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ABSTRACT

The PDBTM database (available at http://pdbtm
.enzim.hu), the first comprehensive and up-to-date
transmembrane protein selection of the Protein
Data Bank, was launched in 2004. The database
was created and has been continuously updated
by the TMDET algorithm that is able to distinguish
between transmembrane and non-transmembrane
proteins using their 3D atomic coordinates only.
The TMDET algorithm can locate the spatial pos-
itions of transmembrane proteins in lipid bilayer as
well. During the last 8 years not only the size of the
PDBTM database has been steadily growing from
�400 to 1700 entries but also new structural
elements have been identified, in addition to the
well-known a-helical bundle and b-barrel structures.
Numerous ‘exotic’ transmembrane protein struc-
tures have been solved since the first release,
which has made it necessary to define these new
structural elements, such as membrane loops or
interfacial helices in the database. This article
reports the new features of the PDBTM database
that have been added since its first release, and
our current efforts to keep the database
up-to-date and easy to use so that it may continue
to serve as a fundamental resource for the scientific
community.

INTRODUCTION

Transmembrane proteins play an important role in the
living cells for energy production, regulation and metab-
olism. The fact that half of present-day drugs have some
effect on transmembrane proteins (1,2) also underlines
their biological importance. Furthermore, �25% of the
human genome might code transmembrane proteins (3),
which means about 5–6000 structures. Due to the struc-
tural and physiochemical properties of these proteins, the
experimental techniques for structure determination are

not so straightforward. As a consequence, the proportion
of transmembrane and globular proteins in the Protein
Data Bank (PDB) (4) database is <2% according to the
PDBTM database (5,6). Hence, the PDBTM database was
created in 2004 to collect these cases. The PDBTM
database was the first to address the problems of trans-
membrane protein structures in the PDB database, namely
the fact that these proteins cannot be identified using the
annotation in the PDB’s entries. Therefore, a new method
was needed, which is based on only the 3D coordinates to
identify transmembrane segments and does not require
additional information. Moreover, since one of the most
important environments, the double lipid layer, is not part
of the solved atomic structures due to the experimental
difficulties of structure determination, theoretical
methods are required to determine the orientations of
the transmembrane proteins relative to the lipid bilayer.
We developed a method, called TMDET (7), which
addresses and solves the above-mentioned problems.
Since then several transmembrane databases have
become available on the Internet, utilizing different theor-
etical algorithms and techniques, and serving different
purposes. For the sake of comparability, let us briefly
summarize the main properties of such databases.

The OPM (8) contains a well-structured classification of
membrane proteins. The orientation of the protein relative
to the membrane normal is defined by minimizing its
transfer energy (�Gtransfer) from water to the lipid
bilayer with respect to the shift along the bilayer
normal, hydrophobic thickness, rotation angle and tilt
angle (9). Some missing side-chain atoms are added and
the structure of residues at the water–lipid interface is
adjusted. The results of these calculations are used to
transform the atomic coordinates of integral membrane
proteins in a way that the membrane normal be parallel
with the z-axis. In the OPM database, the transformed
coordinate files contain membrane planes too, which are
represented by dummy oxygen and nitrogen atoms. The
topology data about transmembrane proteins are also
given in the OPM database, i.e. what part of the
proteins face to the cytosolic space and what part to the
extra-cytosolic one.
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The CGDB (10) database contains the final system co-
ordinates of coarse-grained simulation-relaxed transmem-
brane protein structures in bilayer and their analysis from
the aspect of protein–lipid interaction. This database has
the most sophisticated model in terms of physics, as it
utilizes a previously developed high-throughput computa-
tional approach to perform the coarse-grained simula-
tions. There are two other analogous databases which
are more specific: the KDB is for K-channels (http://
sbcb.bioch.ox.ac.uk/kdb/) and the OMPDB is a set of
outer membrane proteins obtained by full-atom simula-
tions (11). These databases contain indispensable informa-
tion on dynamic aspects and stability.

One of the most reliable database of membrane proteins is
the membrane proteins of known structure (Mpstruct,
http://blanco.biomol.uci.edu/membrane_proteins_xtal.html),
which is regularly updated. In this, membrane proteins are
classified using a simpler classification scheme than the one
used by the OPM. Although the OPM and the PDBTM
contain information about the membrane orientation of
proteins and about the classification of sequence segments,
the Mpstruct does not.

There are several other databases collecting transmem-
brane proteins and some of their properties (12–16): (i) the
MPDB (12) is a relational database of structural and func-
tional information on integral, anchored and peripheral
membrane proteins and peptides derived from the litera-
ture and from the PDB database. It provides various
search parameters (protein characteristics, structure deter-
mination methods, crystallization techniques, detergents,
temperature, ‘pH’, authors, etc.) and records are linked to
the PDB, the Pfam (13) or the PubMed. It is a weekly
updated database following the PDB weekly updates. In
addition, the MPDB provides different statistics about the
sources and the detergents used in crystallization, as well
as about applied expression systems, among other data.
(ii) The TMFunction (14) is a collection of >2900 experi-
mentally observed functional residues in membrane
proteins. Each entry in the TMFunction database
includes the numerical values for the parameters IC50,
V(max), relative activity of mutants with respect to wild-
type protein, binding affinity and dissociation constant.
(iii) The Transporter Classification Database (15) is a
web accessible, curated, relational database containing
sequence, classification, structural, functional and evolu-
tionary information about transport systems from a
variety of living organisms.

In the PDBTM database, we collect all transmembrane
proteins for which structures have been solved so far; we
check and if necessary correct their biologically active
oligomer form given in PDB files, define their membrane
orientation and set their transmembrane segments,
membrane re-entrant loops and interfacial helices (IFHs).

NEW FEATURES OF THE PDBTM DATABASE

Although the main architecture of the TMDET algorithm
has not been changed, several extensions have been added
to the basic algorithm to enhance the usability and reli-
ability of our database. The need for the new features is

the consequence of the development this scientific field has
experienced. We have enhanced the database to include
those structural elements, which were not known or
were rarely represented when the database was created.
These are IFHs and re-entrant regions (loop, hairpin
and re-entrant coil) (17). These and some other new
features will be discussed in the following sections.

Correcting biomatrices

The biological form of the protein usually does not cor-
respond to the molecule, which is present in the asymmet-
ric unit. Therefore, the symmetry operations, which need
to be applied to generate the active oligomer form, are
displayed in the PDB file in the BIOMOLECULE
section as a matrix transformation, called biomatrix.
The oligomer form usually is defined by the authors or
is calculated by theoretical calculations using PQS (18)
or PISA (19). Both of these algorithms have been de-
veloped to determine the quaternary structure of
globular proteins, therefore they may fail when applied
to transmembrane proteins. We have found several files,
where the crystals contain the biologically active oligomer
form, but the BIOMOLECULE records are set improp-
erly (e.g. 2atk, 2jk5, 2zld) and those, where the crystals
contain oligomer forms that do not exist in the membrane.
These latter cases cannot be recognized by the above-men-
tioned methods. Most frequently they are subunits with
anti-parallel orientation in a homo-dimer transmembrane
protein, which were discussed in our original article (5).
The usage of inappropriate biomatrices occasionally leads
to the inaccurate definitions of the orientation of
membrane proteins relative to the membrane. In some
cases, it could be a �20� or a larger difference between
monomer and oligomer forms.
We aimed to identify and correct problems, which can

be associated with biomatrices and leads to incorrect
oligomers. Therefore, we developed a new algorithm,
which uses homologous protein structures to generate
biomatrices for proteins with inappropriate biomatrix in
the PDB. The outline of the protocol is as follows. Protein
structures having only one chain without any biomatrix
annotation (or only the identity matrix is given in the
biomatrix records) are selected in one pool, whereas
those which have only one chain and a biomatrix were
stored in an other pool. Then a BLAST search is per-
formed against the sequences of the second pool for
each sequence of the first one. The protein with the
highest hit is used as a candidate and if the sequential
similarity is >90%, then the query structure will be
superimposed on the candidate using TM-align (20) algo-
rithm. TM-align gives the transformation (bT), which turns
Pquery to Ptarget formally:

bTPquery ¼ Ptarget: ð1Þ

Assuming that there are Pquery and Ptarget identical
monomer structures with different absolute coordinates
and the corresponding biomatrices are bBquery and bBtarget,
then we get:

bTbBqueryPquery ¼ bBtargetPtarget: ð2Þ
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Replacing Ptarget with bTPquery on the bases of Equation
(1), in Equation (2), we obtain:

bTbBqueryPquery ¼ bBtarget
bTPquery: ð3Þ

Hence

bTbBquery ¼ bBtarget
bT, ð4Þ

bBquery ¼ bT
�1
bBtarget

bT: ð5Þ

We have checked the accuracy of this procedure by
applying it on those entries, which are homo-oligomer
molecules and have correct BIOMOLECULE record.
The PDBTM database contains 318 such entries. After
sequence filtering to 90% identity, we got 57 entries. We
could generate biomatrices for 43 entries using homolo-
gous protein structures. After calculating the coordinates
using these newly generated biomatrices, we calculate the
root mean square deviation (RMSD) between the original
and computed coordinates. The RMSD values of 40 out
of the 43 entries were <1 Å (avg: 0.38 ± 0.20 Å), while the
worst alignment produced a 3.3 Å RMSD.
In cases, when the crystal contains the correct oligomer

form, but this is not given in the BIOMOLECULE record,
we supply the correct crystallographic symmetry trans-
formation. Altogether, the biomatrices of 34 entries have
been corrected. The largest tilt angle difference between
the corrected and uncorrected original forms was found in
the case of 2w0f, a potassium-channel KcsA–Fab complex
with tetraoctylammonium. In the PDB file, it appears as a
monomer (after applying the given biomatrix transform-
ation), but its active form is tetramer. The angle deviation
was 23� and the region borders moved up to four residues.
We have found similar angle deviation in the OPM
database as well. The largest tilt angle deviation, 19� in

the OPM database, can be found between 1py6 and 1m0l.
1py6 is a monomeric protein in the PDB, while 1m0l is a
homo-trimer of the same bacteriorhodopsin.

Membrane re-entrant loops

Membrane re-entrant loops with both ends facing the
same side of the membrane were first detected in the late
90 s (21) in the case of the cardiac Na+/Ca2+ exchanger.
Later it was shown that several other channel-like trans-
membrane proteins contain this type of structural element,
e.g. aquaporins (22), potassium channels (23), chloride
channels (24), etc. (Figure 1). We have developed a new
algorithm as an extension of the TMDET to detect these
structural elements using only the 3D atomic coordinates
of given transmembrane proteins and the transformation
matrices produced by the TMDET algorithm, by
searching sequence segments having both end on the
same side of the membrane, and diving into the
membrane with at least 6 Å (measured from the mem-
brane–water interface). This algorithm can detect any
type of re-entrant loops (e.g. helix–loop–coil, coil–loop–
helix, coil–loop–coil), but the database currently does not
contain these pieces of information. Currently, there are
258 proteins in the PDBTM database, which contain one
or more re-entrant loops.

Interfacial helices

Another newly implemented structural class is IFHs that
are a-helices laying in the membrane–water interface
parallel to the membrane plane (Figure 2). They have
various structural roles, for example, they are responsible
for the regulation of channel gating in both the KirBac 1.1
inward rectifying potassium channel (25) and the MscS
mechanosensitive channel (26), while in photosystem I,

Figure 2. IFH (coloured in green) in 1e7p, a quinol-fumarate reductase
from Wolinella succinogenes (28).

Figure 1. Loops (coloured in orange) in 1h6i, a refined structure of
human aquaporin (22).
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IFHs appear to shield cofactors from the aqueous
phase (27).

A further extension of the TMDET algorithm contains
a subroutine which identifies these regions. First, we
collect a-helical regions not in the membrane, and
longer than four residues, and calculate the tilt angle
relative to the membrane plane and the distance from
the membrane–water boundary. The algorithm uses two
threshold parameters: the distance (<9 Å) from the mem-
brane–water boundary and the tilt angle (<30�). As a
result of this extension, we have identified IFHs in 851
proteins.

THE NEW USER INTERFACE OF THE PDBTM

The homepage of the upgraded version of the PDBTM
database utilizes the Wt C++Web Toolkit (http://www.
webtoolkit.eu/wt) programming library and the

OpenAstexViewer (29) to visualize transmembrane
protein structures highlighted with different colours for
the different region types to make the structure even
more informative. We have recently created a complex
web application for investigating protein 3D structures
and residue–residue interactions (30), where both the Wt
and the OpenAstexViewer have been successfully utilized.

The PDBTM entry viewer

The layout of the PDBTM molecule viewer can be seen in
Figure 3. The navigation bar (Figure 3A) contains an
up-to-date list of IDs of current transmembrane protein
structures in the PDBTM database. The arrows serve for
the navigation in this list. The previous structure viewer
has been replaced with the OpenAstexViewer (29). The
colouring of the 3D structure (Figure 3B) and sequence
(Figure 3C) is identical in order to help users to find
sequence segments more easily in the 3D structure.

Figure 3. The PDBTM entry viewer. (A) The navigation bar which is always visible for the sake of comfortable and instant navigation. Using the
arrows one can navigate to the first entry, step back, step forward or jump to the end. (B) The structure viewer (29), using the same colours as in the
sequence box. (C) Sequence box, containing the chain selector and the sequence of the actual protein chain. (D) File download section, where
the user can download or simply view the original and the transformed PDB files as well as PDBTM XML files. (E) Cross-reference links to the
RCSB PDB and PDBsum (31) databases.
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These two widgets are connected through signals, so by
clicking on any sequence regions (except the grey-coloured
ones, which represent sequence without solved structure),
the representation of the corresponding residues in the
structure viewer turns from cartoon to sphere.
Users can download or simply view the original and the

transformed PDB files as well as the PDBTM XML files
(Figure 3D), which describe the regions of the structure,
chain sequences and all the necessary information to build
up the transformed PDB structure from the original one.

Advanced search system

The web server allows users to perform various types of
search in the database. Some ordinary, frequently used
search requests have already been implemented, but
users can also query custom requests, either in a form
field or by using the address line of the browser. This
latest feature enables the users to refer to their query
results as a constantly updated list by bookmarking the
given query. The search results can be browsed or down-
loaded as a whole in various file formats. For more
detailed description visit the manual of the PDBTM
(http://pdbtm.enzim.hu/?_=/help/manual).

CONCLUSION

The PDBTM database is a comprehensive, up-to-date and
continuously updated transmembrane protein database.
As of today, it contains >1700 entries whose regions are
classified into structural elements such as transmembrane
helices, transmembrane beta segments, membrane
re-entrant loops or IFHs. The flexible search method
makes data mining easier for bioinformaticians who are
interested in transmembrane proteins and their structures.
All kinds of feedback and advice are most welcome, as
they will help us to improve and to satisfy the diverse
demands of users more fully.
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