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INTRODUCTION: Pancreatic cancer is the third leading cause of cancer deaths among men and women in the United

States. We aimed to detect early changes on computed tomography (CT) images associated with

pancreatic ductal adenocarcinoma (PDAC) based on quantitative imaging features (QIFs) for patients

with and without chronic pancreatitis (CP).

METHODS: Adults 18 years and older diagnosed with PDAC in 2008–2018 were identified. Their CT scans 3

months–3 years before the diagnosis date were matched to up to 2 scans of controls. The pancreas was

automatically segmented using a previously developed algorithm. One hundred eleven QIFs were

extracted. The data set was randomly split for training/validation. Neighborhood and principal

component analyses were applied to select the most important features. A conditional support vector

machine was used to develop prediction algorithms separately for patients with and without CP. The

computer labels were compared with manually reviewed CT images 2–3 years before the index date in

19 cases and 19 controls.

RESULTS: Two hundred twenty-seven of 554 scans of non-CP cancer cases/controls and 70 of 140 scans of CP

cancer cases/controls were included (average age 71 and 68 years, 51% and 44% females for non-CP

patients and patients with CP, respectively). The QIF-based algorithms varied based on CP status. For

non-CP patients, accuracy measures were 94%–95% and area under the curve (AUC) measures were

0.98–0.99. Sensitivity, specificity, positive predictive value, and negative predictive value were in the

ranges of 88%–91%, 96%–98%, 91%–95%, and 94%–96%, respectively. QIFs on CT examinations

within 2–3 years before the index date also had very high predictive accuracy (accuracy 95%–98%; AUC

0.99–1.00). TheQIF-basedalgorithmoutperformedmanual rereviewof images fordeterminationofPDAC

risk. For patients with CP, the algorithms predicted PDAC perfectly (accuracy 100% and AUC 1.00).

DISCUSSION: QIFs can accurately predict PDAC for both non-CP patients and patients with CP on CT imaging and

represent promising biomarkers for early detection of pancreatic cancer.

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A892
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INTRODUCTION
Pancreatic cancer is the third leading cause of cancer deaths
in the United States with 48,220 estimated deaths in 2021 (1).
The 5-year survival in 2012–2017 was only 10.8% (1). Pan-
creatic ductal adenocarcinoma (PDAC) is the most common
form of pancreatic cancer accounting for up to 90% of all cases.
Early detection of PDAC is difficult owing to lack of specific

symptoms or established screening. As a result, nearly 50% of
cases have distant metastases at the time of diagnosis. Given
the challenges with early detection in PDAC, the Scientific
Framework for PDAC issued by the National Cancer Institute
called for an evaluation of longitudinal screening protocols
including imaging biomarkers for patients at high risk of
PDAC (2).

1Kaiser Permanente Southern California Research and Evaluation, Pasadena, California, USA; 2Department of Radiology, Los Angeles Medical Center, Southern
California Permanente Medical Group, Los Angeles, California, USA; 3Center for Pancreatic Care, Department of Gastroenterology, Los Angeles Medical Center,
Southern California Permanente Medical Group, Los Angeles, California, USA. Correspondence: Wansu Chen, PhD. E-mail: Wansu.Chen@KP.org.
Received March 18, 2022; accepted October 18, 2022; published online November 26, 2022

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology

American College of Gastroenterology Clinical and Translational Gastroenterology

ARTICLE 1

P
A
N
C
R
EA

S

http://links.lww.com/CTG/A892
https://doi.org/10.14309/ctg.0000000000000548
mailto:Wansu.Chen@KP.org


Akey step for early detection is the ability to identify precursors
of PDAC on conventional cross-sectional imaging. Abnormalities
of the pancreas such as main duct dilatation may be early indica-
tors of PDAC and can be detected on computed tomography (CT)
with a high degree of reproducibility (3–5). However, these find-
ings are often nonspecific, and improved methods are needed to
identify accurate and reliable early indicators of pancreatic cancer
on cross-sectional imaging.

Automated radiomic analysis of quantitative imaging features
(QIFs) (6) abstracted directly from cross-sectional imaging offers
a promising opportunity to objectively identify precursor find-
ings related to pancreatic cancer. Radiomics analysis has been
used to predict the survival of patients with PDAC (7–15); dif-
ferentiate functional abdominal pain, recurrent acute pancreati-
tis, and chronic pancreatitis (16); and distinguish autoimmune
pancreatitis from PDAC (17). One study attempted to classify
PDAC cases from normal pancreas based on QIFs of CT images
after cancer diagnosis (18); however, the ability to identify pre-
cursor lesions before cancer development remains a key step to
early detection. A review including 70 studies concluded that
“radiomics of the pancreas holds promise as a quantitative im-
aging biomarker of both focal pancreatic lesions and diffuse
changes of the pancreas” (19). However, studies using QIFs to
predict PDAC are limited.

Patients with chronic pancreatitis (CP) represent a select
group at increased risk of PDAC with a nearly 8-fold risk of
developing pancreatic cancer in the 5 years after diagnosis,
compared with individuals without CP (20). Because imaging
abnormalities such as calcifications, glandular atrophy, and
pancreatic duct dilatation are common among patients with
CP, early diagnosis of pancreatic cancer can be particularly
challenging in this patient population (21).

The objective of this study was to determine the ability of
radiomics-based direct image analysis to identify changes in the
pancreas on cross-sectional imaging associated with the sub-
sequent development of pancreatic cancer. Specifically, we sought
to develop automated computer algorithms for patients with and
without CP to identify important QIFs and subsequently assess
performance for prediction of pancreatic PDAC overall and
within time-specific intervals before development of cancer.

METHODS
Study design and setting

We conducted a nested case-control study, including cross-
sectional abdominal CT images from health plan enrollees of
Kaiser Permanente Southern California (KPSC). KPSC is an in-
tegrated healthcare system that provides comprehensive health-
care services formore than 4.8million enrollees across 15medical
centers and 2501 medical offices throughout the Southern Cal-
ifornia region. KPSC health plan enrollees are broadly repre-
sentative of the Southern California population at large in
diversity in race/ethnicity, socioeconomic status, and other de-
mographics (22). The study protocol was approved by the KPSC’s
Institutional Review Board.

Eligible study subjects and CT scans

We identified adults 18 years and older diagnosed with PDAC in
2008–2018 (index date, t0) based on the KPSC Cancer Registry
by using the International Classification of Diseases, Tenth Re-
vision, Clinical Modification (ICD-10-CM) code C25.x and histol-
ogy codes listed in Supplementary Document 1 (see

Supplementary Digital Content 1, http://links.lww.com/CTG/
A892). The KPSC Cancer Registry is a prospectively maintained
registry and part of the Surveillance, Epidemiology, and End Re-
sults reporting program. Patients with a history of pancreatectomy
or those who did not have at least 12 months of health plan
enrolment before t0were excluded (agapof#45dayswas allowed).
CT scans 3 months–3 years before t0 of the eligible PDAC cases
were obtained andwerematched toup to2 scans of controls by age,
sex, race/ethnicity, CT contrast status, and year of scan (62 years).
Controls met the same eligibility criteria as above but were pan-
creatic cancer-free up to t0 of the matched cases. All the CT scans
were manually reviewed to remove those that did not capture the
entire pancreas or had formatting errors. The resolution of scans
was 5123 512 pixels with slice thickness in the range of 2.5–5mm.
We separately formed (i) a group of cases/matched controls
without a history of acute pancreatitis (ICD-9: 577.0; ICD-10:
K85.x) or CP (ICD-9: 577.1; ICD-10: K86.0, K86.1) and (ii) a group
of cases/matched controls with a history of CP, regardless of a
history of acute pancreatitis. The same algorithm for training,
validation, and testing processes described below applied to each
group separately.

Characteristics of study subjects

Patient demographics, behavioral characteristics, and clinical
characteristics on t0 or in the 12 months before t0 were extracted.
Scan indications and the associated diagnosis for the visit were
also captured. The tumor size was determined by manual review
of radiology notes within the window of 3 months at the time of
cancer diagnosis. The definitions of the clinical features are de-
scribed in Supplemental Document 2 (see Supplementary Digital
Content 1, http://links.lww.com/CTG/A892).

Pancreas segmentation

The method to automatically extract the volumetric shape of the
pancreas was previously described (23). When the same method
was applied to the images of this study, we started from the es-
timated parameters previously derived and adjusted them to fit
the data of this study (see the method of enhancement in Sup-
plementary Document 3, Supplementary Digital Content 1,
http://links.lww.com/CTG/A892). To evaluate the performance
of the adjusted algorithm, we calculated dice similarity coefficient
based on 9 randomly selected scans of PDAC cases without CP by
comparing the automated segmentation and that of manually
delineated by the study radiologist (R.A.P.).

Extraction of QIFs

First, we normalized the center andwidth of the intensity window
of all the scans. One hundred eleven previously validated QIFs
(24) (see Supplementary Document 4, Supplementary Digital
Content 1, http://links.lww.com/CTG/A892) were extracted
from the segmented areas of the pancreas using MATLAB soft-
ware (25). Finally, the QIFs were standardized such that they all
had a mean value of zero and standard deviation of 1 (26).

Algorithm development and validation

Preparation of training and validation data sets. The non-CP
image set was randomly split for training (50%, DS1) and vali-
dation (50%, DS2). DS2 was further divided into 5 subsets based
on the temporal distance between the scan date and t0 (or t0 of the
matched case): 3–6, 6–12, 12–18, 18–24, and 24–36 months. By
design, there is no overlap between training and validation data
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sets. The CP image set was randomly split for training (50%,DS3)
and validation (50%, DS4).

QIF selection method. Two competing methods of feature selec-
tion were applied and compared based onDS1. The neighborhood
component analysis (NCA) algorithm is a nonparametric method
aiming for maximum prediction accuracy (27,28). Using a regu-
larization parameter (l), the process ofNCA learns featureweights
by minimizing the expected leave-one-out classification accuracy.
Toavoid overfitting,we tuned the regularizationparameterl based
on 5-fold cross-validation. The l corresponding to the minimum
classification losswas selected as the best. QIFwith aweight greater
than 2% of the maximum weight under the best l was deemed
important (28) but could be eliminated if its contribution to area
under the curve (AUC) was less than 0.001 in a backward elimi-
nation process. In addition, we applied a second approach for
feature selection: principal component analysis (PCA), to trans-
form all 111 QIFs into linear combinations that are orthogonal to
one another (29). Principal components with eigenvalues$1 were
considered important. The analyses were performed by the fscnca
function in MATLAB (30) and the prcomp function in R (31).

Algorithm development. A conditional support vector machine
(SVM) (32) was applied to develop prediction algorithms based
on DS1. The reason for using conditional SVM is to account for
the paired structure of the matched data. More specifically, we
centered the within-pair data by its mean (32). For example, for a
specific feature, the values were 0.4 and 0.6, respectively; from the
images of a case and one of his/her controls, the centered values
became 20.1 and 0.1. SVM is a high-performing nonlinear
classifier to map input data into higher dimensional space with
the purpose of better ability of data separation (33). Moreover,
SVM can ignore outliers. The kernel functions used in this study
included Gaussian, linear, and sigmoid (34,35). The 2 hyper-
parameters were tuned based on 5-fold cross-validation (see
Supplementary Document 5, Supplementary Digital Content 1,
http://links.lww.com/CTG/A892).

Algorithm validation. The performance of the prediction algo-
rithms was evaluated using sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV), accuracy,
and AUC based on DS2. Accuracy was defined as the total
number of correctly predicted individuals divided by the total
number of patients. The validation was performed using the
entire validation data set and repeated in each of the 5 validation
subsets.

Sensitivity analysis. To understand whether the algorithms have
the potential to specifically predict early-stage cancer, we validated
the algorithmdevelopedbasedonprincipal components analysis in
the non-CP data set limited to cases diagnosed with stage I PDAC
and their matched controls. The same performance measures
mentioned above were estimated. The analysis was not performed
in CP cases and controls because of the small sample size.

Exploratory analyses. Because the selection of QIFs by NCAmay
vary largely fromonedata set to another,we conducted exploratory
analyses based on non-CP cases and controls to understand how
the instability of QIF selection may affect the performance of final
prediction algorithms (see Supplementary Document 6, Supple-
mentary Digital Content 1, http://links.lww.com/CTG/A892).

Clinical evaluation

A blind manual rereview of scans of 100% of non-CP cases and
50% of non-CP controls in the validation data set 24–36 months
before t0 was performed by the study radiologist (R.A.P.) to de-
termine the risk of PDAC. Patients were classified as low risk if
they only had diffuse atrophy, smaller cyst, simple cyst, loss of
normal lobulation, or mild diffuse duct dilatation/prominence or
did not have any obvious morphological features. Patients with
complex cyst, cyst larger than 2 cm, or loss of normal lobulation of
contour or having 2 or more low-risk features were considered
having medium risk. Those with solid mass, focal abnormal en-
hancement, focal duct stricture, or focal/segmental atrophy were
deemed high risk. The reviewer was not informed about the
computer labels or case/control status at the time of review. The
manual risk assessment was compared with the assigned com-
puter labels (high risk “50%1” vs low risk “,50%”) based on the
prediction algorithm developed with the Gaussian kernel func-
tion and PCA.

Statistical analysis

Characteristics of cases and controls were compared by using a
conditional logistic regression model to account for the matched
design. The P values were based on the likelihood ratio test taking
the nature of matching into consideration. AUC measures were
estimated by the MLR package in R (36), and their 95% confi-
dence intervals (CIs) were estimated (37). All the analyses were
performed using SAS (38), except for the MATLAB (39) or R
packages (40) mentioned previously.

RESULTS

Characteristics of the study cohort

Patients without CP. This study included 277 scans of PDAC
cases and 554 matching scans of controls (Figure 1). 34.7% cases
without CP were American Joint Committee on Cancer stages
I–II, 7.6% stage III, 36.8% stage IV, and 21% stage unknown at the
time of diagnosis (Table 1). The median tumor size was 3.3 cm
(interquartile range 2.4–4.2) in the 148 cases with known in-
formation. On an average, the patients were aged 70.8 years and
50.5% were women. 47.3% were non-Hispanic Whites, 26.7%
were Hispanic, 18.4% were African American, and 7.6% were
Asian/Pacific Islanders (Table 1). Ever tobacco use was frequent
in both cases (57.1%) and controls (51.7%) (P 5 0.14). Family
history of pancreatic cancer and diabetes were more common in
cases than in controls (Table 1). Body mass index and weight
change in 1 year were comparable between cases and controls.
Among specified scan indications and associated diagnosis for the
visit, abdominal pain, other pain, andGI problems appearedmost
frequently (see Supplementary Document 7, Supplementary
Digital Content 1, http://links.lww.com/CTG/A892).

PatientswithCP. Seventy scans of PDACcases and 140matching
scans of controls were included (Figure 1). 35.7% cases with CP
were stages I–II, 1.4% stage III, 28.6% stage IV, and 34.3% stage
unknown at the time of diagnosis (Table 1). Higher frequencies of
Medicare and private pay insurance coverage, ever tobacco usage,
and alcohol abuse were observed in controls than in cases, al-
though the differences were not statistically significant at the 95%
level. Scan indications and associated diagnosis can be found in
Supplemental Document 7 (see SupplementaryDigital Content 1,
http://links.lww.com/CTG/A892).
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Pancreas segmentation

The average of dice similarity coefficient from the automated
pancreas segmentation algorithm was 83.25 (SD 5.19). Two ex-
ample images with automated pancreas segmentation and man-
ual group reference segmentation are presented in Figure 2.

Model training and validation

Patients without CP. For NCA, 5 QIFs were selected (see Sup-
plementary Document 8, Supplementary Digital Content 1,
http://links.lww.com/CTG/A892). For PCA, 19 principal com-
ponents were formed (see Supplementary Document 9, Supple-
mentary Digital Content 1, http://links.lww.com/CTG/A892).

Tables 2a and 2b summarize the performance measures of the
prediction algorithms based on the QIF selected by NCA and the
principal components formed by PCA, respectively.

Performance based on entire scan window (3 months–3 years before
t0). Accuracy/AUC based on DS2 were 94%/0.98 and 95%/0.99,
respectively, for prediction algorithms developed based on NCA
and PCA, regardless of kernel functions applied. Sensitivity,
specificity, PPV, and NPV based on DS2 were in the ranges of
88%–91%, 96%–98%, 91%–95%, and 94%–96%, respectively,
varying slightly by QIF selection method (NCA vs PCA) and
kernel function used to develop the prediction algorithms. Al-
gorithms developed based on PCA had better performance than

Figure 1. Consort diagram. CT, computed tomography; PDAC, pancreatic ductal adenocarcinoma.
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Table 1. Characteristics of study subjects at baseline by CP diagnosis and PDAC case/control status, n (%) unless otherwise stated

Patient characteristics

Patients without CP Patients with CP

Cases (N 5 277) Controls (N 5 554) P value Cases (N 5 70) Controls (N 5 140) P value

Age, mean (SD), years 70.8 (10.33) 70.8 (10.32) NA 68.4 (9.20) 68.3 (9.19) NA

Female 140 (50.5) 280 (50.5) NA 31 (44.3) 62 (44.3) NA

Race/ethnicity NA NA

Non-Hispanic White 131 (47.3) 262 (47.3) 33 (47.1) 66 (47.1)

African American 51 (18.4) 102 (18.4) 19 (27.1) 38 (27.1)

Hispanic 74 (26.7) 148 (26.7) 16 (22.9) 32 (22.9)

Asian and Pacific Islanders 21 (7.6) 42 (7.6) 2 (2.9) 4 (2.9)

Insurances (mutually inclusive)

Commercial 88 (31.8) 179 (32.3) 0.94 31 (44.3) 48 (34.3) 0.27

Medi-CAL 9 (3.2) 19 (3.4) 0.89 0 (.) 9 (6.4) 1.00

Medicare 185 (66.8) 370 (66.8) 1.00 39 (55.7) 89 (64.6) 0.12

Private pay 104 (37.5) 238 (43) 0.12 16 (22.9) 41 (39.3) 0.48

Years of health plan enrolment, mean (SD) 27.5 (16.27) 25.5 (13.58) 0.051 19.7 (11.70) 20.5 (13.72) 0.61

Tobacco use 0.14 0.67

Ever 157 (57.1) 286 (51.7) 40 (57.1) 96 (68.6)

Never 118 (42.9) 267 (48.3) 30 (42.9) 43 (30.7)

Unknown 2 (.) 1 (.) 0 (.) 1 (0.7)

Diagnosis of alcohol abuse in the past year 13 (4.7) 28 (5.1) 0.91 18 (25.7) 29 (41.4) 0.25

Diagnosis of alcohol abuse any time in the

past

30 (10.8) 51 (9.2) 0.61 38 (27.1) 51 (36.4) 0.14

Family history of pancreatic cancer 18 (6.5) 5 (0.9) ,0.001 3 (4.3) 7 (5.0) 0.62

BMI 0.88 0.42

Underweight (,18.5) 7 (2.5) 22 (4) 4 (5.7) 13 (9.3)

Normal weight (18.5–24.9) 79 (28.5) 166 (30) 29 (41.4) 54 (38.6)

Overweight (25–29.9) 100 (36.1) 187 (33.8) 21 (30.0) 30 (21.4)

Obese (301) 86 (31) 169 (30.5) 16 (22.9) 39 (27.9)

Unknown 5 (1.8) 10 (1.8) 0 (.) 4 (2.9)

Weight change in 1 yr(kg) 0.07 0.10

Median (IQR) 22.7 (25.4 to 0.9) 22.1 (24.5 to 1.5) 22.3 (27.3 to 0.9) 21.4 (26.5 to 1.8)

#26 kg 50 (18.1) 89 (16.1) 18 (25.7) 35 (25.0)

.26 and#24 kg 23 (8.3) 38 (6.9) 5 (7.1) 11 (7.9)

.24 and#22 kg 34 (12.3) 71 (12.8) 10 (14.3) 13 (9.3)

.22 and,2 kg 87 (31.4) 167 (30.1) 22 (31.4) 39 (27.9)

$2 and ,4 kg 22 (7.9) 44 (7.9) 5 (7.1) 9 (6.4)

$4 kg 14 (5.1) 60 (10.8) 3 (4.3) 18 (12.9)

Unknown 47 (17) 85 (15.3) 7 (10.0) 15 (10.7)

Diabetes 122 (44) 191 (34.5) 0.004 34 (48.6) 74 (52.9) 0.47

Biliary tract disease 58 (20.9) 114 (20.6) 0.62 31 (44.3) 83 (59.3) 0.47

Depression 87 (31.4) 181 (32.7) 0.78 22 (31.4) 73 (52.1) 0.27

Deep vein thrombosis 9 (3.2) 37 (6.7) 0.08 17 (24.3) 22 (15.7) 0.30

Gallstone disorders 47 (17) 98 (17.7) 0.89 20 (28.6) 68 (48.6) 0.68

Hereditary cancer syndromes 37 (13.4) 89 (16.1) 0.35 21 (30.0) 32 (22.9) 0.81

Peptic ulcer 5 (1.8) 16 (2.9) 0.25 8 (11.4) 37 (26.4) 0.30
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Table 1. (continued)

Patient characteristics

Patients without CP Patients with CP

Cases (N 5 277) Controls (N 5 554) P value Cases (N 5 70) Controls (N 5 140) P value

AJCC stage at diagnosis NA NA

I 36 (13.0) 6 (8.6)

II 60 (21.7) 19 (27.1)

III 21 (7.6) 1 (1.4)

IV 102 (36.8) 20 (28.6)

Unknowna 58 (21.0) 24 (34.3)

T Stage at diagnosis NA NA

T0 1 (0.4) 0 (.)

T1 15 (5.4) 0 (.)

T2 67 (24.2) 11 (15.7)

T3 63 (22.7) 21 (30.0)

T4 38 (13.7) 8 (11.4)

TX 60 (21.7) 16 (22.9)

Unknowna 33 (11.9) 14 (20.0)

aUnknown includes not recorded or unavailable (e.g., diagnosed outside of Kaiser Permanente Southern California). Cancer stage is not recorded for cases diagnosed in
2018.
AJCC, American Joint Committee on Cancer; BMI, body mass index; CP, chronic pancreatitis; IQR, interquartile range; NA, not available; PDAC, pancreatic ductal
adenocarcinoma.

Figure 2. Two example images with automated pancreas segmentation (blue) and manual group truth segmentation (red).
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those of NCA for all measures, regardless of kernel functions
applied.

Performance based on 5 individual subtime windows. The perfor-
mance within each of the time windows remained high for both

NCA and PCA methods. For the PCA method, the lowest sen-
sitivity, specificity, PPV, NPV, accuracy, and AUC were 82%,
93%, 87%, 91%, 93%, and 0.97, respectively. QIFs within 2–3
years before t0 also had very high predictive power (accuracy
95%–98%; AUC 0.99–1.00).

Table 2. Performance of conditional SVM classifier with various kernel functions based on (a) the 5 features selected byNCA and (b) the 19

principal components formed by PCA for patients without chronic pancreatitis

(a) Data set Kernel Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) AUC

Training:

DS1 (3 mo–3 yr)

N 5 414

Gaussian 97.1 (94.3–99.9) 98.6 (97.1–100.0) 97.1 (94.3–99.9) 98.6 (97.1–100.0) 98.1 (96.7–99.4) 0.998 (0.993–1.000)
Linear 94.9 (91.3–98.6) 97.1 (95.1–99.1) 94.2 (90.4–98.1) 97.5 (95.6–99.3) 96.4 (94.6–98.2) 0.994 (0.985–1.000)
Sigmoid 91.3 (86.6–96.0) 96.7 (94.6–98.8) 93.3 (89.1–97.5) 95.7 (93.3–98.1) 94.9 (92.8–97.0) 0.983 (0.967–0.998)

Validation:

DS2 (3 mo–3 yr)

N 5 417

Gaussian 89.2 (84.1–94.4) 95.7 (93.3–98.1) 91.2 (86.4–95.9) 94.7 (92.0–97.3) 93.5 (91.2–95.9) 0.977 (0.960–0.995)
Linear 88.5 (83.2–93.8) 96.4 (94.2–98.6) 92.5 (88.0–97.0) 94.4 (91.7–97.0) 93.8 (91.4–96.1) 0.984 (0.969–0.999)
Sigmoid 87.8 (82.3–93.2) 97.5 (95.6–99.3) 94.6 (90.7–98.5) 94.1 (91.4–96.8) 94.2 (92.0–96.5) 0.978 (0.960–0.995)

Validation

(3–6 mo)

N 5 87

Gaussian 86.2 (73.7–98.8) 87.9 (79.5–96.3) 78.1 (63.8–92.4) 92.7 (85.9–99.6) 87.4 (80.4–94.3) 0.955 (0.900–1.000)
Linear 89.7 (78.6–100.0) 93.1 (86.6–99.6) 86.7 (74.5–98.8) 94.7 (88.9–100.0) 92.0 (86.2–97.7) 0.980 (0.943–1.000).
Sigmoid 82.8 (69.0–96.5) 94.8 (89.1–100.0) 88.9 (77.0–100.0) 91.7 (84.7–98.7) 90.8 (84.7–96.9) 0.943 (0.882–1.000)

Validation

(6–12 mo)

N 5 102

Gaussian 91.2 (81.6–100.0) 100.0 (100.0–100.0) 100.0 (100.0–100.0) 95.8 (91.1–100.0) 97.1 (93.8–100.0) 0.996 (0.980–1.000)
Linear 88.2 (77.4–99.1) 100.0 (100.0–100.0) 100.0 (100.0–100.0) 94.4 (89.2–99.7) 96.1 (92.3–99.8) 0.996 (0.980–1.000)
Sigmoid 91.2 (81.6–100.0) 98.5 (95.7–100.0) 96.9 (90.8–100.0) 95.7 (91.0–100.0) 96.1 (92.3–99.8) 0.996 (0.980–1.000)

Validation

(12–18 mo)

N 5 81

Gaussian 92.6 (82.7–100.0) 96.3 (91.3–100.0) 92.6 (82.7–100.0) 96.3 (91.3–100.0) 95.1 (90.3–99.8) 0.967 (0.919–1.000)
Linear 81.5 (66.8–96.1) 94.4 (88.3–100.0) 88.0 (75.3–100.0) 91.1 (83.6–98.5) 90.1 (83.6–96.6) 0.973 (0.928–1.000)
Sigmoid 88.9 (77.0–100.0) 96.3 (91.3–100.0) 92.3 (82.1–100.0) 94.5 (88.5–100.0) 93.8 (88.6–99.1) 0.976 (0.935–1.000)

Validation

(18–24 mo)

N 5 90

Gaussian 83.3 (70.0–96.7) 98.3 (95.1–100.0) 96.2 (88.8–100.0) 92.2 (85.6–98.8) 93.3 (88.2–98.5) 0.981 (0.946–1.000)
Linear 90.0 (79.3–100.0) 96.7 (92.1–100.0) 93.1 (83.9–100.0) 95.1 (89.7–100.0) 94.4 (89.7–99.2) 0.974 (0.934–1.000)
Sigmoid 83.3 (70.0–96.7) 98.3 (95.1–100.0) 96.2 (88.8–100.0) 92.2 (85.6–98.8) 93.3 (88.2–98.5) 0.979 (0.943–1.000)

Validation

(24–36 mo)

N 5 57

Gaussian 94.7 (84.7–100.0) 94.7 (87.6–100.0) 90.0 (76.9–100.0) 97.3 (92.1–100.0) 94.7 (88.9–100.0) 0.990 (0.959–1.000)
Linear 94.7 (84.7–100.0) 97.4 (92.3–100.0) 94.7 (84.7–100.0) 97.4 (92.3–100.0) 96.5 (91.7–100.0) 0.997 (0.980–1.000)
Sigmoid 94.7 (84.7–100.0) 100 (100.0–100.0) 100.0 (100.0–100.0) 97.4 (92.5–100.0) 98.2 (94.8–100.0) 0.997 (0.980–1.000)

Training:

DS1 (3 mo–3 yr)

N 5 414

Gaussian 96.4 (93.3–99.5) 98.9 (97.7–100.0) 97.8 (95.3–100.0) 98.2 (96.6–99.8) 98.1 (96.7–99.4) 0.996 (0.988–1.000)
Linear 96.4 (93.3–99.5) 98.2 (96.6–99.8) 96.4 (93.3–99.5) 98.2 (96.6–99.8) 97.6 (96.1–99.1) 0.996 (0.988–1.000)
Sigmoid 94.9 (91.3–98.6) 98.2 (96.6–99.8) 96.3 (93.2–99.5) 97.5 (95.6–99.3) 97.1 (95.5–98.7) 0.995 (0.988–1.000)

Validation:

DS2 (3 mo–3 yr)

N 5 417

Gaussian 89.9 (84.9–94.9) 97.5 (95.6–99.3) 94.7 (90.9–98.5) 95.1 (92.6–97.6) 95.0 (92.9–97.1) 0.988 (0.975–1.000)
Linear 91.4 (86.7–96.0) 97.5 (95.6–99.3) 94.8 (91.0–98.5) 95.8 (93.4–98.1) 95.4 (93.4–97.4) 0.987 (0.973–1.000)
Sigmoid 89.2 (84.1–94.4) 97.8 (96.1–99.5) 95.4 (91.8–99.0) 94.8 (92.2–97.3) 95.0 (92.9–97.1) 0.986 (0.972–1.000)

Validation

(3–6 mo)

N 5 87

Gaussian 93.1 (83.9–100.0) 94.8 (89.1–100.0) 90.0 (79.3–100.0) 96.5 (91.7–100.0) 94.3 (89.4–99.1) 0.974 (0.932–1.000)
Linear 93.1 (83.9–100.0) 93.1 (86.6–99.6) 87.1 (75.3–98.9) 96.4 (91.6–100.0) 93.1 (87.8–98.4) 0.976 (0.935–1.000)
Sigmoid 93.1 (83.9–100.0) 94.8 (89.1–100.0) 90.0 (79.3–100.0) 96.5 (91.7–100.0) 94.3 (89.4–99.1) 0.973 (0.930–1.000)

Validation

(6–12 mo)

N 5 102

Gaussian 94.1 (86.2–100.0) 97.1 (93.0–100.0) 94.1 (86.2–100.0) 97.1 (93.0–100.0) 96.1 (92.3–99.8) 0.994 (0.974–1.000)
Linear 97.1 (91.4–100.0) 98.5 (95.7–100.0) 97.1 (91.4–100.0) 98.5 (95.7–100.0) 98.0 (95.3–100.0) 0.993 (0.972–1.000)
Sigmoid 97.1 (91.4–100.0) 98.5 (95.7–100.0) 97.1 (91.4–100.0) 98.5 (95.7–100.0) 98.0 (95.3–100.0) 0.992 (0.971–1.000)

Validation

(12–18 mo)

N 5 81

Gaussian 85.2 (71.8–98.6) 98.1 (94.6–100.0) 95.8 (87.8–100.0) 93.0 (86.4–99.6) 93.8 (88.6–99.1) 0.979 (0.941–1.000)
Linear 81.5 (66.8–96.1) 98.1 (94.6–100.0) 95.7 (87.3–100.0) 91.4 (84.2–98.6) 92.6 (86.9–98.3) 0.980 (0.942–1.000)
Sigmoid 81.5 (66.8–96.1) 98.1 (94.6–100.0) 95.7 (87.3–100.0) 91.4 (84.2–98.6) 92.6 (86.9–98.3) 0.979 (0.941–1.000)

Validation

(18–24 mo)

N 5 90

Gaussian 83.3 (70.0–96.7) 98.3 (95.1–100.0) 96.2 (88.8–100.0) 92.2 (85.6–98.8) 93.3 (88.2–98.5) 0.992 (0.968–1.000)
Linear 90.0 (79.3–100.0) 98.3 (95.1–100.0) 96.4 (89.6–100.0) 95.2 (89.8–100.0) 95.6 (91.3–99.8) 0.988 (0.961–1.000)
Sigmoid 80.0 (65.7–94.3) 98.3 (95.1–100.0) 96.0 (88.3–100.0) 90.8 (83.7–97.8) 92.2 (86.7–97.8) 0.989 (0.963–1.000)

Validation

(24–36 mo)

N 5 57

Gaussian 94.7 (84.7–100.0) 100.0 (100.0–100.0) 100.0 (100.0–100.0) 97.4 (92.5–100.0) 98.2 (94.8–100.0) 0.999 (0.987–1.000)
Linear 94.7 (84.7–100.0) 100.0 (100.0–100.0) 100.0 (100.0–100.0) 97.4 (92.5–100.0) 98.2 (94.8–100.0) 0.999 (0.987–1.000)
Sigmoid 94.7 (84.7–100.0) 100.0 (100.0–100.0) 100.0 (100.0–100.0) 97.4 (92.5–100.0) 98.2 (94.8–100.0) 0.999 (0.987–1.000)

Percent and 95% CI.
AUC, area under the curve; CI, confidence interval; NCA, neighborhood component analysis; NPV, negative predictive value; PCA, principal component analysis; PPV,
positive predictive value; SVM, support vector machine.
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Patients with CP. For NCA, 2 QIFs were selected (see Supple-
mentary Document 8, Supplementary Digital Content 1, http://
links.lww.com/CTG/A892). For PCA, 12 principal components
were formed (see Supplementary Document 9, Supplementary
Digital Content 1, http://links.lww.com/CTG/A892). Sensitivity,
specificity, PPV, NPV, and accuracy measures were all 100%
(95% confidence interval [CI] 100%–100%) and AUC 1.00 (95%
CI 1.00–1.00) for both NCA and PCA, regardless of kernel
functions used to develop the prediction algorithms.

Sensitivity analysis

When the developed algorithms were applied to patients with stage I
cancer in the validation data set (DS2), the sensitivity (0.89, 95% CI
0.74–1.00), specificity (0.97, 0.92–1.00), PPV (0.94, 0.83–1.00), NPV
(0.95, 0.87–1.00), accuracy (0.94, 0.88–1.00), and AUC (0.98,
0.92–1.00 forGaussian and linear kernel functions and0.97, 0.91–1.00
for sigmoid kernel function) were all comparable with the perfor-
mancemeasures reported in the previous section for all patients in the
validation data sets (Table 2b). As expected, the 95% confidence in-
tervals of theperformancemeasureswere larger forpatientswith stage
I cancer compared with those reported in Table 2b (for all patients)
because of the smaller sample size of the sensitivity analysis.

Exploratory analyses

Six and 14 QIFs were selected from EDS1 and EDS2, respectively
(see SupplementaryDocument 6,Tables S1 andS3, Supplementary
Digital Content 1, http://links.lww.com/CTG/A892). Five of the 6
QIFs selected from EDS1 were in the list of QIFs selected from
EDS2. The performance measures between the 2 sets of selected
QIFswere similar (see SupplementaryDocument 6, Tables S2 and
S4, Supplementary Digital Content 1, http://links.lww.com/
CTG/A892). The performancemeasures between the 2 sets of data
were comparable.

Clinical evaluation

In the 19 non-CP PDAC cases with prediagnostic images in 24–36
months, 14 patients, 4 patients, and 1 patient were classified as
having low, medium, and high risk based on the manual review of
the CT images, respectively (Table 3). Similarly, in the 19 matched
controls, an overwhelming majority were believed to have low risk

based on the manual review of the CT images (Table 3). However,
the computer algorithms only mistakenly predicted 1 patient in
cases and correctly classified all the controls.

DISCUSSION
In this study, we developed and validated automated computer al-
gorithms to predict PDAC solely based onQIFs of prediagnostic CT
scans for patients with CP and non-CP patients separately. Our
results showed that QIFs of prediagnostic scans can accurately pre-
dict PDAC in 3–36months before diagnosis. Interestingly, when the
validationwas stratifiedby timing of scan in relation to diagnosis, the
performance seemed to be maintained in all the periods examined
before cancer diagnosis. The QIF-based algorithm had excellent
ability to predict PDAC even for scans from 24 to 36 months before
cancer diagnosis.Amanual assessment of the scans in 24–36months
before PDACdiagnosis revealed that an overwhelmingmajority had
low risk of PDAC, yet the computer algorithmwas able to predict the
outcome correctly, except for 1 case who had mild ductal promi-
nence and loss of lobulation in the pancreas head.

A major barrier for early detection in pancreatic cancer is the
inability to reliably identify precursor lesions based on conventional
imaging. Pancreatic intraepithelial neoplasia (PanIN) III orhigh-grade
dysplasia are histologic findings not typically visible on cross-sectional
imaging (41). Previous studies have identified specific abnormalities
that can be identified in up to 50% of cancer cases before diagnosis of
PDAC including main duct dilatation, atrophy, and duct stricture
(4,42,43). However, such findings lack sensitivity and in many cases,
are subject to interpreter variability. Therefore, a systematic approach
ofdirect imaginganalysis that applies objective assessmentof imaging-
based parameters provides a promising opportunity to identify
imaging-based signatures of early pancreatic cancer. The performance
of the algorithms was high in all the time windows being studied.

Radiomics has been applied in the diagnosis, prediction, and
prognosis of other cancer types (e.g., lung cancer, lung nodule and
breast cancer) (44).While radiomics has beenapplied for prognosis
in PDAC (7–12), very little progress has been made in early de-
tection. Using 225 training and 125 validation images, Chu et al.
differentiated CT scans of patients with PDAC and healthy con-
trols with a sensitivity of 100% and specificity of 98.5% (18).
However, in the study by Chu, the images being analyzed were

Table 3. A blinda manual review of prediagnostic CT images of patients without chronic pancreatitis in 24–36 months before PDAC

diagnosis and the CT images of the matched controls by case-control status and computer labels (high risk vs low risk)b

Manually

assignedc

risk of PDAC

Cases (n5 19) Controls (n 5 19)

Labeled by computer as

having high risk (n5 18)

Labeled by computer as

having low risk (n 5 1) Total

Labeled by computer as

having high risk (n 5 0)

Labeled by computer as

having low risk (n5 19) Total

Low 14 0 14 0 16 16

Median 3 1 4 0 2 2

High 1 0 1 0 0 0

Nondiagnostic 0 0 0 0 1 1

CT, computed tomography; PDAC, pancreatic ductal adenocarcinoma.
aReviewer was not informed about the computer labels or PDAC case/control status at the time of review.
bComputer label was assigned according to the prediction algorithm developed with Gaussian kernel function and principal component analysis.
cPatients were classified as having low risk if they only had diffuse atrophy, smaller cyst, simple cyst, loss of normal lobulation, or mild diffuse duct dilatation/
prominence or did not have any obviousmorphological features. Patients with complex cyst, cyst larger than 2 cm, or loss of normal lobulation of contour or having 2 or
more low-risk featureswere considered havingmedium risk. Thosewith solidmass, focal abnormal enhancement, focal duct stricture, or focal/segmental atrophywere
deemed high risk.
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obtained after diagnosis (mean tumor size 4.1 cm). In addition, the
pancreas boundaries were manually segmented (18), and thus,
utility of the algorithm in clinical operation is limited. In the cur-
rent study, prediagnostic scans were applied, and segmentation of
the pancreas was computerized.

A key distinction related to the assessment of prediagnostic im-
aging is whether the automated QIF algorithms were classifying
cancer risk based on features readily visible on the images or in-
corporating additional elements from the data contained within the
images. What we observed in this study is that relying on human
assessmentof theprediagnosticCT images obtained2–3years before
cancerdiagnosisby anexpert body-image radiologistwith15years of
experience failed to distinguish patients with cancer and healthy
patients at the level of performance obtained by the radiomics-based
algorithm, suggesting that the QIF provide additional information
beyond identification of established radiographic findings.

This study has several strengths. First, algorithms were developed
separately forpatientswithandwithoutCP toallow formoreaccurate
prediction, given the expected morphological differences between
patients with CP and non-CP patients. Second, we implemented a
pancreas segmentation algorithm and series of quantitative imaging
features that were previously validated. Therefore, the developed
classifiers can potentially be widely implemented across healthcare
systems. Third, we relied on prediagnostic images 3 months–3 years
before cancer diagnosis. Thus, the developed algorithms have the
potential topredictpancreatic cancer ina time frame thatwouldallow
for sufficient lead time for intervention to affect the disease course.
Forth, we applied 2 machine learning approaches to select the most
influential radiomic features. Although bothmethods worked well, it
seems that algorithms based on principal components formed by
PCA are more accurate. This is likely to be the result of the more
inclusive nature of PCA compared with NCA. Finally, the compar-
ison between blinded expert human review and automated QIF-
based algorithmhelped demonstrate the potential added value of this
approach beyond identification of established abnormalities of the
pancreatic parenchymal or duct system.

This study had several limitations. First, although the images
being used in the analyses were at least 3 months before cancer
diagnosis, a small number of scans may contain visible tumors,
which may deform the shape of the pancreas and thus negatively
affect the performance of the final algorithms. A few (,5) images
were manually removed because of visible tumors. However, ad-
ditional images with visible tumors may still have been present.
Second, the number of CP cases is much smaller compared with
that of non-CP cases. The high performance in this group of pa-
tients could be an overestimation of the true performance because
of the small sample size. However, our approach demonstrated the
possibility of successful classification in this group of patients.
Validation of the developed algorithms in a larger group of patients
with CP is warranted in the future. Third, we did not consider
higher order statistics QIF (e.g., Gabor wavelet transformation) in
this study. Previously, studies have shown thatmappingQIFs into a
higher order feature space can further improve accuracy (13,15).
Fourth, cases and controls were not matched by the indications for
the scans. Fifth, the manual assessment for PDAC risk was only
performed for scans in 2–3 years before the index date and inter-
rater reliabilitywas not assessed. Finally, this study lacks an external
validation, in which CT images from another health care may be
used to test the robustness of our algorithms.

In summary, the radiomics-based automated algorithms provide
a method to detect PDAC as early as 2–3 years before cancer

diagnosis. The algorithm has the potential to be used for future early
detection protocols for pancreatic cancer. A prospective validation
study atmultiple institutions in the future could provide evidence on
generalizability. Future studies could expand these analyses by de-
veloping and evaluating radiomics-based algorithms to detect early
signals by localization and histopathology of pancreatic cancer (45).
Future research is required to understand feasibility, challenges, and
cost-effectiveness of such an implementation.
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Study Highlights

WHAT IS KNOWN

3 Pancreatic cancer is the third leading cause of cancer deaths
among men and women in the United States.

3 Early detection of pancreatic ductal adenocarcinoma (PDAC)
is difficult owing to lack of specific symptoms or established
screening.

WHAT IS NEW HERE

3 Quantitative imaging features (QIFs) of prediagnostic
computed tomography (CT) scans can accurately predict
PDAC in 3–36months before diagnosis (accuracy 94%–95%
and area under the curve [AUC] 0.98–0.99 for patients
without chronic pancreatitis and accuracy 100% and AUC
1.00 for patients with chronic pancreatitis).

3 QIFs on CT examinations within 2–3 years before cancer
diagnosis also had very high predictive accuracy (accuracy
95%–98%; AUC 0.99–1.00).

3 The QIF-based algorithm outperformed manual rereview of
images for the determination of PDAC risk.
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