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In macromolecular X-ray crystallography, typical data sets

have substantial multiplicity. This can be used to calculate the

consistency of repeated measurements and thereby assess data

quality. Recently, the properties of a correlation coefficient,

CC1/2, that can be used for this purpose were characterized

and it was shown that CC1/2 has superior properties compared

with ‘merging’ R values. A derived quantity, CC*, links data

and model quality. Using experimental data sets, the

behaviour of CC1/2 and the more conventional indicators

were compared in two situations of practical importance:

merging data sets from different crystals and selectively

rejecting weak observations or (merged) unique reflections

from a data set. In these situations controlled ‘paired-

refinement’ tests show that even though discarding the weaker

data leads to improvements in the merging R values, the

refined models based on these data are of lower quality. These

results show the folly of such data-filtering practices aimed at

improving the merging R values. Interestingly, in all of these

tests CC1/2 is the one data-quality indicator for which the

behaviour accurately reflects which of the alternative data-

handling strategies results in the best-quality refined model.

Its properties in the presence of systematic error are

documented and discussed.
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1. Introduction

Since the number of reflections in a crystallographic experi-

ment is high, indicators of aggregated statistical properties are

needed. For decades, the ‘merging’ R value,

Rmerge ¼

P
i

Pni

j¼1

jIjðhklÞ � IðhklÞj

P
i

Pni

j¼1

IjðhklÞ

;

has been used almost exclusively for this purpose. This

normalized linear residual was defined (Arndt et al., 1968) ad

hoc to measure the consistency of measurements made with

the first two-dimensional detectors by utilizing the multiplicity

(also called redundancy) of observations of the unique

reflections. The formula sums the absolute deviations of

intensities of ni observations of unique reflections from their

averages and normalizes using the sum of the intensities. As a

relative measure of deviation, it can be calculated as an overall

quantity for a data set, but also as a function of resolution.

Later, it was shown (Diederichs & Karplus, 1997) that each

term of the numerator has to be modified by a factor of

[ni/(ni � 1)]1/2 to give a result that is independent of the
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average multiplicity. The resulting quantity is called Rmeas (or

the redundancy-independent merging R, Rr.i.m.; Weiss, 2001)

and reports on the consistency of the measured observations.

It was also realised that a higher multiplicity of observations

results in the merged data being of higher quality than the

individual measurements, so a distinct statistic, Rmrgd, was

introduced to assess the merged data quality (Diederichs &

Karplus, 1997). Thereafter, it was shown that the quality of the

merged data could also be estimated by introducing an addi-

tional factor of 1/ni
1/2 into each term of the Rmeas numerator

(Weiss, 2001), as this accounts for the expected increase in

accuracy associated with averaging ni measurements. The

resulting quantity is called Rp.i.m. (the precision-indicating

merging R; Weiss, 2001).

Recently, we (Karplus & Diederichs, 2012) and Evans

(2011) have suggested that the Pearson correlation coefficient

of two ‘half’ data sets (i.e. each derived by averaging half of the

observations for a given reflection) might be better suited than

merging R factors for assessing data quality. In our work, we

designated this quantity CC1/2 and conclusively showed that in

many ways it has a better statistical foundation than merging

R values (Karplus & Diederichs, 2012) and that in particular

it provides a direct assessment of the relative proportions to

which signal and noise contribute to the variation in the data

in a given resolution shell. Furthermore, we introduced a

quantity termed CC*, defined as

CC� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CC1=2

1þ CC1=2

s
: ð1Þ

CC* (with an associated uncertainty) is an experimental

estimate of what could be called CCtrue, the correlation of the

final merged data with the underlying true values of these

quantities. CC* is thus an upper limit for CCwork and CCfree

from a properly refined model, where the latter are correlation

coefficients between intensities calculated from the model and

those obtained from the experiment. CC* is limiting because if

the intensities calculated from a model match the experi-

mental data better than the (unknown) true intensities do, this

implies that the model is overfitted, fitting not just the signal

but also the noise that is in the data. The relationships between

these correlation coefficients are schematically summarized in

Fig. 1.

Any scientific experiment entails data processing, which can

include outlier detection and rejection. In crystallography,

common practices include systematically rejecting certain

subsets of data in order to ‘improve’ the resulting merged data

set. The kinds of data that are sometimes rejected are whole

data sets, high-resolution shells, unique reflections in the final

reduced data set and single observations before merging or

combinations thereof. While these practices do serve to

improve the merging R-value statistics associated with the

data, as far as we are aware little effort has been made to

assess how these procedures impact the quality of the model

that is produced by refinement against the data, which in our

view is the single outcome that matters.

The only such study of which we are aware is our recent

work using a novel ‘paired-refinement’ strategy to show that

the inclusion of often-rejected weak data in high-resolution

shells significantly improves the quality of the refined models

(Karplus & Diederichs, 2012). Paired refinement means that a

starting model is refined using the same refinement protocol

against both a full data set and an (in some way) truncated

version of the full data set. The resulting two models are then

compared in terms of R values (Rwork, Rfree) to judge which

model is better. Importantly, the comparison of R values is

only meaningful when the truncated data set is also used to

calculate Rwork and Rfree of the model that was refined against

the full data set.

For our test cases, paired refinements indicated that

including data to the resolution at which CC1/2 was in the

range 0.1–0.2 led to an improved model, even though at these

resolutions the traditionally used statistics were well beyond

the conventional limits (the limiting signal-to-noise ratios

were near 0.3–0.6 and Rmeas was in

excess of 300%). Interestingly, this

CC1/2 range is a reasonable match to the

value of 0.143 which was proposed in

the field of electron microscopy for a

quantity (FSC; Fourier shell correla-

tion) related to CC1/2 as an appropriate

limit for discarding data because they

correspond to a CC* value of 0.5

(Rosenthal & Henderson, 2003).

Although this value indeed seems to be

a reasonable cutoff for X-ray data for

the test cases we studied, we resist

generalizing this point and suggest that

the high-resolution cutoff is in general

better decided using the ‘paired-refine-

ment’ strategy (Karplus & Diederichs,

2012). The latter approach has two main

advantages: firstly, it allows for the

possibility that individual structures or
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Figure 1
Scheme documenting the relationships of correlation coefficients calculated between squared
observed and calculated amplitudes. This figure was adapted from Diederichs & Karplus (2013).



data sets may behave differently, and secondly, it allows for the

possibility that as refinement programs improve they may be

able to more fully extract structural information from weak

data.

Given the paired-refinement technique and the novel

correlation coefficient-based data-quality indicators, it is now

possible to systematically investigate the impacts of other

data-selection practices mentioned above. Here, we document

further properties of CC1/2 and CC* and also explore how the

various debatable ‘data-filtering’ procedures impact these new

and the conventional R-value-based statistics, as well as model

quality.

2. Materials and methods

2.1. Data sets

Crystals of cysteine dioxygenase (CDO) were grown and

soaked as described previously (Simmons et al., 2008). Data

frames were collected on beamline 5.0.1 at the Advanced

Light Source.

The data frames were processed and scaled with XDS (v.

December 6, 2010; Kabsch, 2010a,b) and data sets were

merged with XSCALE using default parameters. The space

group is P43212, with average unit-cell parameters a = b = 57.5,

c = 122.2 Å.

2.2. Quality indicators

In addition to data-quality R values, it is conventional to

quantify the signal-to-noise ratio of the merged intensities,

given as hI/�i. We used a custom program HIRESCUT to

evaluate Rmeas, hI/�i, CC1/2 and CC* as a function of resolu-

tion, a feature that has since been merged into XDS and

XSCALE. Furthermore, we added functionality to

HIRESCUT that allows the rejection of single observations or

unique reflections according to their I/� ratio.

The CCP4 (Winn et al., 2011) program SFTOOLS was used

to obtain correlation coefficients between experimental

intensities and F 2
calc from the model.

2.3. Refinement

To obtain a model suitable for refinement, we used the PDB

entry representing a related structure (PDB entry 2b5h;

Simmons et al., 2006); the S-cysteine-persulfenate ligand was

added guided by a difference Fourier map. H-atom positions

were constructed and the resulting PDB file was refined in

phenix.refine (v.1.7.1; Adams et al., 2010) using default para-

meters for the weights and number of macrocycles and

updating the solvent model in every cycle.

3. Results and discussion

The main goal of this work is to consider three common

questions that arise as part of data reduction and explore how

the new correlation-coefficient-based data-quality measures

behave and what the paired-refinement strategy indicates

about the choices that will deliver the best refined models. The

first of these scenarios is that of having a strong data set and a

weaker data set, and we ask whether it is wise to merge the

two data sets or to just use the stronger one. The other two

scenarios have to do with practices that are not considered

good practice by experts but are sometimes used to improve

data-reduction statistics by deleting selected weak reflections.

3.1. Can strong data be improved by merging with a weaker
data set?

This set of analyses uses three data sets (CDO3, CDO4 and

CDO5, each corresponding to 90� of rotation) collected from

different crystals that were grown and handled equivalently.

According to all data-quality indicators [CC1/2, Rmeas and

hI/�(I)i] CDO3 is the best data set (Table 1), with CDO4 and

CDO5 being similar to each other and of lower quality than

CDO3. These data sets were merged in all possible combi-

nations, and refinement in phenix.refine, both isotropically and

anisotropically, was carried out against the resulting data sets

using the same test set of reflections and the same high-

resolution limit of 1.57 Å.
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Table 1
Statistics of single and merged CDO data sets.

The resolution range is 50–1.57 Å; values in parentheses are for the highest shell (1.61–1.57 Å). CC statistics are only given for the highest resolution shell because
the overall CC values are always close to 1 and thus are uninformative. For CC1/2, CC* and CCwork (based upon �2000 reflection pairs per shell) the values in the
lower resolution shells are always higher than those in the highest resolution shell. This is not always true for CCfree, which owing to the smaller set of reflections
(�100 reflection pairs in each shell) has a standard error (�0.1) that is much larger than that of CCwork (�0.02).

Data-set name CDO3 CDO4 CDO5 CDO3+4 CDO3+5 CDO4+5 CDO3+4+5

Data processing
No. of observations 201160 (10837) 155771 (2389) 200117 (10838) 358117 (13657) 401270 (21717) 357787 (13655) 558273 (24518)
No. of unique reflections 29424 (2008) 26807 (1316) 27939 (1982) 29431 (2013) 29433 (2013) 28195 (1995) 29433 (2013)
Completeness (%) 99.9 (98.7) 93.8 (79.3) 95.7 (98.0) 99.9 (98.8) 99.9 (98.8) 95.7 (98.0) 99.9 (98.8)
Rmeas (%) 10.2 (294.0) 23.1 (431.1) 26.0 (395.6) 15.0 (314.7) 15.9 (332.6) 26.0 (401.4) 15.9 (339.8)
hI/�i 16.24 (0.64) 10.68 (0.21) 9.88 (0.19) 13.63 (0.69) 14.12 (0.87) 13.76 (0.49) 14.60 (0.91)
CC1/2 in highest shell; No. of pairs 0.208; 1986 0.058; 842 0.127; 1961 0.175; 2006 0.223; 2008 0.154; 1992 0.222; 2008
CC* in highest shell 0.587 0.331 0.475 0.546 0.603 0.517 0.602

Isotropic refinement
Highest shell CCwork, CCfree 0.541, 0.581 0.256, 0.131 0.383, 0.425 0.522, 0.487 0.529, 0.596 0.432, 0.385 0.536, 0.526
Overall Rwork, Rfree 0.186, 0.219 0.211, 0.252 0.198, 0.236 0.185, 0.221 0.185, 0.216 0.199, 0.237 0.186, 0.221
R.m.s.d. from ideality: bonds (Å)/angles (�) 0.015/1.57 0.016/1.53 0.016/1.51 0.015/1.55 0.015/1.53 0.015/1.51 0.015/1.54



Using Table 1, we can investigate the question of how

strongly Rmeas, CC1/2 and hI/�(I)i are associated with the

quality of the resulting model. We find examples of both

improvement and deterioration of the merged data set

depending on its constituent data sets.

The increased value of Rmeas, if taken as an indicator of data

quality, would suggest that merging of CDO3 (Rwork/Rfree =

0.186/ 0.219) with either CDO4 or CDO5 should significantly

decrease the quality of the resulting data set, but in fact, based

on the overall Rwork/Rfree, the model quality slightly decreases

for CDO3+4 (Rwork/Rfree = 0.185/0.221) but slightly improves

for CDO3+5 (Rwork/Rfree = 0.185/0.216). However, the

comparison of model R values in this way is not really

meaningful, since they are calculated against different data

sets. This problem is overcome by the paired-refinement

technique (Table 2), which unambiguously confirms that the

model obtained by refinement against CDO3+5 fits data set

CDO3 better than the original model obtained by refinement

against CDO3. Conversely, the paired-refinement technique

confirms that refinement against a merged CDO3+4 data set

does not produce a model that better fits CDO3 than the

original model.

In both cases, CC1/2/CC* correctly predict this result: the

value of CC* in the highest resolution shell is increased

relative to CDO3 for the CDO3+5 data set but not for the

CDO3+4 data set.

In contrast, in the case of hI/�(I)i the overall value

decreases but the value in the highest resolution shell

increases in both cases, so the influence of data set merging

upon model quality is difficult to anticipate.

Merging of the two weak CDO4 and CDO5 data sets yields

a better data set, as revealed by the decreased Rfree (Rwork/

Rfree = 0.199/0.237) of the model refined against it. However,

this model only fits CDO5 better than the original model

refined against CDO5; it does not fit the CDO4 data set better

despite the increased CC*. The explanation in this case is most

likely that CDO4 is less complete, in particular in the highest

resolution shell, than CDO3 and CDO5. Therefore, the caveat

mentioned above, namely that comparison of crystallographic

indicators should be performed against the same data, applies.

In addition, slight non-isomorphism between CDO4 versus

CDO3 and CDO5 is conceivable. In this case in particular, it is

important to use the paired-refinement technique.

We note that in all cases the isotropic CCwork (Table 1) is

significantly worse than the anisotropic value and that the

anisotropic Rfree is lower by 0.5–1.3% than the isotropic Rfree

(Table 1), which indicates that there

is some justification for anisotropic

refinement. However, we decided not to

show the detailed results of anisotropic

refinement since it is not completely

justified: compared with isotropic

refinement, anisotropic refinement

reduced Rwork by about 3%, thus

widening the Rfree–Rwork gap; likewise, a

wider CCwork–CCfree gap is observed

for anisotropic refinement than for

isotropic refinement. This is consistent

with the observation that the aniso-

tropic CCwork reaches or slightly

exceeds CC*, indicating overfitting.

In summary, Rmeas is not a useful

indicator of merged data-set quality,

whereas CC1/2, and to a lesser extent

hI/�(I)i, correctly indicate the direction

of quality change upon merging. CC*

is a meaningful upper limit of CCwork;

CCwork of isotropic models is found to

be significantly lower than CC*,

whereas CCwork of anisotropic models

is slightly higher than CC*. The latter

finding also suggests that sphericity

restraints in anisotropic refinement are
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Table 2
Results (Rwork, Rfree) of pairwise refinements.

Within each row of the table, the same sets of reflections are used. Values in
parentheses are copied from Table 1; values in bold denote improvements in
Rfree of models refined against a merged data set, compared with models
refined against the single data set.

Model refined against

Data set CDO3+4 CDO3+5 CDO4+5 CDO3+4+5

CDO3 0.188, 0.220 0.189, 0.218 Not determined 0.192, 0.221
CDO4 0.227, 0.262 Not determined 0.215, 0.253 0.224, 0.257
CDO5 Not determined 0.215, 0.243 0.200, 0.234 0.211, 0.240
CDO3+4 (0.185, 0.221) Not determined Not determined 0.186, 0.219
CDO3+5 Not determined (0.185, 0.216) Not determined 0.186, 0.219
CDO4+5 Not determined Not determined (0.199, 0.237) 0.211, 0.244

Figure 2
Data statistics for CDO3 (blue), CDO3b (green) and CDO3c (red).
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a desirable feature of a refinement program; currently, only

SHELXL (Sheldrick, 2008) and REFMAC (Murshudov et al.,

2011) support this.

3.2. Does discarding weak observations to improve conven-
tional data-quality statistics actually lead to better models?

It is obvious that by discarding the weakest data it is

possible to create a data set with better conventional statistics

at high resolution [i.e. lower Rmeas and higher hI/�(I)i], so that

a higher resolution cutoff appears to be justified. While we did

not find publications about these practices, we know from

discussion with students and colleagues that they are being

applied, in particular to prevent possible criticism by

reviewers. To assess the impact of such ‘data-filtering’

practices on the CC1/2 statistic and on model quality, we

reprocessed the CDO3 data set to reject either all negative

unique reflections (data set CDO3b) or all negative observa-

tions (data set CDO3c). The high-resolution statistics for the

three data sets (Fig. 2) shows a few interesting features. Firstly,

as expected, both CDO3b and CDO3c have much lower Rmeas

and higher hI/�(I)i in the high-resolution bins. Secondly, more

reflections are rejected in CDO3b, which makes sense because

any reflections having at least a single positive observation will

be included in CDO3c, while even reflections with positive

observations will be deleted from CDO3b whenever the

positive observations are more than offset by negative

observations of the same reflection. Thirdly, the high-

resolution CC1/2 values of both CDO3b and CDO3c are lower

than those of CDO3, with CDO3b showing the greater

decrease.

To assess the relative quality of the models resulting from

refinements against these three data sets applying the paired-

refinement strategy, the same starting model was refined

against each data set and the resulting models were used,

without further refinement, to obtain Rwork and Rfree against

the other two data sets. These R values (Table 3) show that the

model resulting from refinement against all reflections (data

set CDO3) is unambiguously the best model, giving both the

Figure 3
Example demonstrating the possibility of negative CC1/2 when rejecting reflections with negative intensities from a data set. The plots show "1 versus "2

for simulated data having Gaussian noise and no signal (� = 0). (a) 1000 unique reflections, each represented by two observations; no rejections. The
correlation of "1 and "2 is near zero. (b) From the 1000 unique reflections, those with negative intensity ("1 + "2 < 0) were rejected. The resulting
correlation between "1 and "2 is about �0.47. (c) From the 1000 unique reflections, those with negative "1 or negative "2 were rejected, also resulting in
positive (merged) intensity. The resulting correlation between "1 and "2 is near zero.



lowest Rfree and the least overfitting (as judged from the

reduced Rfree–Rwork gap) with all three data sets. Furthermore,

the model refined against data set CDO3b is consistently

better than that resulting from refinement against CDO3c,

even though data set CDO3b has fewer unique reflections

than data set CDO3c. We conclude that data ‘massaging’ or

‘filtering’ by rejecting negative unique reflections, or – even

worse – negative observations, with the purpose of enhancing

Rmeas or hI/�(I)i values is counterproductive and leads to

worse models. This conclusion is entirely consistent with the

concept that the inclusion of weak data (even so weak as to

be negative), when appropriately weighted, improves the

resulting model and that they should not be discarded.

In contrast to the behaviour of Rmeas and hI/�(I)i, the CC1/2

values at high resolution of the CDO3b and CDO3c data sets

actually decrease, paralleling the changes in model quality

even though CC1/2 might be expected to also increase given

that the remaining data are stronger. As is illustrated in Fig. 3,

the data-filtering practices are not producing a typical data set

with a higher signal-to-noise ratio, but are introducing large

systematic errors into the data by skewing the distribution of

reflection intensities from what would be expected for a data

set that has a certain level of signal and random errors. In the

next section, we present an analysis of how systematic errors

such as these can influence the CC1/2 and CC* values.

3.3. Theory of the impact of systematic errors on CC1/2 and
CC*

Here, we use the terminology and definitions of the work

that introduced CC1/2 (Karplus & Diederichs, 2012). To

calculate the intra-data-set correlation coefficient CC1/2, the

measurements belonging to each unique reflection of the

experimental data set are randomly assigned to two half data

sets and the observations belonging to each half data set are

averaged to give I1 and I2, respectively. We observe that by

choosing observations randomly, none of the two half data sets

is preferred in any way; thus, their variances �2
"1 and �2

"2 are

the same (�"
2). We may thus define J � hJi = � for ‘true’

measurements with mean zero and variance ��
2, "1 as the

errors in random half data set 1, with an expectation value of

zero and variance �"
2, and "2 as the errors in random half data

set 2, with an expectation value of zero and variance �"
2.

CC* as given by (1) is an estimate of CCtrue, the correlation

between the arithmetic average of the half data set intensities

I1 and I2 and the true intensities J. This estimate should be

accurate since no approximations are involved in deriving (1).

When deriving (1), we assumed that �, "1 and "2 are mutually

independent. However, when systematic errors in the

measurement or data processing are present �, "1 and "2 may

no longer be independent of each other.

An example of systematic error that leaves �, "1 nd "2

mutually independent is the case of an error in a data-

processing program that results in a positive offset to all

intensities. This is clearly a systematic error, but it does not

affect �, "1 and "2 (since any offset is subtracted when

constructing �, "1 and "2, which have an expectation value of

zero) and thus has no influence on CC1/2 or CC*. This type of

error would, however, lower Rmerge but increase Rwork/Rfree. In

this ‘Gedankenexperiment’, data and model R values are thus

anticorrelated, whereas a CC-based data-quality indicator is

unchanged. A simple way to detect such a problem would be

to monitor the scale factors between Iobs and Icalc [note that

comparing Iobs and Icalc rather than Fobs and Fcalc avoids arti-

facts introduced by the French–Wilson (French & Wilson,

1978) procedure for converting intensities to amplitudes].

Three conceptually simple examples for systematic errors

that do invalidate one or more of the assumptions of inde-

pendence are the following.

(i) Owing to an error in space-group assignment that can,

for instance, occur in special cases of pseudosymmetric

translational symmetry, only every second reflection is

processed; the missed reflections are wrongly assigned an

intensity of zero. If we consider all reflections, including the

missed ones, "1 and "2 are (positively) correlated (i.e. non-

independent); in particular, they are negative for the missed

reflections. � is (negatively) correlated with "1 and "2.

(ii) Owing to overflow or nonlinearity of the detector

hardware, the intensity of strong reflections may be under-

estimated. Also in this case the true signal � is (negatively)

correlated with "1 and "2, and "1 and "2 are (positively)

correlated with each other (e.g. if one of them is negative, the

other is often negative as well).

(iii) Inadequate scaling or radiation damage may yield

intensities that are too low or too high for half of the obser-

vations of each unique reflection, respectively. If two obser-

vations are available for each unique reflection (which may,

for example, happen when the data collection covers the

asymmetric unit of reciprocal space two times in a row), then

"1 and "2 are (negatively) correlated, but � is not correlated

with "1 or "2.

In all cases of systematic error we can still assume that

E("1�) = E("2�), since the random assignment of measure-

ments to half-data sets on average prevents any particular of

the two expectation values being larger than the other.

The difference CC*2 – CC2
true is zero if the above assump-

tions about the mutual independence of �, "1 and "2 hold. It is

interesting that even after dropping these assumptions we can

calculate CC*2
� CC2

true. This offers a way to predict whether

the estimate CC* overestimates or underestimates CCtrue.
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Table 3
Application of the pairwise refinement technique to the data sets
specified.

Within each row of the table, the same sets of reflections are used to calculate
Rwork and Rfree. Each model (top row) was obtained by refinement against one
data set. Its model R values (Rwork, Rfree) against the other data sets are also
given. For each data set, the model that gives the best Rfree is marked in bold.

R factors calculated against

Model refined against

CDO3 CDO3b CDO3c

CDO3 (all) 0.186, 0.219 0.187, 0.223 0.187, 0.227
CDO3b (positive unique) 0.178, 0.211 0.178, 0.216 0.180, 0.220
CDO3c (positive observations) 0.204, 0.233 0.204, 0.235 0.199, 0.239



Collecting and rearranging terms as in the Supplementary

Material of Karplus & Diederichs (2012), we obtain

CC�2 � CC2
true ¼

2Eð"1"2Þ � 2
Eð"1�Þ

2

�2
�

Eð� þ "1Þ
2
þ E½ð� þ "1Þð� þ "2Þ�

: ð2Þ

The denominator of the right-hand side is positive. It is

noteworthy that no matter whether the true signal � is nega-

tively or positively correlated with "1 and "2, the second term

of the numerator is always negative. Overall, the numerator

may be positive or negative, or its two terms could cancel.

Cases where "1 and "2 are positively correlated, as in the first

two of the three examples above, seem to have practical

relevance; for these, the first term E("1"2) is larger than zero,

which favours CC* > CCtrue (i.e. overestimation of CCtrue).

However, the second term may cancel the first term, or if it is

larger than the first term the overall result may be an under-

estimation of CCtrue.

The third example yields CC*2
� CC2

true < 0, which means

that CC* is an underestimate of CCtrue. The deviation from the

truth occurs in opposite directions in the two half data sets, so

that their average is close to the truth (high CCtrue) but their

agreement may be poor (low CC1/2) such that CC* < CCtrue.

These examples demonstrate that even if the assumption

that CC* is an accurate estimate of CCtrue may not be

completely fulfilled, CC* is often a conservative estimate of

CCtrue owing to the safeguarding effect of the second term of

the numerator. This clearly is a desirable property of a data-

quality indicator.

We also note that in the case of vanishing signal (�!0) only

the first term of the numerator remains. Thus, at high reso-

lution the value of CC*2
� CC2

true is dominated by the

expectation value of "1"2.

3.4. Application of the theory to the specific data-filtering
test cases

Applying these theoretical considerations to the two data-

filtering practices explored, we can understand that the

decreases in CC1/2 do not in this case occur owing to there

being less signal in these data. Rather, the reduction of CC1/2 is

owing to systematic error being introduced: if negative unique

reflections are rejected (data set CDO3b) then in high-

resolution shells where the signal vanishes, "1 and "2 become

negatively correlated (Fig. 3b). This, according to (2), is

augmented by the correlation between � and "1, "2, leading to

a substantial reduction of CC* below CCtrue. In other words,

the systematic error causes CC1/2 to be an underestimate of

the level of signal in the data, meaning that in turn CC* is

no longer a valid upper limit for CCwork and CCfree. Indeed,

consideration of the refinement results demonstrates that at

high resolution CCwork and CCfree are both higher than CC*

for data set CDO3b (Table 4).

Considering data set CDO3c, the CC1/2 (and thus the CC*)

value is lower than that of CDO3, but to a lesser extent than

CDO3b (Fig. 2). Since rejection of negative observations does

not necessarily result in a correlation between "1 and "2

(Fig. 3c), the reason for the decrease is not the first term of the

numerator, as for CDO3b, but rather the second term. Here,

the rejection of negative observations increases the intensity

of the merged data over that of the true data, which leads to a

correlation between � and "1, "2. Again, according to (2), this

decreases CC* below CCtrue. The fact that CCwork and CCfree

are much reduced for CDO3c compared with models refined

against CDO3 or CDO3b (Table 4) is owing to the fact that at

high resolution the rejection of negative observations leads to

systematically increased intensities for the affected reflections,

but not for reflections without negative observations. This is

a systematic error that the model cannot fit; i.e. it reduces

CCwork and CCfree. This effect does not happen for CDO3b,

which just has its weak reflections discarded; in this latter case,

CCwork and CCfree are higher than for the model refined

against CDO3 since the model refined against CDO3b fits the

subset of stronger, less noisy intensities.

The rejection of negative intensities in this section serves as

an example for a broader class of data-massaging practices,

namely all those employing a positive � cutoff. Employing

such a cutoff can be expected to result in even worse models

than those obtained with a cutoff of zero, as shown here.

Negative � cutoffs of about�3� and below, on the other hand,

may be expected to reject true outliers and to affect very few

reflections. In addition, it should be noted that the artificial

increase of average intensities at high resolution brought

about by rejection of weak reflections invalidates the French–

Wilson procedure for estimating amplitudes from intensities

and may result in a model with unrealistically low temperature

factors.

Unfortunately, non-isomorphism between data sets cannot

be treated using the theory laid out above, since the concept of

‘truth’ is undefined when two data sets from different crystals

are merged: if the data sets are best described by different

structures, then which is the ‘true’ one? Obviously, further

research is needed to obtain meaningful prediction of the

model quality resulting from the merging of slightly non-

isomorphous data sets (Giordano et al., 2012).

4. Summary

Since the introduction of data R values, decisions based on

these have been influencing protocols dealing with rejection of
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Table 4
Comparison of CC* with CCwork, CCfree in the highest resolution shell
(1.61–1.57 Å).

All of the data from CDO3 were used or only positive unique reflections or
only positive observations were used. The number of unique reflections is
given in parentheses.

Model refined against

All reflections
(CDO3)

Positive unique
reflections only
(CDO3b)

Positive observations
only (CDO3c)

CC* 0.587 0.174 0.477
CCwork, CCfree 0.540 (1912),

0.581 (99)
0.580 (1308),

0.612 (73)
0.385 (1872),

0.403 (94)



complete data sets, resolution shells with weak data and weak

(e.g. negative) reflections. Procedures such as those analyzed

here that discard, filter or massage data in order to minimize

data R values need to be abandoned since they lead to

suboptimal atomic models. They should be replaced by

evaluations of data quality using better suited correlation-

coefficient-based criteria, together with unambiguous identi-

fication of the best models, which can be performed using a

paired-refinement strategy.
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