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As sample preparation and imaging techniques have expanded and improved to include a
variety of options for larger sized and numbers of samples, the bottleneck in volumetric
imaging is now data analysis. Annotation and segmentation are both common, yet difficult,
data analysis tasks which are required to bring meaning to the volumetric data. The
SuRVoS application has been updated and redesigned to provide access to both manual
and machine learning-based segmentation and annotation techniques, including support
for crowd sourced data. Combining adjacent, similar voxels (supervoxels) provides a
mechanism for speeding up segmentation both in the painting of annotation and by
training a segmentation model on a small amount of annotation. The support for layers
allows multiple datasets to be viewed and annotated together which, for example, enables
the use of correlative data (e.g. crowd-sourced annotations or secondary imaging
techniques) to guide segmentation. The ability to work with larger data on high-
performance servers with GPUs has been added through a client-server architecture
and the Pytorch-based image processing and segmentation server is flexible and
extensible, and allows the implementation of deep learning-based segmentation
modules. The client side has been built around Napari allowing integration of SuRVoS
into an ecosystem for open-source image analysis while the server side has been built with
cloud computing and extensibility through plugins in mind. Together these improvements
to SuRVoS provide a platform for accelerating the annotation and segmentation of
volumetric and correlative imaging data across modalities and scales.

Keywords: segmentation (image processing), annotation, U-net, volume electron microscopy (vEM), X-ray
microscopy imaging, open source software, python (programming language), computer vision

INTRODUCTION

The volume electron microscopy (vEM) and X-ray imaging ecosystems have flourished in recent
years, through improvements to previously used techniques and the development of new techniques,
all providing functional understandings through structural study (Peddie and Collinson 2014;
Yoshiyuki et al., 2018; Xu et al., 2021). It is now common practice to collect 100s of GB of data daily
across multiple correlative modalities contributing to the same project. This has shifted the
experimental bottleneck to the image processing and analysis pipeline. Often, functional insights
can only come from detailed segmentation and annotation of the image data, which currently is
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completed manually by an expert researcher. This creates a
significant probability of creating “Dark Data,” data that is
collected, but due to time constraints and complexity, is not
fully analyzed, or unintentionally analyzed in a biased way. Of
specific concern are “Self Selection” and “Summaries of Data”
(Hand, 2020), which are both routinely used to reduce the
analytical load on the researcher. Our anecdotal experience
supports this and shows that the vast majority of the data that
is currently collected goes unanalyzed, or is only partially
analyzed, and in many cases the analysis that is performed is
qualitative or only takes into consideration a small number of
examples or features due to the onerous nature of the task.

There are general computational tools available to ease some
of the burden of the segmentation and image analysis process
such as IMOD (Kremer et al., 1996), Ilastik (Berg et al., 2017),
ImageJ (Abràmoff et al., 2004) and its many plugins, such as
Weka (Hall et al., 2009), or commercial software such as Avizo
(ThermoFisher.com, 2021). In addition, certain fields such as
neuroanatomy have specialized image analysis and segmentation
tools such as Knossos (Helmstaedter et al., 2011) that can perform
some of these tasks. However, all these tools still often require
specialized technical knowledge, substantial experimentation,
and often scripting to adapt to complex data, especially data
with artefacts or low signal-to-noise ratio. In all cases where
machine learning is used, capturing a dataset of expert
segmentation or annotations is a necessary first step to explore
which methodologies provide the best results. This process works
well if the team is composed of both biological and data science
experts, however, there is still a significant challenge in providing
sufficient amounts of high-quality annotation in a timely fashion.

Recently, several tools that allow non-specialists to use deep
learning for image segmentation have been developed.
CellProfiler 3.0 combines both a wizard-like interface for
applying U-Net models and an extensive suite of tools for
shallow machine learning-based segmentation and for analysis
of the resulting segmentation (McQuin et al., 2018). CDeep3M is
a cloud-based solution for applying deep learning to
segmentation but has a command line interface (Haberl et al.,
2018). DeepMIB provides a wizard-like interface for running a
deep-learning pipeline but doesn’t provide any support for
developing annotation or analyzing the resulting segmentation
(Belevich and Jokitalo, 2021). DeepImageJ, which, in conjunction
with ImageJ and Fiji itself, provides a pipeline for prediction of
U-Net-based segmentation models as well as many tools for the
preparation of training data and the analysis of results (Gomez-
de-Mariscal et al., 2021). SuRVoS2 is unique in providing a self-
contained GUI tool designed for non-programmers that allows
painting of annotations using super-regions, a machine-learning
based prediction mechanism for accelerating the annotation
process, an integrated system for training and prediction of a
U-net model, and tools for analyzing the resulting segmentation.

SuRVoS Workbench (Darrow et al., 2017; Luengo et al., 2017)
was originally developed to address this need for an accelerated
process of producing initial expert segmentation on which to base
subsequent machine learning methods. Annotation in SuRVoS is
based around the concept of supervoxels (Lucchi, et al., 2011)
which provide a way to select a large number of voxels in 3D with

little user effort, yet still respect the boundaries found within the
data itself. After using supervoxels to quickly annotate regions
within a volume, an iterative shallow machine learning strategy
with integrated filters for data augmentation could be applied to
predict the label assignments of the volume (Figure 1). This
involves pre-calculating image features and training a machine
learning method such as random forests or SVM (Support Vector
Machine) on the provided scribble annotation, and then to
predict the segmentation of the whole volume. Because the
image features are calculated separately from the machine
learning algorithm, this method is considered a “shallow”
machine learning approach. A novel hierarchical strategy
could restrict annotations and predictions based on parent-
child relationships and a “label-splitter” functionality could be
used to separate out objects based on their inherent properties for
analysis.

Overall, SuRVoS provided a processing pipeline which sped
up the segmentation process, in some cases enabling research
which wouldn’t have been possible if segmentation was
completed manually (Strotton et al., 2018). However, with
increasing data sizes and rates of collection, SuRVoS
became cumbersome due to local memory requirements. We
also received multiple requests for usability improvements,
especially around installation on various operating systems.
And finally, our research and implementation of deep machine
learning strategies has advanced. Together, these reasons have
motivated the release of SuRVoS2 as both an API backend
server and a new client based on the Napari (Napari
Contributors, 2021) ecosystem. This edition includes a new
client-server architecture, integration of Dask (Rocklin, 2015)
for parallelized image processing, and both semi-automatic
shallow and deep machine learning pipelines.

METHODS

Segmentation of large 3D volumetric imaging data presents
challenges in providing computing resources, project
management, and in visualization and interactivity. SuRVoS2
(licensed under Apache 2.0; Basham, 2021) approaches these
challenges with the ethos of providing open-source, free-to-use
options for accelerated annotation, segmentation and analysis
that are data type agnostic.

Client-Server Architecture
Volumetric image segmentation is computationally intensive, but
by way of its implementation as a client-server application,
SuRVoS2 can be run on high-performance servers (e.g. multi-
processor, multi-GPU, or high random access memory (RAM)
machines) yet provide an interactive experience for users. The
server can be used to run compute-heavy operations, such as
segmentation algorithms, while the client is run on a convenient
device local to the user, such as a laptop. The client connects to
the server and directs the segmentation workflow, and all the
intermediate files are stored on a server-accessible file system,
with the client downloading only the data needed for interactive
segmentation and visualization.
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The client uses a REST (Representational State Transfer) API
implemented with the Hug Library (Crosley, 2016) to make
requests to the SuRVoS2 server. The REST API uses HTTP
(Hypertext Transfer Protocol) to implement a clean interface
for functionality such as generating features, segmentation, and
analysis. SuRVoS2 can be run headless on a cluster or virtual
machine and then the Napari-based client connects over HTTP.
This allows the server to run as a service on HPC-based clusters,
for example, and could be containerized using Docker (Merkel,
2014) in order to deploy it at large scale in one of the major cloud
providers. This enables the core functionality of SuRVoS2 to be
run on appropriate computational resources with fast access to
the image data resulting in a faster process for the user and
enabling the processing of much larger datasets, limited only by
server RAM. Additionally, the integration of the REST API and
separating the core logic from the user interface allows for future
extension of the client side to other devices or browser-based
clients, which would further increase access to SuRVoS2 tools and
functionality.

Workspace Philosophy
The SuRVoS2 server gathers and manages the information
required throughout a complex segmentation project through
the use of “Workspaces.”Aworkspace is created from an imaging
volume and as the segmentation workflow of choice is used
(Figure 1), all objects created (features, annotations,
supervoxels, segmentation pipelines and analysis outputs; See
Table 1) and the state of the workflow are stored in the workspace

file system. The parameters used throughout the workflow can be
saved and loaded into a new workspace for application to a naïve
dataset. The data objects are generally stored as chunked HDF5
(Hierarchical Data Format 5) files and manipulated using the
h5py library (Colette et al., 2017). This chunking mechanism can
be globally tuned, allowing the file access performance to be
optimized for a given set of hardware.

Napari as a Graphical User Interface (GUI)
Napari is “a fast multi-dimensional image viewer designed for
browsing, annotating and analyzing large multi-dimensional
images” (Napari Contributors, 2021). It is a well-implemented
PyQT-based application framework with a broad user community,
which provides an extensible base for building application-specific
annotation and segmentation tools. Napari is encouraging the
growth of an ecosystem of additional image processing plugins
providing features such as animation (Sofroniew, 2021), tracking
(Prigent, 2021), and deconvolution (Perdigao, 2021). By utilizing
Napari as a common GUI, a user can access a range of tools from
multiple authors but following similar conventions for improved
ease-of-use and inter-operability.

A key benefit of an interactive GUI for performing image
processing operations is the ability to interactively explore an
image dataset. Napari provides a broad set of tools for 2D and 3D
inspection of the image data, interactive painting of annotations,
and visualization of outputs from each stage of a processing
pipeline. Additionally, Napari supports overlaying multiple
floating point image layers, each with controllable opacity,

FIGURE 1 | Example workflow pipelines in SuRVoS2. The Shallow Learning pipeline is the same as previously available in SuRVoS using an iterative painting and
predicting cycle to produce an output segmentation. The Deep Learning pipeline incorporates the Shallow Learning pipeline to quickly generate expert segmentations on
a region of interest (ROI) which can subsequently be used to train a deep learning model for application to the full volume. And finally, the Distributed Annotation pipeline
uses geometric data alongside either the Shallow Learning or Deep Learning pipelines to segment objects marked by 3D points.
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which can be helpful when viewing two or more registered images
together. In addition, integer-valued annotation layers and
geometry layers can be viewed together with floating point
image layers allowing many different data types to be
displayed concurrently for correlational painting of
segmentations and labelling of objects. Using the 3D mode
provides options for 3D rendering of data and segmented
objects including isosurfaces and attenuated maximum
intensity projection.

Napari and the SuRVoS2 plugin can run on Linux, Windows,
and Macintosh operating systems (see https://github.com/
DiamondLightSource/SuRVoS2 for code, installation
instructions and documentation). This arrangement of
SuRVoS2 as a Napari plugin both extends SuRVoS2 with
access to 2D and 3D visualization and annotation tools that
Napari offers and likewise, extends Napari by providing a
complete system for managing segmentation and image
analysis workflows, including an extensive set of filters,
supervoxels, and shallow and deep machine learning
segmentation options.

Machine Learning Implementations
SuRVoS2 provides both a shallow and a deep machine learning
pipeline (Figure 1). The shallow learning pipeline is equivalent to

the functionality previously available in SuRVoS (Darrow et al.,
2017; Luengo et al., 2017) whereby an initial set of training
annotations are created and then an image segmentation model
consisting of supervoxel-based image features and a random forest
or SVM model is trained and evaluated, and then additional
annotations or refinements of annotations are produced, and
the model retrained and re-evaluated. The deep learning
pipeline uses the 2D U-net from FastAI (Howard and Gugger,
2020) as a base and implements this functionality using The Kornia
library (Riba et al., 2020) which was built using the Pytorch library
(Paszke, et al., 2019), the Torch-IO library, some machine learning
functions from scikit-learn (Pedregosa et al., 2011) and some image
processing operations in SuRVoS2 also use the Scipy ndimage
package (Virtanen et al., 2020) and the scikit-image library (van der
Walt et al., 2014). These image processing technologies allow for
GPU-accelerated computing to accommodate large datasets. Some
additional image processing operations in SuRVoS2 use the Scipy
ndimage package (Virtanen et al., 2020). The deep learning
pipeline available in SuRVoS2 uses a region of interest (ROI)
system whereby smaller, more manageable volumes are segmented
either manually or through the shallow learning pipeline and used
as training data. By providing one or more segmented ROIs as
training data, the deep learning pipeline can transfer this learning
to the rest of the volume. A multi-axis 2D U-Net (King, 2021) is

TABLE 1 | List of all filters/features, shallow and deep learning, and label splitter/analysis options within SuRVoS2.

Filters and features Machine learning Label splitter/Analysis

Produce output images for use in shallow or
deep learning pipelines

Uses manual or shallow learning created training annotations
to predict classes for other voxels

Inherent characteristics of data or segmented objects used
to separate objects into groups

Basic Features: Shallow Learning: Mean Intensity
Simple Invert Random Forest Standard Deviation of Intensity
Invert Threshold Extra Random Forest Variation of Intensity
Threshold Gradient Boosting Volume
Rescale Support Vector Machine (SVM) Bounding Box Volume
Gamma Correct Active Contour without Edges (ACWE) Log Bounding Box Volume
Blob: Watershed Position X
Structure Tensor Determinant Deep Learning: Position Y
Frangi 2D U-Net Position Z
Hessian Eigenvalues 3D U-Net a Bounding Box Depth
Denoising: FPN a Bounding Box Height
Total Variation Denoise — Bounding Box Width
Gaussian Blur — Oriented Bounding Box Volume
Median — Log Oriented Bounding Box Volume
Wavelet — Oriented Bounding Box Depth
Edges: — Oriented Bounding Box Height
Spatial Gradient 3D — Oriented Bounding Box Width
Difference of Gaussians — —

Laplacian — —

Morphology: — —

Dilation — —

Erosion — —

Closing — —

Euclidean Distance Transform — —

Skeletonize — —

Neighborhood: — —

Gaussian Norm — —

Gaussian Centre — —

aIndicates options where training is currently done using the SuRVoS2 API externally to the graphical user interface (GUI), with the deep learning module for prediction available within the
SuRVoS2 GUI.
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used to predict the output segmentation in different directions,
combining the output into a final segmentation. To enable faster
processing, Dask is used for parallelized image processing of
chunked data. Together these features of SuRVoS2 enable the
efficient processing of large datasets.

SuRVoS2 API
Complex segmentation problems usually require custom
workflows. A Python API for SuRVoS2 can be accessed from
either Jupyter notebooks (Kluyver et al., 2016), Python scripts or
any other client capable of performing HTTP requests. A set of
Jupyter-specific convenience functions allows for the inspection,
creation, and modification of data within a SuRVoS2 workspace
and give control of SuRVoS2 segmentation pipelines (see https://
github.com/DiamondLightSource/SuRVoS2 for a testing
notebook with examples). The output of these pipelines can be
loaded into a common workspace for visualization and evaluation
in the SuRVoS2 GUI. Additionally, SuRVoS2 is extensible by end
users through a pluginmechanism composed of two parts: an API
and a GUI. The API is implemented as a Python server using the
Hug library (Crosley, 2016) to provide the REST API allowing for
access to the workspace and all data in it. The GUI is a separate
Python file consisting of the PyQT-based (RiverbankComputing.
com, 2021) widgets that will be rendered in a tab within the
SuRVoS2 user interface. For example, the SuRVoS2 ROI plugin
has an API module that stores the ROI on the server and that can
create and delete ROIs. Then it has a GUI module that contacts
the API, gets the current list of ROIs, displays it, and allows the
user to interactively create and delete ROIs.

RESULTS

SuRVoS2 implements multiple new features which accelerate
image annotation, segmentation, and analysis. Example case
studies have been sourced to highlight these features in the
context of vEM and correlative imaging techniques. First,
X-ray microCT of human placenta will be used to highlight
the deep learning pipeline (Tun et al., 2021); second, cryo soft
X-ray tomography (cryoSXT) of Trypanosoma bruceii will be
used to demonstrate the label splitting and analysis
functionalities; third, cryo electron tomography of a virus-
infected cell will be used to illustrate the display and
manipulation of non-mask based data such as the output from
a distributed citizen science-based annotation workflow; fourth,
correlative cryoSXT and cryo structured illumination microscopy
datasets of a virus-infected cell will be used to demonstrate the
ways correlative datasets can be used in the SuRVoS2 pipeline;
and finally, an example Jupyter notebook will be used to highlight
an advanced implementation of the SuRVoS2 API for clustering,
segmentation, and visualization within the GUI.

Deep Learning With the SuRVoS2
Implementation of a 2D U-Net
The two main segmentation methods available in SuRVoS2 can
be used together to rapidly generate high quality segmentations

for large datasets (Alvarez-Borges et al., 2021; Tun et al., 2021).
SuRVoS2 implements a version of the concept of “weak
annotation” in which scribble-based annotation is used to
train a shallow machine learning model and then the
prediction of that model is used as ground truth to train a
deep learning U-Net (Lin D. et al., 2016; Khoreva et al., 2017;
Li et al., 2018). This approach requires expert evaluation of the
output predictions of both the shallow and deepmachine learning
models and is classified as a semi-automatic method. A
subvolume (ROI) of the dataset is first selected, then
supervoxels are generated to aid fast annotation of this ROI.
This subvolume annotation can be done entirely manually,
utilizing the benefits of supervoxels, or partial annotations, in
conjunction with extracted image features, can be used to train an
ensemble (e.g. a random forest) or an SVM classifier. The trained
classifier is then used to predict the missing annotations within
the ROI. After this step, the resulting segmented ROI and the
corresponding data can then be used as “expert segmentation”
data to train a U-Net network. This trained U-Net model is then
available to use for predicting segmentation of the entire large
dataset (See Tun et al., 2021 for validation of this methodology).

U-Net models have advantages over ensemble or SVM
methods (Ronneberger et al., 2015; Seo et al., 2020) in terms
of generalizing better to new data and in not requiring user-led
extraction of image features for training and prediction. The
U-Net, by contrast, learns the features to extract from the data
during model training. However, deep learning models like the
U-Net often require much larger amounts of training data to
performwell. Therefore, the practical application of deep learning
for segmentation suggests the use of a shallow machine learning
pipeline, trained quickly using supervoxels, for the creation of
training data that can be used as input to the deep learning
pipeline.

To demonstrate the above pipeline, an X-ray micro-
tomography dataset (EMPIAR 10562, Tun et al., 2021)
collected from a 3 × 3 × 3 mm sample of human placental
tissue at Diamond Light Source beamline i13-2 was used (for
more details of sample preparation and data collection see Tun
et al., 2021). The full dataset has dimensions 2520 × 2520 × 2120
pixels and a 256 × 256 × 256 pixel ROI was selected from this
dataset using the SuRVoS2 data previewer (Figure 2A). A
workspace was created from the ROI and the data was
denoised using a total variation filter (Figure 2B) before
supervoxels with an average shape of 10 × 10 × 10 pixels were
generated from this denoised volume (Figure 2C). A paintbrush
tool was used to annotate some regions in the data (Figure 2D),
separating the background supervoxels (shown in red) and those
representing blood vessels (shown in blue). Further feature
images were created from the ROI, namely a Gaussian blur,
Hessian eigenvalues and normalized Gaussian datasets (not
shown). The supervoxel annotations were used, along with the
extracted image feature datasets, to train a random forest classifier
which was then used to predict the labels for all of the supervoxels
in the ROI (Figure 2E). At this point, the segmentation of the
256 × 256 × 256 pixel ROI is broadly correct with some minor
misclassifications. This ROI segmentation was used to train a 2D
U-Net model using an approach which leverages the 3D nature of
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the data (Alvarez-Borges et al., 2021). To do this, 2D images from
the raw data and corresponding segmentation label volumes were
sliced in three orthogonal planes to create the stack of training
images. This process yielded 768 images of 256 × 256 pixels with
the corresponding “ground truths.” These are enriched further by
augmentations such as flips, contrast adjustments, and geometric
distortions. Once trained, the process creates an output by taking
the volume to be predicted and again dividing it into three stacks
of 2D images, and augmenting this with rotations. This results in
each voxel being classified multiple separate times and a voting
system is used to select the final outcome of the voxel
segmentation. The predicted segmentation of the ROI
generated by this U-Net model has improved on the shallow
learning segmentation output, addressing many of the
misclassifications found there (Figure 2F).

Next, a new workspace was created containing a central
portion of the full-size dataset (2520 × 2520 × 100 pixels). The
U-Net model, trained as described above, was then used to
generate segmentations from this larger volume of data
(Figure 2G). Utilizing the capabilities of the Napari viewer
and SuRVoS2 plugin, these segmentations can be rendered in
3D and overlaid with the image data to clearly visualize the
now segmented blood vessels (Figure 3). Due to the large data
size, manual segmentation of this single volume is estimated to

have taken approximately 320 h, or around 2 months of
person-time. Using the initial, shallow learning
implementation of SuRVoS was estimated to have reduced
the time spent by half, still taking approximately 1 month of
person-time. Using the deep learning pipeline in SuRVoS2,
segmentation of this volume was reduced to approximately
1.2 h of person-time to segment the ROI using the shallow
learning pipeline and 4 h of computational time on a high
performance machine consisting of two Intel® Xeon® Gold
6242R processors each with 20 cores running at 3.1 GHz, and
768 GiB of system memory. The GPU used was an NVIDIA
Tesla V100 with 32 GB of available memory.

Data Analysis in SuRVoS2
During segmentation, the class each object is assigned to is often
left to the individual researcher based on 2D examination of the
objects present in the data, leading to potential subjectivity in the
results. The Label Splitter tool was developed as a means to derive
classifications directly from the data using the inherent
characteristics of each object, such as size, shape, intensity,
variation, etc. Category labels and rules to generate classes are
still decided by a user, meaning some bias or subjectivity is still
present, however it will now be consistently applied, even across
multiple normalized datasets.

FIGURE 2 |Blood vessels from an X-ray micro-tomography dataset of human placenta segmented using the SuRVoS2 deep learning pipeline. Images (A–F) show
a central slice of a 256 × 256 × 256 pixel region of interest (ROI), marked in (G) with a black box. (A) Raw data. (B) Data with a total variation denoising filter applied. (C)
Supervoxels generated from the denoised data. (D) Annotations applied to the supervoxels (red: background, blue: blood vessels). (E) Supervoxel-based prediction of
segmentation labels using a random forest classifier trained on the annotations shown in (D). (F) Voxel-based prediction of segmentation labels using a 2D U-Net
model trained on the segmentation output from (E) and the raw data (A). (G) Voxel-based predictions of segmentation labels for a central 100 slices of the full 2520 ×
2520 dataset using the 2D U-Net model trained as described in (F).
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To demonstrate the functionality of the Label Splitter tool, a
cryoSXT dataset of Trypanosoma bruceii collected from
Diamond Light Source beamline B24 was used (see Darrow
et al., JoVE, 2018 for more information). Starting from
previously segmented objects, the Label Splitter tool displays
information about each object that can be used to define rules
for separating the objects into classes (Figure 4 and Table 1).
These rules can be interactively developed using the table and
graph view. The graph is split by a line at the location of the
chosen rule value and double clicking on an entry in the table
will take the user to the object in the data allowing for clear,
specific delineations of classes of object based on the inherent
characteristics of the objects.

Rules are applied sequentially to all selected objects creating
bespoke classes of objects. After splitting, each new class can be
visualized and given a unique label and color (Figure 5). The
Label Splitter tool can be used on annotation layers regardless of
their provenance (manual, shallow learning, deep learning or
geometric) and it can also be used iteratively using the output of
another Label Splitter instance to create complex and nested
hierarchies that can accommodate data with large numbers of
different types of objects.

Geometric Data in SegmentationWorkflows
SuRVoS2 supports segmentation projects that utilize geometric
point data which can be visualized, edited, and used to generate
mask-based annotations. Geometric data can be generated in
many different ways, for example point-based locations of
particles of interest in a 3D volume produced manually or
automatically for sub-tomogram averaging (Wagner et al.,

2019; Bepler et al., 2020); or through object detection
workflows specific to an organelle or other object (Wei et al.,
2020), or even points placed on images as part of distributed
annotation workflows within a lab or utilizing citizen science
platforms (Zooniverse, 2019).

Geometric data is an efficient way to encode knowledge about
an image, where a point indicates both an object’s class
membership and its location. To demonstrate the use of
SuRVoS2 with geometric data, point-based data gathered from
a crowdsourced workflow focused on finding viruses inside of a
cell using cryo electron tomography (cryoET) data collected at
Diamond Light Source on eBIC was used (Sutton et al., 2020)

It is possible to either create or import geometric data using
Napari. In this case, the data were imported using a simple CSV
file format. Points can then be viewed (2D and 3D) and edited/
deleted (2D only) while overlaid with the raw image data as
reference using the SuRVoS2 plugin (Figure 6). Point data can
have an encoded class label represented by the point color. The
table view lists the coordinates of the 3D point and its class.
Double-clicking on the row of a particular point translates the
current view to that location, centering the point (Figure 6).
Together these capabilities provide users the tools needed to
evaluate and refine crowdsourced annotations and those
generated by automated object detection workflows (Jaeger,
2018).

The Rasterize Points plugin in SuRVoS2 can convert point-
based data into segmentation masks by painting ellipsoidal blobs
on the 3D point locations. The scale and orientation of the
ellipsoids can be set and this operation allows the ellipsoid to
be initialized as an Active Contour Without Edges (Chan and

FIGURE 3 | SuRVoS2 plugin integrated into the Napari viewer. The output blood vessel segmentations from the deep learning pipeline in SuRVoS2 visualized using
the 3D rendering option and overlaid on the raw data in the Napari viewer.
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Vese, 2001) object which can expand or contract, fitting the image
data. This or more complex conversion strategies for
computationally converting point-based data into
segmentations can be designed using the machine learning
pipelines within SuRVoS2 (Figure 1).

Extended Functionality Using the
SuRVoS2 API
SuRVoS2 includes a Python API that can be used from Jupyter
Notebooks, allowing the notebook to access, process, and add
information into SuRVoS2 workspaces through the SuRVoS2
server (Figure 7). Additional functionality implemented through
the API includes clustering and visualization of patches sampled
from the volume. For example, a set of geometric points is used as
sampling locations for uniformly sized patches (e.g. 64 × 64 × 64
pixels) and image features can be computed for each patch using a
2D ResNet model (He, et al., 2015). The features can then be
clustered and an embedding made to visualize the features on a
2D plot using Unified Manifold Approximation and Prediction
(UMAP; McInnes, et al., 2020) or TSNE (Van der Maaten and
Hinton, 2008) (Figure 7).

As a second example also starting from geometric data with
location and class information, the SuRVoS2 API can be used
from any Jupyter client to segment the objects using additional
deep learning strategies (such as a 3D U-Net or Feature Pyramid

Network (FPN; Lin T et al., 2016) Figure 7). The training of the
model is performed through the Jupyter notebook, a prediction is
made, and the results are visualized as a layer in the SuRVoS2
GUI to allow for inspection of the segmentation. The ability to
call standard and additional SuRVoS2 functionality external to
the GUI extends the addressable use-cases and provides any
researcher with Python programming skills the ability to
create bespoke, specialized processing pipelines to address
their specific annotation, segmentation, and analysis needs.

Multimodal Correlation of 3D Datasets in
SuRVoS2
SuRVoS2 supports the use of correlative, multi-modal imaging
data for visualization and annotation. Multiple datasets can be
loaded into a workspace and viewed in 2D or 3D as individual
layers. The datasets must already be appropriately transformed as
this functionality is not currently available in either Napari or
SuRVoS2. To demonstrate the use of SuRVoS2 with correlative,
multi-modal data, cryoSXT and cryo structured illumination
microscopy (cryoSIM) of virus infected cells were aligned
externally and displayed within SuRVoS2 (Figure 8; EMPIAR
10416 and S-BIAD19 respectively). The opacity of each layer can
be controlled allowing for display of both 3D layers
simultaneously.

This functionality allows the user to reference one dataset
when annotating another dataset, for example using the

FIGURE 4 | The Label Splitter tool for application of classification rules using inherent characteristics of the segmented objects. Information about each object is
displayed on a table and graph. The graph is split by a line at the location of the chosen rule value and double clicking on an entry in the table takes the user to the chosen
object in the data.
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FIGURE 5 | The output of the Label Splitter can be visualized as annotation layers within the SuRVoS2 plugin. Rules are applied sequentially to all selected objects
and after splitting, each new class can be visualized and given a unique label and color.

FIGURE 6 | Use of geometric data in SuRVoS2 to analyze crowdsourced annotations. (A) Data were imported into the Napari viewer using a simple CSV file format
indicating 3D centroid locations and object class. The tools in SuRVoS2 can be used to visualize, edit, and delete geometric data, including a function to take the user
directly to an object of interest by double clicking on its entry in the table view.
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fluorescence to guide segmentation of specific organelles. It is
also possible to use other Napari and/or SuRVoS2 functionality
to accelerate the annotation or segmentation process. For

example, a deconvolution algorithm could be applied (e.g.
RedLionfish (Perdigao, 2021) in Napari) to the fluorescence
data, followed by calculation of supervoxels and then

FIGURE 7 | Examples of additional features and use-cases available when using the SuRVoS2 API from within Jupyter notebooks. Example of the SuRVoS2 API
being used through a notebook with results which can be visualized using the SuRVoS2 GUI.

FIGURE 8 | 3D CryoSXT with correlated 3D cryoSIM in SuRVoS2. (A)Multimodal imaging can be displayed together as individual layers with control over opacity
and color. (B) SuRVoS2 specific functionality, such as supervoxels (shown in yellow) can be calculated using one of the datasets for use during segmentation or
annotation of the other.
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segmentation of areas of fluorescence in the non-fluorescence
dataset. It is also possible to use the 3D fluorescence dataset as an
input feature map during the shallow or deep learning pipelines
or as a path to generation of point-based geometric data,
although more research is needed to understand best-
practices for these applications.

DISCUSSION

Segmentation is a difficult and time-consuming task that absorbs the
attention and expertise of domain experts and software engineers
alike. The general principles which have led to successful SuRVoS2
segmentations include using step-wise and hierarchical approaches.
Rather than attempting to segment all objects in the field of view at
once, a more successful strategy may be to segment large regions or
distinctive objects from the background as a first step. This can then
be followed by additional iterations through the segmentation
pipelines, now utilizing the parent-child hierarchy to limit
annotation and segmentation calculations to only regions where
the objects of interest are to be found. By breaking the problem up
into smaller chunks, the semi-automated computational strategies
are generally more successful. It is also helpful during the expert
annotation stage to be mindful of class imbalances. If an object of
interest is only present a small number of times, or only represented
by a small number of voxels in the training data, it will be difficult for
the deep learning pipeline to accurately detect these objects in the
remaining volume. Areas for expert annotation should be chosen
carefully to ensure they represent the remaining volume, and
secondary areas may be required to emphasize objects which do
not occur often.

SuRVoS2 has several key strengths and provides a unique
combination of tools that support this iterative process required for
producing accurate output segmentations. First, SuRVoS2 encourages
interactive visualization and exploration of image volumes and
associated geometric data in both 2D and 3D within the user-
friendly Napari environment. This is useful when understanding
what objects are present in the data and choosing representative
ROIs. Second, SuRVoS2 provides several different mechanisms to
paint and prepare annotations, including supervoxels for accelerated
annotation. And finally, SuRVoS2 provides both a fast mechanism for
sparsely training a shallow model to predict annotations as well as a
state-of-the-art deep U-Net segmentation model that can learn on
densely annotated small ROIs and predict on large volumes.

SuRVoS2 core functionality is available entirely within the GUI for
users who wish to interact without programming or scripting. Using
the combination of tools available in SuRVoS2 to both annotate data
and to train segmentation models, a domain expert can accelerate the
process of segmenting their data and further can perform a variety of
analyses from the output segmentations, all within the GUI.
Additionally, for users familiar with scripting, the SuRVoS2 API
and convenience functions allow for accessing and manipulating
the entire process of segmentation within a SuRVoS2 workspace
from within a Jupyter notebook. Importantly, the SuRVoS2 GUI can
be run in parallel with Jupyter notebooks that are accessing the same
workspace, providing an interactive analysis or development
experience with access to 2D and 3D visualization options.

Additionally, application developers can utilize the SuRVoS2
plugin system to extend SuRVoS2 functionality with their own
custom plugins. This growing ecosystem within SuRVoS2 and
Napari provides an exciting outlook for the future of volumetric
image analysis and visualisation.

By separating SuRVoS2 into a client-server architecture, the
hardware requirements and installation challenges of the software
have been alleviated. The client, installed on a personal or work
computer, requiresminimal effort to install; and the server installation,
which has also been simplified, can be completed by expert
technicians on clusters and/or in the cloud to serve a large user base.

Future Development Plans
Now that the client-server architecture has been implemented,
the immediate bottleneck associated with processing large
datasets within SuRVoS2 has been alleviated, especially when
the ROI-based deep learning pipeline is used. However, more
efficient use of Dask cluster can be implemented alongside the use
of Next Generation File Formats (Moore et al., 2020) to allow
further parallelization of image processing operations which will
allow SuRVoS2 to scale to even larger datasets.

A second area of development is around use of SuRVoS2 in the
cloud. This has been tested with a limited set of virtual machines
(Google cloud with Chrome Remote Desktop for client access).
This configuration has provided good performance without loss
of interactivity. In future, this will be supported through use of a
SuRVoS2 server docker container, which could be hosted in the
cloud and connected to an external client. This will also enable the
possibility of using mobile and browser-based clients for further
improvements to accessibility.

Third, SuRVoS2 will benefit from updates and improvements
provided by the Napari plugin ecosystem. Napari provides a
common user interface paradigm for all Napari plugins to use,
easing the burden on researchers to learn bespoke plugins. And
the functionality provided by new Napari plugins, especially in
the area of segmentation tools, for example Stardist (Schmidt,
et al., 2018) and ZELDA (D’Antuono and Pisignano, 2021) can be
incorporated within a SuRVoS2 workflow.

A final area of research and development within the SuRVoS2
team is around the need for quantitative quality metrics embedded
within the annotation and segmentation process. Segmentation of
volumetric biomedical data using machine learning strategies often
requires multiple iterative passes of annotation, segmentation, and
quantitative evaluation to achieve high-quality results. It is often
difficult or impossible to determine how much annotation is
required and how detailed the annotation must be to achieve a
particular segmentation result. Evaluation of the segmentation
output is often manual and subjective and often completed in 2D,
highlighting the need for quantitative metrics embedded within the
segmentation pipeline to enable the evaluation of the segmentation
output. In the future, we plan to explore active learning and
collaborative learning techniques (Konyushkova et al., 2015;
Luengo et al., 2016; Yang et al., 2017), which will aid the user in
selecting regions for annotation to reduce model uncertainty. This
deep learning aided segmentation strategy has the potential to further
reduce the amount of manually annotated data through smarter
selection of ROIs.
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CONCLUSION

SuRVoS2 offers a unique set of tools that combine image
processing and segmentation with the management of
geometric information and the tools available in the Napari
viewer. Its redesigned client-server architecture and newly
implemented deep learning segmentation pipeline addresses
the need to process ever larger datasets. The advanced features
provided by the SuRVoS2 API allow users comfortable with
scripting to interact through a Jupyter notebook while still
accessing the interactive viewing tools. This ecosystem is
designed for extensibility through plugin systems both within
Napari and SuRVoS2. Together, these features allow for easy
exploration of volumetric biomedical and correlative multi-
modal data in both 2D and 3D followed by accelerated
segmentation pipelines and analysis tools, accelerating data
processing and analysis across modalities and scales.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: EMPIAR 10562: https://www.ebi.ac.uk/
empiar/EMPIAR-10562/ EMPIAR 10416: https://www.ebi.ac.
uk/empiar/EMPIAR-10416/ S-BIAD19 (bioimage archive):
https://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD19?
query=S-BIAD19 SuRVoS2 GitHub: https://github.com/
DiamondLightSource/SuRVoS2.

AUTHOR CONTRIBUTIONS

MB,MD, and IL conceived of the SuRVoSWorkbench software. IL
and AP introduced the client-server architecture. AP integrated
SuRVoS Workbench into the Napari plugin ecosystem and

developed the PyTorch based image processing. OK and AP
developed the deep learning pipeline and addressed feature and
bug requests from beta-users. WT and MDmade feature requests.
WTwas the main internal tester and trainer. EHAssisted in testing
SuRVoS and created the training videos. AP, MD, and OK wrote
the paper, all authors reviewed prior to submission.

FUNDING

This work was funded by Wellcome Trust grants 212980/Z/18/Z
(AP, WT, MD, and MB) and 220526/Z/20/Z (EH, MD, and MB).

ACKNOWLEDGMENTS

We gratefully acknowledge the Stuart lab at the University of
Oxford for providing unpublished test data. We acknowledge
EMBL-EBI and the data repositories they facilitate, and those
researchers who deposit data, which enables us to re-use
previously published data to test new software and
algorithms. We are also grateful to the following early
adopters and testers of SuRVoS2: Matthew C. Spink,
Andrew J. Bodey, Luis Perdigao, and Jennifer Pearson-
Farr. This publication uses data generated via the
Zooniverse.org platform, development of which is funded
by generous support, including a Global Impact Award from
Google, and by a grant from the Alfred P. Sloan Foundation.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fcell.2022.842342/
full#supplementary-material

REFERENCES

Abràmoff, M. D., Magalhães, P. J., and Ram, S. J. (2004). Image Processing with
ImageJ. Biophotonics Int. 11 (7), 36–42.

Alvarez-Borges, F. J., King, O. N. F., Madhusudhan, B. N., Connolley, T., Basham,
M., and Ahmed, S. I. (2021). U-Net Segmentation Methods for Variable-
Contrast XCT Images of Methane-Bearing Sand. Earth and Space Science Open
Archive. doi:10.1002/essoar.10506807.1

Basham (2021). GitHub - DiamondLightSource/SuRVoS2: Next Generation of
SuRVoS. [online] Available at: https://github.com/DiamondLightSource/
SuRVoS2 (Accessed December 13, 2021).

Belevich, I., and Jokitalo, E. (2021). DeepMIB: User-Friendly and Open-Source
Software for Training of Deep Learning Network for Biological Image
Segmentation. Plos Comput. Biol. 17 (3), e1008374. doi:10.1371/journal.pcbi.
1008374

Bepler, T., Kelley, K., Noble, A. J., and Berger, B. (2020). Topaz-Denoise: General
Deep Denoising Models for cryoEM and cryoET. Nat. Commun. 11 (1), 5208.
doi:10.1038/s41467-020-18952-1

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg,
M., Ales, J., Beier, T., Rudy, M., Eren, K., Cervantes, J. I., Xu, B., Beuttenmueller,
F., Wolny, A., Zhang, C., Koethe, U., Hamprecht, F. A., and Kreshuk, A. (2019).
Ilastik: Interactive Machine Learning for (Bio)image Analysis. Nat. Methods 16
(12), 1226–1232. doi:10.1038/s41592-019-0582-9

Chan, T. F., and Vese, L. A. (2001). Active Contours without Edges. IEEE Trans.
Image Process. 10 (2), 266–277. doi:10.1109/83.902291

Crosley, T. (2016). Hug: Embrace the APIs of the Future. [online] Hug. Available
at: https://www.hug.rest (Accessed December 13, 2021).

D’Antuono, R., and Pisignano, G. (2022). ZELDA: A 3D Image Segmentation and
Parent-Child Relation Plugin for Microscopy Image Analysis in Napari. Front.
Comput. Sci.. doi:10.3389/fcomp.2021.796117

Darrow, M. C., Luengo, I., Basham, M., Spink, M. C., Irvine, S., French, A. P., et al.
(2017). Volume Segmentation and Analysis of Biological Materials Using
SuRVoS (Super-region Volume Segmentation) Workbench. J. Vis. Exp. 126,
e56162. doi:10.3791/56162

Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D. I., Wang, G., et al. (2018).
NiftyNet: a Deep-Learning Platform for Medical Imaging. Computer Methods
Programs Biomed. 158, 113–122. doi:10.1016/j.cmpb.2018.01.025

Gómez-de-Mariscal, E., García-López-de-Haro, C., Ouyang, W., Donati, L.,
Lundberg, E., Unser, M., et al. (2021). DeepImageJ: A User-Friendly
Environment to Run Deep Learning Models in ImageJ. Nat. Methods 18,
1192–1195.

Haberl, M. G., Churas, C., Tindall, L., Boassa, D., Phan, S., Bushong, E. A., et al. (2018).
CDeep3M-Plug-and-Play Cloud-Based Deep Learning for Image Segmentation. Nat.
Methods 15 (9), 677–680. doi:10.1038/s41592-018-0106-z

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.
(2009). The WEKA Data Mining Software. SIGKDD Explor. Newsl. 11 (1),
10–18. doi:10.1145/1656274.1656278

Frontiers in Cell and Developmental Biology | www.frontiersin.org April 2022 | Volume 10 | Article 84234212

Pennington et al. SuRVoS2 for Volumetric Bioimage Workflows

https://www.ebi.ac.uk/empiar/EMPIAR-10562/
https://www.ebi.ac.uk/empiar/EMPIAR-10562/
https://www.ebi.ac.uk/empiar/EMPIAR-10416/
https://www.ebi.ac.uk/empiar/EMPIAR-10416/
https://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD19?query=S-BIAD19%20SuRVoS2
https://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD19?query=S-BIAD19%20SuRVoS2
https://github.com/DiamondLightSource/SuRVoS2
https://github.com/DiamondLightSource/SuRVoS2
https://www.zooniverse.org/
https://www.frontiersin.org/articles/10.3389/fcell.2022.842342/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2022.842342/full#supplementary-material
https://doi.org/10.1002/essoar.10506807.1
https://github.com/DiamondLightSource/SuRVoS2
https://github.com/DiamondLightSource/SuRVoS2
https://doi.org/10.1371/journal.pcbi.1008374
https://doi.org/10.1371/journal.pcbi.1008374
https://doi.org/10.1038/s41467-020-18952-1
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1109/83.902291
https://www.hug.rest
https://doi.org/10.3389/fcomp.2021.796117
https://doi.org/10.3791/56162
https://doi.org/10.1016/j.cmpb.2018.01.025
https://doi.org/10.1038/s41592-018-0106-z
https://doi.org/10.1145/1656274.1656278
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Hand, D. J. (2020). “Dark Data: Why what You Don’t Know Matters” Princeton.
Princeton, NJ: University Press.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning. Image
Recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 770–778.

Helmstaedter, M., Briggman, K. L., and Denk, W. (2011). High-accuracy Neurite
Reconstruction for High-Throughput Neuroanatomy. Nat. Neurosci. 14 (8),
1081–1088. doi:10.1038/nn.2868

Howard, J., and Gugger, S. (2020). Fastai: a Layered API for Deep Learning.
Information 11 (2), 108. doi:10.3390/info11020108

Jaeger, P. F., Kohl, S. S. A., Bickelhaupt, S., Isensee, F., Kuder, T. A.,
Schlemmer, H. P., et al. (2018). “Retina U-Net: Embarrassingly Simple
Exploitation of Segmentation Supervision for Medical Object Detection,”
In Proceedings Machine Learning for Health NeurIPS Workshop,
(PMLR), 171–183.

Khoreva, A., Benenson, R., Jan, H., Hein, M., and Bernt, S. (2017). “Simple Does it:
Weakly Supervised Instance and Semantic Segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 876–885. doi:10.
1109/cvpr.2017.181

King, O. (2021). DiamondLightSource/gas-hydrate-segmentation-unets: Code for
Segmentation of 3-dimensional X-ray Computed Tomography (XCT) Images
of Methane Bearing Sand Using 2d and 3d U-Net Models. (n.d.).
RetrievedAvailable at: https://github.com/DiamondLightSource/gas-hydrate-
segmentation-unets December 13, 2021).

Kluyver, T., Ragan-Kelley, B., Perez, F., Granger, B., Bussonnier, M., Frederic, J.,
et al. (2016). “Jupyter Notebooks-A Publishing Format for Reproducible
Computational Workflows,” in Positioning and Power in Academic
Publishing: Players, Agents and Agendas. Editors F. Loizides and B. Scmidt
(Amsterdam, Netherlands: IOS Press), 87–90.

Konyushkova, K., Sznitman, R., and Pascal, F. (2015). “Introducing Geometry in
Active Learning for Image Segmentation,” in Proceedings of the IEEE
International Conference on Computer Vision, 2974–2982.

Kremer, J. R., Mastronarde, D. N., and McIntosh, J. R. (1996). Computer
Visualization of Three-Dimensional Image Data Using IMOD. J. Struct.
Biol. 116 (1), 71–76. doi:10.1109/iccv.2015.340

Li, Q., Arnab, A., and Torr, P. (2018). “Weakly-and Semi-supervised Panoptic
Segmentation,” in Proceedings of the European conference on computer vision
(ECCV), 102–118. doi:10.1007/978-3-030-01267-0_7

Lin, D., Dai, J., Jia, J., He, K., and Sun, J. (2016). “Scribblesup: Scribble-Supervised
Convolutional Networks for Semantic Segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 3159–3167.
doi:10.1109/cvpr.2016.344

Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2016).
Feature Pyramid Networks for Object Detection. Available at: https://arxiv.org/
abs/1612.03144v2.

Lucchi, A., Smith, K., Achanta, R., Knott, G., and Fua, P. (2011). Supervoxel-based
Segmentation of Mitochondria in Em Image Stacks with Learned Shape
Features. IEEE Trans. Med. Imaging 31 (2), 474–486. doi:10.1109/TMI.2011.
2171705

Luengo, I., Basham, M., and French, A. P. (2016). “Selective Labeling: Identifying
Representative Sub-volumes for Interactive Segmentation,” in International
Workshop on Patch-based Techniques in Medical Imaging (Cham: Springer),
17–24. doi:10.1007/978-3-319-47118-1_3

Luengo, I., Darrow, M. C., Spink, M. C., Sun, Y., Dai, W., He, C. Y., et al. (2017).
SuRVoS: Super-region Volume Segmentation Workbench. J. Struct. Biol. 198
(1), 43–53. doi:10.1016/j.jsb.2017.02.007

McInnes, L., Healy, J., Saul, N., and Groβberger, L. (2018). UMAP: Uniform
Manifold Approximation and Projection. J. Open Source Software 3, 861.

McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B. A., Karhohs,
K. W., et al. (2018). CellProfiler 3.0: Next-Generation Image Processing for
Biology. Plos Biol. 16 (7), e2005970. doi:10.1371/journal.pbio.2005970

Merkel, D. (2014). Docker: Lightweight Linux Containers for Consistent
Development and Deployment. Linux J. 239, 2.

Moore, J. (2020). Next-generation File Format (NGFF) Specifications for
Storing Bioimaging Data in the Cloud. Open Microscopy Environment
Consortium. This edition of the specification is Available at: The latest
edition is Available at: https://ngff.openmicroscopy.org/0.1/https://ngff.
openmicroscopy.org/latest/.

Napari Contributors (2021). GitHub - Napari/napari: Napari: a Fast, Interactive,
Multi-Dimensional Image Viewer for python. [online] GitHub. Available at:
https://github.com/napari/napari (Accessed December 13, 2021).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
Pytorch: An Imperative Style, High-Performance Deep Learning Library. Adv.
Neural Inf. Process. Syst. 32, 8026–8037.

Peddie, C. J., and Collinson, L. M. (2014). Exploring the Third Dimension: Volume
Electron Microscopy Comes of Age. Micron 61, 9–19. doi:10.1016/j.micron.
2014.01.009

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 12,
2825–2830.

Perdigao, L. (2021). GitHub - rosalindfranklininstitute/RedLionfish. [online]
Available at: https://github.com/rosalindfranklininstitute/RedLionfish/
(Accessed December 13, 2021).

Pérez-García, F., Sparks, R., and Ourselin, S. (2021). TorchIO: a Python Library for
Efficient Loading, Preprocessing, Augmentation and Patch-Based Sampling of
Medical Images in Deep Learning. Comput. Methods Prog. Biomed. 208,
106236. doi:10.1016/j.cmpb.2021.106236

Prigent, S. (2021). Napari Hub | Plugins | Napari-Stracking by Sylvain Prigent.
[online] Napari-hub.org. Available at: https://www.napari-hub.org/plugins/
napari-stracking (Accessed December 13, 2021).

Riba, E., Mishkin, D., Ponsa, D., Rublee, E., and Bradski, G. (2020). Kornia: An
Open Source Differentiable Computer Vision Library for PyTorch, Winter
Conference on Applications of Computer Vision. IEEE Computer Society,
3663–3672.

Riverbankcomputing.com (2021). Riverbank Computing | Introduction. [online]
Available at: https://riverbankcomputing.com/software/pyqt/ (Accessed
December 13, 2021).

Rocklin, M. (2015). “Dask: Parallel Computation with Blocked Algorithms and
Task Scheduling,” in Proceedings of the 14th python in science conference,
136.130

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: Convolutional Networks
for Biomedical Image Segmentation,” in International Conference on Medical
image computing and computer-assisted intervention (Cham: Springer),
234–241. doi:10.1007/978-3-319-24574-4_28

Schmidt, U., Weigert, M., Broaddus, C., and Myers, G. (2018). “Cell Detection with
star-convex Polygons,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention (Cham: Springer),
265–273. doi:10.1007/978-3-030-00934-2_30

Seo, H., Badiei Khuzani, M., Vasudevan, V., Huang, C., Ren, H., Xiao, R., et al.
(2020). Machine Learning Techniques for Biomedical Image Segmentation: An
Overview of Technical Aspects and Introduction to State-Of-Art Applications.
Med. Phys. 47 (5), e148–e167. doi:10.1002/mp.13649

Sofroniew, N. (2021). Napari Hub | Plugins | Napari-Animation by Nicholas
Sofroniew, Alister Burt, Guillaume Witz, Faris Abouakil, Talley Lambert.
[online] Napari-hub.org. Available at: https://www.napari-hub.org/plugins/
napari-animation (Accessed December 13, 2021).

Strotton, M. C., Bodey, A. J., Wanelik, K., Darrow, M. C., Medina, E., Hobbs, C.,
et al. (2018). Optimising Complementary Soft Tissue Synchrotron X-ray
Microtomography for Reversibly-Stained central Nervous System Samples.
Sci. Rep. 8 (1), 12017–12018. doi:10.1038/s41598-018-30520-8

Sutton, G., Sun, D., Fu, X., Kotecha, A., Hecksel, C. W., Clare, D. K., et al. (2020).
Assembly Intermediates of Orthoreovirus Captured in the Cell. Nat. Commun.
11 (11), 44451–44457. doi:10.1038/s41467-020-18243-9

Thermofisher.com (2021). Avizo Software for Materials Research | Thermo Fisher
Scientific - UK. [online] Available at: https://www.thermofisher.com/uk/en/
home/electron-microscopy/products/software-em-3d-vis/avizo-software.html
(Accessed December 13, 2021).

Tun, W. M., Poologasundarampillai, G., Bischof, H., Nye, G., King, O. N. F.,
Basham, M., et al. (2021). A Massively Multi-Scale Approach to Characterizing
Tissue Architecture by Synchrotron Micro-CT Applied to the Human Placenta.
J. R. Soc. Interf. 18 (179), 20210140. doi:10.1098/RSIF.2021.0140

Van der Maaten, L., and Hinton, G. (2008). Visualizing Data Using T-SNE.
J. machine Learn. Res. 9 (11).

van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D.,
Yager, N., et al. (2014). Scikit-image: Image Processing in Python. PeerJ 2, e453.
doi:10.7717/peerj.453

Frontiers in Cell and Developmental Biology | www.frontiersin.org April 2022 | Volume 10 | Article 84234213

Pennington et al. SuRVoS2 for Volumetric Bioimage Workflows

https://doi.org/10.1038/nn.2868
https://doi.org/10.3390/info11020108
https://doi.org/10.1109/cvpr.2017.181
https://doi.org/10.1109/cvpr.2017.181
https://github.com/DiamondLightSource/gas-hydrate-segmentation-unets
https://github.com/DiamondLightSource/gas-hydrate-segmentation-unets
https://doi.org/10.1109/iccv.2015.340
https://doi.org/10.1007/978-3-030-01267-0_7
https://doi.org/10.1109/cvpr.2016.344
https://arxiv.org/abs/1612.03144v2
https://arxiv.org/abs/1612.03144v2
https://doi.org/10.1109/TMI.2011.2171705
https://doi.org/10.1109/TMI.2011.2171705
https://doi.org/10.1007/978-3-319-47118-1_3
https://doi.org/10.1016/j.jsb.2017.02.007
https://doi.org/10.1371/journal.pbio.2005970
https://ngff.openmicroscopy.org/0.1/https://ngff.openmicroscopy.org/latest/
https://ngff.openmicroscopy.org/0.1/https://ngff.openmicroscopy.org/latest/
https://github.com/napari/napari
https://doi.org/10.1016/j.micron.2014.01.009
https://doi.org/10.1016/j.micron.2014.01.009
https://github.com/rosalindfranklininstitute/RedLionfish/
https://doi.org/10.1016/j.cmpb.2021.106236
https://www.napari-hub.org/plugins/napari-stracking
https://www.napari-hub.org/plugins/napari-stracking
https://riverbankcomputing.com/software/pyqt/
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-00934-2_30
https://doi.org/10.1002/mp.13649
https://www.napari-hub.org/plugins/napari-animation
https://www.napari-hub.org/plugins/napari-animation
https://doi.org/10.1038/s41598-018-30520-8
https://doi.org/10.1038/s41467-020-18243-9
https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html
https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html
https://doi.org/10.1098/RSIF.2021.0140
https://doi.org/10.7717/peerj.453
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., et al. (2020). SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nat. Methods 17 (3), 261–272. doi:10.
1038/s41592-019-0686-2

Wagner, T., Merino, F., Stabrin, M., Moriya, T., Antoni, C., Apelbaum, A.,
et al. (2019). SPHIRE-crYOLO Is a Fast and Accurate Fully Automated
Particle Picker for Cryo-EM. Commun. Biol. 2 (1), 218. doi:10.1038/
s42003-019-0437-z

Wei, D., Lin, Z., Franco-Barranco, D., Wendt, N., Liu, X., Yin, W., et al. (2020).
MitoEM Dataset: Large-Scale 3D Mitochondria Instance Segmentation from
EM Images. Int. Conf. Med. Image Comput. Computer-Assisted Intervention
12265, 66–76. doi:10.1007/978-3-030-59722-1_7

Xu, C. S., Pang, S., Shtengel, G., Müller, A., Ritter, A. T., Hoffman, H. K., et al.
(2021). An Open-Access Volume Electron Microscopy Atlas of Whole Cells
and Tissues. Nature 599, 147–151. doi:10.1038/s41586-021-03992-4

Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D. Z., and Chen (2017). “Suggestive
Annotation: A Deep Active Learning Framework for Biomedical Image
Segmentation,” in International conference on medical image computing and
computer-assisted intervention. Editors M. Descoteaux, L. Maier-Hein,
A. Franz, P. Jannin, D. L. Collins, and S. Duchesne (Cham: Springer),
399–407. doi:10.1007/978-3-319-66179-7_46

Yoshiyuki, K., Jaerin, S., and Yasuo, K. (2018). Large Volume Electron Microscopy
and Neural Microcircuit Analysis. Front. Neural Circuits 12. doi:10.3389/fncir.
2018.00098

Zooniverse (2016). Available at: https://www.zooniverse.org/ (Accessed October
27, 2019).

Conflict of Interest: Authors AP, OK, WT, IL, and MB were employed by the
company Diamond Light Source Ltd. EH was employed by the Rosalind Franklin
Institute.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Pennington, King, Tun, Ho, Luengo, Darrow and Basham. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org April 2022 | Volume 10 | Article 84234214

Pennington et al. SuRVoS2 for Volumetric Bioimage Workflows

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s42003-019-0437-z
https://doi.org/10.1038/s42003-019-0437-z
https://doi.org/10.1007/978-3-030-59722-1_7
https://doi.org/10.1038/s41586-021-03992-4
https://doi.org/10.1007/978-3-319-66179-7_46
https://doi.org/10.3389/fncir.2018.00098
https://doi.org/10.3389/fncir.2018.00098
https://www.zooniverse.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	SuRVoS 2: Accelerating Annotation and Segmentation for Large Volumetric Bioimage Workflows Across Modalities and Scales
	Introduction
	Methods
	Client-Server Architecture
	Workspace Philosophy
	Napari as a Graphical User Interface (GUI)
	Machine Learning Implementations
	SuRVoS2 API

	Results
	Deep Learning With the SuRVoS2 Implementation of a 2D U-Net
	Data Analysis in SuRVoS2
	Geometric Data in Segmentation Workflows
	Extended Functionality Using the SuRVoS2 API
	Multimodal Correlation of 3D Datasets in SuRVoS2

	Discussion
	Future Development Plans

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


