [PubMed: 18255316] 

Niaz MR, Ridwan AR, Wu Y, Alzheimer’s Disease Neuroimaging Initiative, Bennett DA, Arfanakis K, 
2022. Development and evaluation of a high resolution 0.5 mm isotropic T1-weighted template of 
the older adult brain. Neuroimage 248, 118869. doi:10.1016/j.neuroimage.2021.118869. [PubMed: 
34986396] 

Park H-J, Kubicki M, Shenton ME, Guimond A, McCarley RW, Maier SE, Kikinis R, Jolesz 
FA, Westin C-F, 2003. Spatial normalization of diffusion tensor MRI using multiple channels. 
Neuroimage 20 (4), 1995–2009. [PubMed: 14683705] 

Pasternak O, Sochen N, Basser PJ, 2010. The effect of metric selection on the analysis of diffusion 
tensor MRI data. Neuroimage 49 (3), 2190–2204. doi:10.1016/j.neuroimage.2009.10.071. 
[PubMed: 19879947] 

Pasternak O, Sochen N, Basser PJ, 2012. Metric selection and diffusion tensor swelling. In: New 
Developments in the Visualization and Processing of Tensor Fields, Part of the Series Mathematics 
and Visualization. Springer-Verlag, Berlin Heidelber, pp. 323–336.

Peng H, Orlichenko A, Dawe RJ, Agam G, Zhang S, Arfanakis K, 2009. Development 
of a human brain diffusion tensor template. Neuroimage 46 (4), 967–980. doi:10.1016/
j.neuroimage.2009.03.046. [PubMed: 19341801] 

Pfefferbaum A, Sullivan EV, 2003. Increased brain white matter diffusivity in normal adult aging: 
relationship to anisotropy and partial voluming. Magn. Reson. Med 49 (5), 953–961. doi:10.1002/
mrm.10452. [PubMed: 12704779] 

Pierpaoli C, Walker L, Irfanoglu MO, Barnett A, Basser P, Chang LC, Koay C, Pajevic S, Rohde G, 
Sarlls J, 2010. TORTOISE: an integrated software package for processing of diffusion MRI data. 
ISMRM 18th Annual Meeting, 1597.

Wu et al. Page 20

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ridwan AR, Niaz MR, Wu Y, Qi X, Zhang S, Kontzialis M, Javierre-Petit C, Tazwar M, Alzheimer’s 
Disease Neuroimaging Initiative, Bennett DA, Yang Y, Arfanakis K, 2021. Development and 
evaluation of a high performance T1-weighted brain template for use in studies on older adults. 
Hum. Brain Mapp 42 (6), 1758–1776. doi:10.1002/hbm.25327. [PubMed: 33449398] 

Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C, 2004. Comprehensive approach for 
correction of motion and distortion in diffusion-weighted MRI. Magnet. Resonance Med 51 (1), 
103–114.

Rohlfing T, Zahr NM, Sullivan EV, Pfefferbaum A, 2010. The SRI24 multichannel atlas of normal 
adult human brain structure. Hum. Brain Mapp 31 (5), 798–819. [PubMed: 20017133] 

Rohlfing T, Kroenke CD, Sullivan EV, Dubach MF, Bowden DM, Grant KA, Pfefferbaum A, 2012. 
The INIA19 template and NeuroMaps atlas for primate brain image parcellation and spatial 
normalization. Front. Neuroinform 6, 27. doi:10.3389/fninf.2012.00027. [PubMed: 23230398] 

Roumazeilles L, Lange FJ, Benn RA, Andersson J, Bertelsen MF, Manger PR, Flach E, Khrapitchev 
AA, Bryant KL, Sallet J, Mars RB, 2021. Cortical morphology and white matter tractography 
of three phylogenetically distant primates: evidence for a simian elaboration. Cereb. Cortex 
doi:10.1093/cercor/bhab285, bhab285. Advance online publication.

Salat DH, Tuch DS, Greve DN, van der Kouwe AJW, Hevelone ND, Zaleta AK, Rosen BR, Fischl 
B, Corkin S, Rosas HD, Dale AM, 2005. Age-related alterations in white matter microstructure 
measured by diffusion tensor imaging. Neurobiol. Aging 26 (8), 1215–1227. [PubMed: 15917106] 

Sasamoto A, Miyata J, Kubota M, Hirao K, Kawada R, Fujimoto S, Tanaka Y, Hazama M, Sugihara 
G, Sawamoto N, Fukuyama H, Takahashi H, Murai T, 2014. Global association between cortical 
thinning and white matter integrity reduction in schizophrenia. Schizophr Bull. 40 (2), 420–427. 
[PubMed: 23461997] 

Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC, 2003. A longitudinal study of brain 
volume changes in normal aging using serial registered magnetic resonance imaging. Arch. Neurol 
60 (7), 989–994. [PubMed: 12873856] 

Senjem ML, Gunter JL, Shiung MM, Petersen RC, Jack CR Jr., 2005. Comparison of different 
methodological implementations of voxel-based morphometry in neurodegenerative disease. 
Neuroimage 26 (2), 600–608. [PubMed: 15907317] 

Smith CD, Chebrolu H, Wekstein DR, Schmitt FA, Markesbery WR, 2007. Age and gender effects on 
human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiol. Aging 28 
(7), 1075–1087. [PubMed: 16774798] 

Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, 
Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ, 2006. Tract-based spatial statistics: 
voxelwise analysis of multi-subject diffusion data. Neuroimage 31 (4), 1487–1505. [PubMed: 
16624579] 

Sullivan EV, Adalsteinsson E, Pfefferbaum A, 2006. Selective age-related degradation of anterior 
callosal fiber bundles quantified in vivo with fiber tracking. Cereb. Cortex 16 (7), 1030–1039. 
[PubMed: 16207932] 

Sullivan EV, Rohlfing T, Pfefferbaum A, 2010. Quantitative fiber tracking of lateral and 
interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiol. 
Aging 31 (3), 464–481. [PubMed: 18495300] 

Sydykova D, Stahl R, Dietrich O, Ewers M, Reiser MF, Schoenberg SO, Möller H-J, Hampel H, Teipel 
SJ, 2007. Fiber connections between the cerebral cortex and the corpus callosum in Alzheimer’s 
disease: a diffusion tensor imaging and voxel-based morphometry study. Cereb. Cortex 17 (10), 
2276–2282. [PubMed: 17164468] 

Toga AW, Thompson PM, Mori S, Amunts K, Zilles K, 2006. Towards multimodal atlases of the 
human brain. Nat. Rev. Neurosci 7 (12), 952–966. [PubMed: 17115077] 

Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC, 2010. N4ITK: improved 
N3 bias correction. IEEE Trans. Med. Imaging 29 (6), 1310–1320. [PubMed: 20378467] 

Van Hecke W, Leemans A, Sage CA, Emsell L, Veraart J, Sijbers J, Sunaert S, Parizel PM, 2011. The 
effect of template selection on diffusion tensor voxel-based analysis results. Neuroimage 55 (2), 
566–573. [PubMed: 21146617] 

Wu et al. Page 21

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wang Y, Xu M, Geng L, Zhao Y, Guo Z, Fan Y, Niu Y, 2021. DTI atlases evaluations. 
Neuroinformatics 1–25. doi:10.1007/s12021-021-09521-y. [PubMed: 32728882] 

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP, 2004. Image quality assessment: from error visibility 
to structural similarity. IEEE Trans. Image Process 13 (4), 600–612. [PubMed: 15376593] 

Yang G, Zhou S, Bozek J, Dong H-M, Han M, Zuo X-N, Liu H, Gao J-H, 2020. Sample sizes 
and population differences in brain template construction. Neuroimage 206, 116318. [PubMed: 
31689538] 

Yoon U, Fonov VS, Perusse D, Evans AC, 2009. The effect of template choice on morphometric 
analysis of pediatric brain data. Neuroimage 45 (3), 769–777. [PubMed: 19167509] 

Zhang H, Avants BB, Yushkevich PA, Woo JH, Wang S, McCluskey LF, Elman LB, Melhem ER, 
Gee JC, 2007. High-dimensional spatial normalization of diffusion tensor images improves the 
detection of white matter differences: an example study using amyotrophic lateral sclerosis. IEEE 
Trans. Med. Imaging 26 (11), 1585–1597. doi:10.1109/TMI.2007.906784. [PubMed: 18041273] 

Zhang S, Arfanakis K, 2018. Evaluation of standardized and study-specific diffusion tensor 
imaging templates of the adult human brain: template characteristics, spatial normalization 
accuracy, and detection of small inter-group FA differences. Neuroimage 172, 40–50. doi:10.1016/
j.neuroimage.2018.01.046. [PubMed: 29414497] 

Zhang S, Peng H, Dawe RJ, Arfanakis K, 2011. Enhanced ICBM diffusion tensor template of the 
human brain. Neuroimage 54 (2), 974–984. [PubMed: 20851772] 

Wu et al. Page 22

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Schematic representation of the proposed method for construction of multimodal T 1 w and 

DTI templates.
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Fig. 2. 
(A) Boxplots of the pairwise normalized cross-correlation (PNCC) of spatially normalized 

T 1 w images used in the construction of the T 1 w template, at different iterations of 

the proposed method. (B) Histograms of the relative number of white matter voxels at 

different values of the average pairwise Euclidean distance of tensors (DTED) across 

spatially normalized DTI data used in the construction of the DTI template, for different 

iterations of the proposed method. (C) Boxplots of the Jaccard index (JI) between white 

matter masks transformed by T 1 w and DTI transformations over all data used in template 

construction, at different iterations of the proposed method.
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Fig. 3. 
(A) Magnified portions of the T 1 w templates generated in iterations 1 and 4. (B) 

Discriminability (Fisher score) between tissues in T 1 w templates generated at different 

iterations. The brain regions under consideration are highlighted in yellow in the inset axial 

images. (C) Normalized power spectra of T 1 w templates for the superior-inferior (SI) axis 

and iterations 1 and 4.
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Fig. 4. 
(A) Magnified portions of FA maps from the DTI templates generated in iterations 1 and 

4. Normalized power spectra of FA maps for the superior-inferior (SI), left-right (LR) and 

anterior-posterior (AP) axes near the cortex (B) and in the subcortical area of the brain (D) 

for iterations 1 and 4. Histograms of template FA values in the white matter near the cortex 

(C) and in the subcortical area of the brain (E) for iterations 1 and 4.
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Fig. 5. 
(A) Axial views of FA colormaps generated with the proposed method in iteration 4 overlaid 

on the corresponding T 1 w template. (B) Jaccard index between white matter (WM) masks 

and between gray matter (GM) masks of the T 1 w and DTI templates generated in different 

iterations.

Wu et al. Page 27

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Examples of sagittal, coronal and axial slices of the final T 1 w template and the FA map of 

the final DTI template generated with the proposed method.
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Fig. 7. 
(A) Comparison of the T 1 w templates generated with different methods. (B) Maps of 

standard deviation across the spatially normalized T 1 w images used to construct the 

different templates. (C, D) Fisher score between tissues for the different T 1 w templates, 

near the cortex (C) and in the subcortical area of the brain (D). (E, F) Normalized power 

spectra of the different T 1 w templates for the anterior-posterior (AP), left-right (LR) and 

superior-inferior (SI) axes near the cortex (E) and in the subcortical area of the brain (F).
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Fig. 8. 
(A) Comparison of FA colormaps from the DTI templates generated with the different 

methods. (B) Maps of standard deviation across the spatially normalized FA maps of 

the datasets used to construct the different DTI templates. Normalized power spectra of 

FA maps of the different DTI templates for the superior-inferior (SI), left-right (LR) and 

anterior-posterior (AP) axes near the cortex (C) and in the subcortical area of the brain 

(E). Histograms of template FA values in the white matter near the cortex (D) and in the 

subcortical area of the brain (F) for the different DTI templates.
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Fig. 9. 
Boxplots of the pairwise Jaccard index (PJI) of gray matter masks in the cerebral 

cortex (left), subcortical gray matter (middle), and cerebellar cortex (right) from spatially 

normalized T 1 w data of Dataset 2 when using different T 1 w templates as references.
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Fig. 10. 
Histograms of the relative number of white matter voxels at different values of the average 

pairwise Euclidean distance of tensors (DTED) across spatially normalized DTI data from 

Dataset 2, near the cortex (A), and in the subcortical area of the brain (B), when using 

different DTI templates as references.
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Fig. 11. 
Boxplots of the Jaccard index (JI) between white matter masks (left), gray matter masks 

(middle), and cerebrospinal fluid masks (right) of Dataset 2 transformed by T 1 w and DTI 

transformations when using the templates constructed by the different methods as references 

for spatial normalization.
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